How Representative Are European AERONET-OC Sites of European Marine Waters?
Abstract
:1. Introduction
- Case 1 waters, with the Casablanca (CSP) site in the Western Mediterranean Sea;
- Optically complex waters with varying concentrations of sediments and chromophoric dissolved organic matter (CDOM) with the Acqua Alta Oceanographic Tower site (AAOT) in the northern Adriatic Sea, the Galata Platform (GLT), and the Section-7 Platform (ST7) sites in the Black Sea and the Thornton-C-Power (TCP) site off the Belgian coast [3];
- Optically complex waters with high concentrations of CDOM, with the Gustaf Dalén Lighthouse Tower (GDLT), the Helsinki Lighthouse (HLT), and the Irbe Lighthouse (IRLT) sites in the Baltic Sea;
- Highly turbid waters with the Zeebrugge-MOW (ZEE) site in nearshore waters off the Belgian coast [4].
2. Materials and Methods
2.1. AERONET-OC Data
2.2. Satellite Data
2.3. Data Clustering
2.4. European Sea Water Classification
2.5. Class-Based Statistics
3. Results
3.1. ISODATA Parameters
3.2. Clustering Results
3.3. Classification of European Sea Waters
3.4. Class-Specific Uncertainties and Uncertainty Distribution
3.5. Seasonal Variability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Zibordi, G.; Holben, B.N.; Talone, M.; D’Alimonte, D.; Slutsker, I.; Giles, D.M.; Sorokin, M.G.; D’Alimonte, D.; Slutsker, I.; Giles, D.M.; et al. Advances in the Ocean Color Component of the Aerosol Robotic Network (AERONET-OC). J. Atmos. Ocean. Technol. 2021, 38, 725–746. [Google Scholar] [CrossRef]
- Van der Zande, D.; Vanhellemont, Q.; De Keukelaere, L.; Knaeps, E.; Ruddick, K. Validation of Landsat-8/OLI for Ocean Colour Applications with AERONET-OC Sites in Belgian Coastal Waters. In Proceedings of the Ocean Optics Conference, Victoria, BC, Canada, 23–28 October 2016. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Zibordi, G.; Berthon, J.F.; Mélin, F.; D’Alimonte, D.; Kaitala, S. Validation of Satellite Ocean Color Primary Products at Optically Complex Coastal Sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland. Remote Sens. Environ. 2009, 113, 2574–2591. [Google Scholar] [CrossRef]
- Zibordi, G.; Kwiatkowska, E.; Mélin, F.; Talone, M.; Cazzaniga, I.; Dessailly, D.; Gossn, J.I. Assessment of OLCI-A and OLCI-B Radiometric Data Products across European Seas. Remote Sens. Environ. 2022, 272, 112911. [Google Scholar] [CrossRef]
- Mélin, F.; Zibordi, G.; Berthon, J.-F.; Bailey, S.; Franz, B.; Voss, K.; Flora, S.; Grant, M. Assessment of MERIS Reflectance Data as Processed with SeaDAS over the European Seas. Opt. Express 2011, 19, 25657. [Google Scholar] [CrossRef] [PubMed]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Mélin, F.; Zibordi, G.; Berthon, J.-F. Uncertainties in Remote Sensing Reflectance From MODIS-Terra. IEEE Geosci. Remote Sens. Lett. 2012, 9, 432–436. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G.; Jackson, T.; Sathyendranath, S. Uncertainty Estimates of Remote Sensing Reflectance Derived from Comparison of Ocean Color Satellite Data Sets. Remote Sens. Environ. 2016, 177, 107–124. [Google Scholar] [CrossRef]
- Mélin, F.; Franz, B.A. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products. In Optical Radiometry for Ocean Climate Measurements; Zibordi, G., Donlon, C.J., Parr, A.C., Eds.; Experimental Methods in the Physical Sciences; Academic Press: Cambridge, MA, USA, 2014; Volume 47, pp. 609–638. [Google Scholar]
- Mélin, F. Validation of Ocean Color Remote Sensing Reflectance Data: Analysis of Results at European Coastal Sites. Remote Sens. Environ. 2022, 280, 113153. [Google Scholar] [CrossRef]
