Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Campaigns
2.2. Laboratory Work
2.2.1. Chlorophyll a and Pheopigments
2.2.2. Light Absorption Coefficients
2.3. Satellite Data and Derived Products
2.3.1. Reflectance Data
2.3.2. Satellite-Derived Chlorophyll a
2.3.3. Satellite-Derived Absorption Coefficients
2.3.4. Matchup Analysis
2.4. Statistics and Data Analysis
3. Results
3.1. Case 1 vs. Case 2 Waters
3.2. Temporal and Spatial Variation of Bio-Optical Properties
3.3. Relationships between Biogeochemical Components and Bio-Optical Properties
3.4. Evaluation of Semi-Analytical Approaches to Deriving Bio-Optical Properties from Ocean Colour
4. Discussion
4.1. Case 1 vs. Case 2 Waters
4.2. Temporal and Spatial Variation of Bio-Optical Properties
4.3. Relationships between Biogeochemical Components and Bio-Optical Properties
4.4. Semi-Analytical Approaches to Deriving Bio-Optical Properties from Ocean Colour
5. Conclusions
- A strong power law relation between turbidity and detritus suggests the potential for using satellite-based turbidity data to estimate detritus in coastal waters.
- In terms of the performance and limitations of algorithms, semi-analytical algorithms (QAA, GSM, GIOP) tended to underestimate the absorption coefficients, a common issue in coastal waters.
- The WIC regional coefficients (RG), derived from the relationship between in situ Chla and aph, improved the results of the semi-analytical algorithm GIOP for aph (λ). Additionally, the RG coefficients improved the empirical results when applied directly to Chla values obtained from the OC5CCI algorithm.
- These observations highlight the importance of regional-specific studies and the development of tailored algorithms to improve the accuracy of ocean colour remote sensing in diverse and dynamic coastal environments, especially for the analysis of the phytoplankton community’s composition.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GCOS. Systematic Observation Requirements for Satellite-Based Data Products for Climate (2011 Update), Supplemental Details to the Satellite-Based Component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)”; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- GCOS. The Global Observing System for Climate: Implementation Needs; Global Climate Observing System (GCOS): Geneva, Switzerland, 2016. [Google Scholar] [CrossRef]
- Dupouy, C.; Neveux, J.; Ouillon, S.; Frouin, R.; Murakami, H.; Hochard, S.; Dirberg, G. Inherent Optical Properties and Satellite Retrieval of Chlorophyll Concentration in the Lagoon and Open Ocean Waters of New Caledonia. Mar. Pollut. Bull. 2010, 61, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.D. Radiative Transfer in the Ocean. Encycl. Ocean. Sci. 2001, 4, 2321–2330. [Google Scholar] [CrossRef]
- IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products; Wang, M., Ed.; Reports of the International Ocean-Colour Coordinating Group, No. 10; IOCCG: Dartmouth, NS, Canada, 2010. [Google Scholar]
- Kämpf, J.; Chapman, P. The Canary/Iberia Current Upwelling System. In Upwelling Systems of the World; Springer: Cham, Switzerland, 2016; pp. 203–250. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Wozniak, B.; Wozniak, S.; Tyszka, K.; Dera, J. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles. Oceanologia 2005, 47, 129–164. [Google Scholar]
- Sathyendranath, S.; Watts, L.; Devred, E.; Platt, T.; Caverhill, C.; Maass, H. Discrimination of Diatoms from Other Phytoplankton Using Ocean-Colour Data. Mar. Ecol. Prog. Ser. 2004, 272, 59–68. [Google Scholar] [CrossRef]
- Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.M. Remote Sensing of Phytoplankton Groups in Case 1 Waters from Global SeaWiFS Imagery. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 1989–2004. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Bricaud, A. Retrievals of a Size Parameter for Phytoplankton and Spectral Light Absorption by Colored Detrital Matter from Water-Leaving Radiances at SeaWiFS Channels in a Continental Shelf Region off Brazil. Limnol. Oceanogr. Methods 2006, 4, 237–253. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Retrieval of the Particle Size Distribution from Satellite Ocean Color Observations. J. Geophys. Res. 2009, 114, C09015. [Google Scholar] [CrossRef]
- Devred, E.; Sathyendranath, S.; Stuart, V.; Platt, T.A. Three Component Classification of Phytoplankton Absorption Spectra: Application to Ocean-Color Data. Remote Sens. Environ. 2011, 115, 2255–2266. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Global Variability of Phytoplankton Functional Types from Space: Assessment via the Particle Size Distribution. Biogeosciences 2010, 7, 3239–3257. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Hirata, T.; Hardman-Mountford, N.J.; Lavender, S.J.; Sathyendranath, S.; Barlow, R. The Influence of the Indian Ocean Dipole on Interannual Variations in Phytoplankton Size Structure as Revealed by Earth Observation. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 117–127. [Google Scholar] [CrossRef]
- Goela, P.C.; Icely, J.; Cristina, S.; Newton, A.; Moore, G.; Cordeiro, C. Specific Absorption Coefficient of Phytoplankton off the Southwest Coast of the Iberian Peninsula: A Contribution to Algorithm Development for Ocean Colour Remote Sensing. Cont. Shelf Res. 2013, 52, 119–132. [Google Scholar] [CrossRef]
- Brito, A.C.; Sá, C.; Brotas, V.; Brewin, R.J.W.; Silva, T.; Vitorino, J.; Platt, T.; Sathyendranath, S. Effect of Phytoplankton Size Classes on Bio-Optical Properties of Phytoplankton in the Western Iberian Coast: Application of Models. Remote Sens. Environ. 2015, 156, 537–550. [Google Scholar] [CrossRef]
- Fiúza, A.F.G. Upwelling Patterns off Portugal. In Coastal Upwelling Its Sediment Record; Springer: Boston, MA, USA, 1983; pp. 85–98. [Google Scholar] [CrossRef]
- Relvas, P.; Barton, E.D.; Dubert, J.; Oliveira, P.B.; Peliz, Á.; da Silva, J.C.B.; Santos, A.M.P. Physical Oceanography of the Western Iberia Ecosystem: Latest Views and Challenges. Prog. Oceanogr. 2007, 74, 149–173. [Google Scholar] [CrossRef]
- Ferreira, A.; Dias, J.; Brotas, V.; Brito, A.C. A Perfect Storm: An Anomalous Offshore Phytoplankton Bloom Event in the NE Atlantic (March 2009). Sci. Total Environ. 2022, 806, 151253. [Google Scholar] [CrossRef]
- Alvarez, I.; Gomez-Gesteira, M.; DeCastro, M.; Lorenzo, M.N.; Crespo, A.J.C.; Dias, J.M. Comparative Analysis of Upwelling Influence between the Western and Northern Coast of the Iberian Peninsula. Cont. Shelf Res. 2011, 31, 388–399. [Google Scholar] [CrossRef]
- Favareto, L.; Brotas, V.; Rudorff, N.; Zacarias, N.; Tracana, A.; Lamas, L.; Nascimento, Â.; Ferreira, A.; Gomes, M.; Borges, C.; et al. Response of Phytoplankton to Coastal Upwelling: The Importance of Temporal and Spatial Scales. Limnol. Oceanogr. 2023, 68, 1376–1387. [Google Scholar] [CrossRef]
- Bode, A.; Álvarez, M.; Ruíz-Villarreal, M.; Varela, M.M. Changes in Phytoplankton Production and Upwelling Intensity off A Coruña (NW Spain) for the Last 28 Years. Ocean Dyn. 2019, 69, 861–873. [Google Scholar] [CrossRef]
- Ferreira, A.; Garrido-Amador, P.; Brito, A.C. Disentangling Environmental Drivers of Phytoplankton Biomass off Western Iberia. Front. Mar. Sci. 2019, 6, 44. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group. The GEBCO_2021 Grid—A Continuous Terrain Model of the Global Oceans and Land; British Oceanographic Data Centre NOC: Southampton, UK, 2021. [Google Scholar] [CrossRef]