- Mélin, F.; Zibordi, G.; Carlund, T.; Holben, B.N.; Stefan, S. Validation of SeaWiFS and MODIS Aqua/Terra Aerosol Products in Coastal Regions of European Marginal Seas. Oceanologia 2013, 55, 27–51. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F. A Regional Assessment of OLCI Data Products. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1490–1494. [Google Scholar] [CrossRef]
- Mélin, F. From Validation Statistics to Uncertainty Estimates: Application to VIIRS Ocean Color Radiometric Products at European Coastal Locations. Front. Mar. Sci. 2021, 8, 790948. [Google Scholar] [CrossRef]
- Cazzaniga, I.; Zibordi, G.; Melin, F.; Kwiatkowska, E.; Talone, M.; Dessailly, D.; Gossn, J.I.; Muller, D. Evaluation of OLCI Neural Network Radiometric Water Products. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Tilstone, G.; Dall’Olmo, G.; Hieronymi, M.; Ruddick, K.; Beck, M.; Ligi, M.; Costa, M.; D’Alimonte, D.; Vellucci, V.; Vansteenwegen, D.; et al. Field Intercomparison of Radiometer Measurements for Ocean Colour Validation. Remote Sens. 2020, 12, 1587. [Google Scholar] [CrossRef]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Frouin, R.J., Murakami, H., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 13. [Google Scholar]
- Gilerson, A.; Herrera-Estrella, E.; Agagliate, J.; Foster, R.; Gossn, J.I.; Dessailly, D.; Kwiatkowska, E. Determining the Primary Sources of Uncertainty in the Retrieval of Marine Remote Sensing Reflectance from Satellite Ocean Color Sensors II. Sentinel 3 OLCI Sensors. Front. Remote Sens. 2023, 4, 1146110. [Google Scholar] [CrossRef]
- Liu, H.; He, X.; Li, Q.; Hu, X.; Ishizaka, J.; Kratzer, S.; Yang, C.; Shi, T.; Hu, S.; Zhou, Q.; et al. Evaluation of Ocean Color Atmospheric Correction Methods for Sentinel-3 OLCI Using Global Automatic In Situ Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Kyryliuk, D.; Kratzer, S. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor over the Baltic Sea. Sensors 2019, 19, 3609. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Dowell, M.D. A Class-Based Approach to Characterizing and Mapping the Uncertainty of the MODIS Ocean Chlorophyll Product. Remote Sens. Environ. 2009, 113, 2424–2430. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.W.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.; Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef]
- IOCCG. Uncertainties in Ocean Colour Remote Sensing. IOCCG Report Series, Number 18; Mélin, F., Ed.; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2019. [Google Scholar]
- Jackson, T.; Sathyendranath, S.; Mélin, F. An Improved Optical Classification Scheme for the Ocean Colour Essential Climate Variable and Its Applications. Remote Sens. Environ. 2017, 203, 152–161. [Google Scholar] [CrossRef]
- Liu, X.; Steele, C.; Simis, S.; Warren, M.; Tyler, A.; Spyrakos, E.; Selmes, N.; Hunter, P. Retrieval of Chlorophyll-a Concentration and Associated Product Uncertainty in Optically Diverse Lakes and Reservoirs. Remote Sens. Environ. 2021, 267, 112710. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Feng, H. Characterizing the Uncertainties in Spectral Remote Sensing Reflectance for SeaWiFS and MODIS-Aqua Based on Global in Situ Matchup Data Sets. Remote Sens. Environ. 2015, 159, 14–27. [Google Scholar] [CrossRef]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of Four Atmospheric Correction Algorithms for MODIS-Aqua Images over Contrasted Coastal Waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Hieronymi, M.; Bi, S.; Müller, D.; Schütt, E.M.; Behr, D.; Brockmann, C.; Lebreton, C.; Steinmetz, F.; Stelzer, K.; Vanhellemont, Q. Ocean Color Atmospheric Correction Methods in View of Usability for Different Optical Water Types. Front. Mar. Sci. 2023, 10, 1129876. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G. Band Shifting for Ocean Color Multi-Spectral Reflectance Data. Opt. Express 2015, 23, 2262–2279. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.I.; Higa, H.; Ishizaka, J.; Pahlevan, N.; Oki, K. Spectral Band-Shifting of Multispectral Remote-Sensing Reflectance Products: Insights for Matchup and Cross-Mission Consistency Assessments. Remote Sens. Environ. 2023, 299, 113846. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The Solar Spectral Irradiance from 200 to 2400 Nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V. How Optically Diverse Is the Coastal Ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X. Optical Classification of Contrasted Coastal Waters. Remote Sens. Environ. 2012, 123, 306–323. [Google Scholar] [CrossRef]
- EUMETSAT. Sentinel-3 OLCI L2 Report for Baseline Collection OL_L2M_003; EUM/RSP/REP/21/1211386; EUMETSAT: Darmstadt, Germany, 2021. [Google Scholar]
- Memarsadeghi, N.; Mount, D.M.; Netanyahu, N.S.; Le Moigne, J. A Fast Implementation of the ISODATA Clustering Algorithm. Int. J. Comput. Geom. Appl. 2007, 17, 71–103. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Feng, H. A Fuzzy Logic Classification Scheme for Selecting and Blending Satellite Ocean Color Algorithms. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1764–1776. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Clerici, M.; D’Alimonte, D.; Zibordi, G.; Berthon, J.-F.; Canuti, E. Multi-Sensor Satellite Time Series of Optical Properties and Chlorophyll-a Concentration in the Adriatic Sea. Prog. Oceanogr. 2011, 91, 229–244. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Melin, F.; Zibordi, G.; Berthon, J.-F. Use of the Novelty Detection Technique to Identify the Range of Applicability of Empirical Ocean Color Algorithms. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2833–2843. [Google Scholar] [CrossRef]
- Shaun Turney Chi-Square (Χ2) Table. Available online: https://www.scribbr.com/statistics/chi-square-distribution-table/ (accessed on 31 October 2023).
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Berthon, J.-F. SeaWiFS Postlaunch Technical Report Series: Part 2, Data Analysis; Coastal Atmosphere and Sea Time Series (CoASTS); Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 20. [Google Scholar]
- Güttler, F.N.; Niculescu, S.; Gohin, F. Turbidity Retrieval and Monitoring of Danube Delta Waters Using Multi-Sensor Optical Remote Sensing Data: An Integrated View from the Delta Plain Lakes to the Western–Northwestern Black Sea Coastal Zone. Remote Sens. Environ. 2013, 132, 86–101. [Google Scholar] [CrossRef]
- Groom, S.B.; Holligan, P.M. Remote Sensing of Coccolithophore Blooms. Adv. Sp. Res. 1987, 7, 73–78. [Google Scholar] [CrossRef]
- Cazzaniga, I.; Zibordi, G.; Mélin, F. Spectral Variations of the Remote Sensing Reflectance during Coccolithophore Blooms in the Western Black Sea. Remote Sens. Environ. 2021, 264, 112607. [Google Scholar] [CrossRef]
- Claustre, H.; Morel, A.; Hooker, S.B.; Babin, M.; Antoine, D.; Oubelkheir, K.; Bricaud, A.; Leblanc, K.; Quéguiner, B.; Maritorena, S. Is Desert Dust Making Oligotrophic Waters Greener? Geophys. Res. Lett. 2002, 29, 104–107. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. The Dissolved Yellow Substance and the Shades of Blue in the Mediterranean Sea. Biogeosciences 2009, 6, 2625–2636. [Google Scholar] [CrossRef]