- Biguino, B.; Olmedo, E.; Ferreira, A.; Zacarias, N.; Lamas, L.; Favareto, L.; Palma, C.; Borges, C.; Teles-Machado, A.; Dias, J.; et al. Evaluation of SMOS L4 Sea Surface Salinity Product in the Western Iberian Coast. Remote Sens. 2022, 14, 423. [Google Scholar] [CrossRef]
- Zapata, M.; Garrido, J.L. Influence of Injection Conditions in Reversed-Phase High-Performance Liquid Chromatography of Chlorophylls and Carotenoids. Chromatographia 1991, 31, 589–594. [Google Scholar] [CrossRef]
- Zapata, M.; Rodríguez, F.; Garrido, J. Separation of Chlorophylls and Carotenoids from Marine Phytoplankton:A New HPLC Method Using a Reversed Phase C8 Column and Pyridine-Containing Mobile Phases. Mar. Ecol. Prog. Ser. 2000, 195, 29–45. [Google Scholar] [CrossRef]
- Mendes, C.R.; Cartaxana, P.; Brotas, V. HPLC Determination of Phytoplankton and Microphytobenthos Pigments: Comparing Resolution and Sensitivity of a C18 and a C8 Method. Limnol. Ocean Methods 2007, 5, 363–370. [Google Scholar] [CrossRef]
- Cartaxana, P.; Mendes, C.R.; Brotas, V. The COUL method. In The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5); NASA Tech. Memo, 2012. 2012-217503; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2012. [Google Scholar]
- Brotas, V.; Tarran, G.A.; Veloso, V.; Brewin, R.J.W.; Woodward, E.M.S.; Airs, R.; Beltran, C.; Ferreira, A.; Groom, S.B. Complementary Approaches to Assess Phytoplankton Groups and Size Classes on a Long Transect in the Atlantic Ocean. Front. Mar. Sci. 2022, 8, 682621. [Google Scholar] [CrossRef]
- Doerffer, R. Protocols for the Validation of MERIS Water Products; Document No. PO-TN-MEL-GS-0043; European Space Agency: Paris, France, 2002. [Google Scholar]
- Aiken, J.; Pradhan, Y.; Barlow, R.; Lavender, S.; Poulton, A.; Holligan, P.; Hardman-Mountford, N. Phytoplankton Pigments and Functional Types in the Atlantic Ocean: A Decadal Assessment, 1995–2005. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 899–917. [Google Scholar] [CrossRef]
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4; National Aeronautical and Space Administration, Goddard Space Flight Center, NASA: Greenbelt, MD, USA, 2003; Chapter 4; Volume 4, pp. 39–60. [Google Scholar]
- IOCCG. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation—Inherent Optical Property Measurements and Protocols: Absorption Coefficient; Neeley, A.R., Mannino, A., Eds.; International Ocean-Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2018; Volume 1.0, 78p. [Google Scholar] [CrossRef]
- Tassan, S.; Ferrari, G.M. An Alternative Approach to Absorption Measurements of Aquatic Particles Retained on Filters. Limnol. Oceanogr. 1995, 40, 1358–1368. [Google Scholar] [CrossRef]
- Tassan, S. A Sensitivity Analysis of the ‘Transmittance-Reflectance’ Method for Measuring Light Absorption by Aquatic Particles. J. Plankton Res. 2002, 24, 757–774. [Google Scholar] [CrossRef]
- Stramski, D.; Reynolds, R.A.; Kaczmarek, S.; Uitz, J.; Zheng, G. Correction of Pathlength Amplification in the Filter-Pad Technique for Measurements of Particulate Absorption Coefficient in the Visible Spectral Region. Appl. Opt. 2015, 54, 6763. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption Spectrum (380–700 Nm) of Pure Water II Integrating Cavity Measurements. Appl. Opt. 1997, 36, 8710. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains1. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Babin, M.; Stramski, D.; Ferrari, G.M.; Claustre, H.; Bricaud, A.; Obolensky, G.; Hoepffner, N. Variations in the Light Absorption Coefficients of Phytoplankton, Nonalgal Particles, and Dissolved Organic Matter in Coastal Waters around Europe. J. Geophys. Res. 2003, 108, 3211. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Claustre, H.; Ras, J.; Tièche, F. Light Absorption Properties and Absorption Budget of Southeast Pacific Waters. J. Geophys. Res. 2010, 115, C08009. [Google Scholar] [CrossRef]
- Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M. Tracing the Transport of Colored Dissolved Organic Matter in Water Masses of the Southern Beaufort Sea: Relationship with Hydrographic Characteristics. Biogeosciences 2012, 9, 925–940. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.; Dingle, J.; Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef] [PubMed]
- Gohin, F.; Druon, J.N.; Lampert, L. A Five Channel Chlorophyll Concentration Algorithm Applied to SeaWiFS Data Processed by SeaDAS in Coastal Waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Brotas, V.; Brewin, R.J.W.; Sá, C.; Brito, A.C.; Silva, A.; Mendes, C.R.; Diniz, T.; Kaufmann, M.; Tarran, G.; Groom, S.B.; et al. Deriving Phytoplankton Size Classes from Satellite Data: Validation along a Trophic Gradient in the Eastern Atlantic Ocean. Remote Sens. Environ. 2013, 134, 66–77. [Google Scholar] [CrossRef]
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a Semianalytical Ocean Color Model for Global-Scale Applications. Appl. Opt. 2002, 41, 2705. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties. Appl. Opt. 2013, 52, 2019. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (Case 1) Waters: Analysis and Implications for Bio-optical Models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the Chlorophyll-specific Absorption Coefficients of Natural Phytoplankton: Analysis and Parameterization. J. Geophys. Res. 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- Sá, C.; D’Alimonte, D.; Brito, A.C.; Kajiyama, T.; Mendes, C.R.; Vitorino, J.; Oliveira, P.B.; da Silva, J.C.B.; Brotas, V. Validation of Standard and Alternative Satellite Ocean-Color Chlorophyll Products off Western Iberia. Remote Sens. Environ. 2015, 168, 403–419. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Color Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef] [PubMed]
- Bisson, K.; Werdell, P.; Chase, A.; Kramer, S.; Cael, B.; Boss, E.; McKinna, L.; Behrenfeld, M. Informing Ocean Color Inversion Products by Seeding with Ancillary Observations. Opt. Express 2023, 31, 40557. [Google Scholar] [CrossRef]
- Loisel, H.; Lubac, B.; Dessailly, D.; Duforet-Gaurier, L.; Vantrepotte, V. Effect of Inherent Optical Properties Variability on the Chlorophyll Retrieval from Ocean Color Remote Sensing: An in Situ Approach. Opt. Express 2010, 18, 20949. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D. Algorithm Theoretical Basis Document 2.9: Pigment Index Retrieval in Case 1 Waters. 2011. Available online: https://earth.esa.int/eogateway/documents/20142/37627/MERIS_ATBD_2.9_v4.3+-+2011.pdf/e03662c8-7b57-fb00-f6c7-46f5a950c4be (accessed on 5 August 2024).
- Bricaud, A.; Claustre, H.; Ras, J.; Oubelkheir, K. Natural Variability of Phytoplanktonic Absorption in Oceanic Waters: Influence of the Size Structure of Algal Populations. J. Geophys. Res. 2004, 109, C11010. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS Case 2 Water Algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Antoine, D.; Bourg, L.; Brockmann, C.; Doerffer, R.; Fischer, J.; Moore, J.; Santer, R.; Zagolski, F. Reference Model for MERIS Level 2 Processing—Third MERIS reprocessing: Ocean Branch, Report n. PO-TN-MEL-GS-0026-5 Rev. 2. 2012. Available online: http://envisat.esa.int/instruments/meris/rfm/ (accessed on 5 August 2024).