- BPIM-WMO. Metrology for Climate Action; Report BIPM 2023/03, WMO-IOM, 142; WMO, BIPM: Geneva, Switzerland, 2023. [Google Scholar]
- Bi, S.; Li, Y.; Xu, J.; Liu, G.; Song, K.; Mu, M.; Lyu, H.; Miao, S.; Xu, J. Optical Classification of Inland Waters Based on an Improved Fuzzy C-Means Method. Opt. Express 2019, 27, 34838. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.S.; Dowell, M.D.; Franz, B.A. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: A Generalized Approach for Use with Multiple Sensors. Remote Sens. Environ. 2012, 117, 249–263. [Google Scholar] [CrossRef]
- Mélin, F.; Cazzaniga, I.; Sciuto, P. Verification of Uncertainty Estimates of Autonomous Field Measurements of Marine Reflectance Using Simultaneous Observations. Front. Remote Sens. 2024, 4, 1295855. [Google Scholar] [CrossRef]
- Cazzaniga, I.; Zibordi, G. AERONET-OC LWN Uncertainties: Revisited. J. Atmos. Ocean. Technol. 2023, 40, 411–425. [Google Scholar] [CrossRef]
- Gergely, M.; Zibordi, G. Assessment of AERONET-OC L WN Uncertainties. Metrologia 2014, 51, 40–47. [Google Scholar] [CrossRef]
OLCI Classes | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Correct (%) | α5 (%) | α10 (%) | ||
AERONET-OC classes | 1 | 22 | 3 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 | 63 | 97 |
2 | 37 | 28 | 23 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 50 | 100 | |
3 | 15 | 6 | 48 | 14 | 1 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 54 | 61 | 94 | |
4 | 0 | 0 | 13 | 43 | 12 | 0 | 29 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 43 | 54 | 98 | |
5 | 0 | 0 | 7 | 1 | 69 | 10 | 17 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 65 | 66 | 98 | |
6 | 0 | 0 | 0 | 0 | 9 | 46 | 4 | 25 | 6 | 3 | 0 | 0 | 0 | 0 | 49 | 54 | 90 | |
7 | 0 | 0 | 0 | 4 | 16 | 6 | 52 | 15 | 3 | 12 | 1 | 0 | 0 | 0 | 48 | 67 | 99 | |
8 | 0 | 0 | 0 | 0 | 0 | 10 | 2 | 58 | 20 | 6 | 1 | 0 | 0 | 0 | 60 | 82 | 99 | |
9 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 21 | 1 | 3 | 0 | 0 | 0 | 78 | 85 | 96 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 27 | 14 | 0 | 0 | 19 | 73 | 100 | |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 16 | 17 | 1 | 0 | 44 | 97 | 100 | |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 22 | 7 | 0 | 63 | 97 | 100 | |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 14 | 4 | 58 | 92 | 100 | |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 9 | 82 | 82 | 100 |
c | PA | PB | c | PA | PB |
---|---|---|---|---|---|
1 | 25.0 | 25.8 | 9 | 102.8 | 94.4 |
2 | 17.6 | 8.1 | 10 | 72.3 | 67.1 |
3 | 73.2 | 59.4 | 11 | 28.2 | 38.8 |
4 | 115.8 | 101.4 | 12 | 41.8 | 47.1 |
5 | 86.3 | 75.3 | 13 | 54.7 | 51.0 |
6 | 126.9 | 122.2 | 14 | 25.5 | 25.1 |
7 | 122.5 | 116.7 | 15 | 22.0 | 21.0 |
8 | 110.3 | 112.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazzaniga, I.; Mélin, F. How Representative Are European AERONET-OC Sites of European Marine Waters? Remote Sens. 2024, 16, 1793. https://doi.org/10.3390/rs16101793
Cazzaniga I, Mélin F. How Representative Are European AERONET-OC Sites of European Marine Waters? Remote Sensing. 2024; 16(10):1793. https://doi.org/10.3390/rs16101793
Chicago/Turabian StyleCazzaniga, Ilaria, and Frédéric Mélin. 2024. "How Representative Are European AERONET-OC Sites of European Marine Waters?" Remote Sensing 16, no. 10: 1793. https://doi.org/10.3390/rs16101793
APA StyleCazzaniga, I., & Mélin, F. (2024). How Representative Are European AERONET-OC Sites of European Marine Waters? Remote Sensing, 16(10), 1793. https://doi.org/10.3390/rs16101793