- Peliz, Á.; Rosa, T.L.; Santos, A.M.P.; Pissarra, J.L. Fronts, Jets, and Counter-Flows in the Western Iberian Upwelling System. J. Mar. Syst. 2002, 35, 61–77. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Brunet, C.; Mériaux, X.; Lécuyer, E.; Vellucci, V.; Santer, R. Bio-Optical Properties of Coastal Waters in the Eastern English Channel. Estuar. Coast. Shelf Sci. 2007, 72, 201–212. [Google Scholar] [CrossRef]
- Valente, A.; da Silva, J.C.B.; Brotas, V. Linking Ocean Colour Features in the Western Iberian Margin to Wave-Induced Sediment Resuspension and Coccolithophore Patches. Cont. Shelf Res. 2021, 225, 104482. [Google Scholar] [CrossRef]
- Quaresma, L.S.; Vitorino, J.; Oliveira, A.; da Silva, J. Evidence of Sediment Resuspension by Nonlinear Internal Waves on the Western Portuguese Mid-Shelf. Mar. Geol. 2007, 246, 123–143. [Google Scholar] [CrossRef]
- Sá, C.G.V. Ocean Colour off the Portuguese Coast: Chlorophyll α Products Validation and Applicability. Ph.D. Thesis, Marine Sciences, University of Lisbon, Faculty of Sciences, Lisbon, Portugal, October 2013. [Google Scholar]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and Photobleaching of Chromophoric Dissolved Organic Matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Goela, P.C.; Icely, J.; Cristina, S.; Danchenko, S.; Angel DelValls, T.; Newton, A. Using Bio-Optical Parameters as a Tool for Detecting Changes in the Phytoplankton Community (SW Portugal). Estuar. Coast. Shelf Sci. 2015, 167, 125–137. [Google Scholar] [CrossRef]
- Mendes, C.R.; Sá, C.; Vitorino, J.; Borges, C.; Tavano Garcia, V.M.; Brotas, V. Spatial Distribution of Phytoplankton Assemblages in the Nazaré Submarine Canyon Region (Portugal): HPLC-CHEMTAX Approach. J. Mar. Syst. 2011, 87, 90–101. [Google Scholar] [CrossRef]
- Moita, M.T. Structure, Variability and Dynamics of Phytoplankton from the Portuguese Continental Coast. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2001. [Google Scholar]
- Silva, A.; Palma, S.; Oliveira, P.B.; Moita, M.T. Composition and Interannual Variability of Phytoplankton in a Coastal Upwelling Region (Lisbon Bay, Portugal). J. Sea Res. 2009, 62, 238–249. [Google Scholar] [CrossRef]
- Sousa, M.C.; deCastro, M.; Alvarez, I.; Gomez-Gesteira, M.; Dias, J.M. Why Coastal Upwelling Is Expected to Increase along the Western Iberian Peninsula over the next Century? Sci. Total Environ. 2017, 592, 243–251. [Google Scholar] [CrossRef]
- Duyens, L.N.M. The Flattering of the Absorption Spectrum of Suspensions, as Compared to That of Solutions. Biochim. Biophys. Acta 1956, 19, 1–12. [Google Scholar] [CrossRef]
- Tilstone, G.; Mallor-Hoya, S.; Gohin, F.; Couto, A.B.; Sá, C.; Goela, P.; Cristina, S.; Airs, R.; Icely, J.; Zühlke, M.; et al. Which Ocean Colour Algorithm for MERIS in North West European Waters? Remote Sens. Environ. 2017, 189, 132–151. [Google Scholar] [CrossRef]
- Bricaud, A.; Ciotti, A.M.; Gentili, B. Spatial-temporal Variations in Phytoplankton Size and Colored Detrital Matter Absorption at Global and Regional Scales, as Derived from Twelve Years of SeaWiFS Data (1998–2009). Glob. Biogeochem. Cycles 2012, 26, GB1010. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Stramski, D.; Mitchell, B.G. A Chlorophyll-dependent Semianalytical Reflectance Model Derived from Field Measurements of Absorption and Backscattering Coefficients within the Southern Ocean. J. Geophys. Res. 2001, 106, 7125–7138. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote Estimation of Colored Dissolved Organic Matter and Chlorophyll-a in Lake Huron Using Sentinel-2 Measurements. J. Appl. Remote Sens 2017, 11, 036007. [Google Scholar] [CrossRef]
- Mannino, A.; Russ, M.E.; Hooker, S.B. Algorithm Development and Validation for Satellite-derived Distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J. Geophys. Res. 2008, 113, C07051. [Google Scholar] [CrossRef]
- Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 2011, 7, 705–732. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2, OC4: Version 4; Volume 11 of SeaWiFS Postlaunch Technical Report Series NASA/TM-1995-104566; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000; pp. 9–23.
- Lee, Z.; Arnone, R.; Hu, C.; Werdell, P.J.; Lubac, B. Uncertainties of Optical Parameters and Their Propagations in an Analytical Ocean Color Inversion Algorithm. Appl. Opt. 2010, 49, 369. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Lance, V.P.; Shang, S.; Vaillancourt, R.; Freeman, S.; Lubac, B.; Hargreaves, B.R.; Del Castillo, C.; Miller, R.; Twardowski, M.; et al. An Assessment of Optical Properties and Primary Production Derived from Remote Sensing in the Southern Ocean (SO GasEx). J. Geophys. Res. 2011, 116, C00F03. [Google Scholar] [CrossRef]
- Clay, S.; Peña, A.; DeTracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. [Google Scholar] [CrossRef]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An Overview of Approaches and Challenges for Retrieving Marine Inherent Optical Properties from Ocean Color Remote Sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Garcia, R.A.; Lee, Z.; Hochberg, E.J. Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier. Remote Sens. 2018, 10, 147. [Google Scholar] [CrossRef]
- Wei, J.; Lee, Z.; Shang, S.; Yu, X. Semianalytical Derivation of Phytoplankton, CDOM, and Detritus Absorption Coefficients from the Landsat 8/OLI Reflectance in Coastal Waters. JGR Ocean. 2019, 124, 3682–3699. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Uncertainties and Applications of Satellite-Derived Coastal Water Quality Products. Prog. Oceanogr. 2017, 159, 45–72. [Google Scholar] [CrossRef]
- Najah, A.; Al-Shehhi, M.R. Performance of the Ocean Color Algorithms: QAA, GSM, and GIOP in Inland and Coastal Waters. Remote Sens. Earth Syst. Sci. 2021, 4, 235–248. [Google Scholar] [CrossRef]
- O’Shea, R.E.; Pahlevan, N.; Smith, B.; Boss, E.; Gurlin, D.; Alikas, K.; Kangro, K.; Kudela, R.M.; Vaičiūtė, D. A Hyperspectral Inversion Framework for Estimating Absorbing Inherent Optical Properties and Biogeochemical Parameters in Inland and Coastal Waters. Remote Sens. Environ. 2023, 295, 113706. [Google Scholar] [CrossRef]
Autumn (AQ1) October 2018 | Spring (AQ2) April/May 2019 | Autumn (AQ3) October 2019 | Early Spring (AQ4) February/March 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No absorption data | Area | Start date | End date | N | Area | Start date | End date | N | Area | Start date | End date | N |
E | 18/04 | 22/04 | 11 | E | 10/10 | 13/10 | 11 | C | 24/02 | 25/02 | 6 | |
D | 29/04 | 30/04 | 9 | B | 21/10 | 23/10 | 9 | D | 27/02 | 28/02 | 9 | |
B | 02/05 | 05/05 | 9 | A | 24/10 | 26/10 | 9 | E | 29/02 | 02/03 | 10 | |
A | 05/05 | 06/05 | 6 | C | 28/10 | 29/10 | 7 | B | 10/03 | 15/03 | 7 | |
C | 11/05 | 12/05 | 6 | D | 30/10 | 31/10 | 9 | A | 17/03 | 19/03 | 7 | |
Total | 18/04 | 12/05 | 41 | Total | 10/10 | 31/10 | 45 | Total | 24/02 | 19/03 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favareto, L.; Rudorff, N.; Brotas, V.; Tracana, A.; Sá, C.; Palma, C.; Brito, A.C. Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC). Remote Sens. 2024, 16, 3440. https://doi.org/10.3390/rs16183440
Favareto L, Rudorff N, Brotas V, Tracana A, Sá C, Palma C, Brito AC. Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC). Remote Sensing. 2024; 16(18):3440. https://doi.org/10.3390/rs16183440
Chicago/Turabian StyleFavareto, Luciane, Natalia Rudorff, Vanda Brotas, Andreia Tracana, Carolina Sá, Carla Palma, and Ana C. Brito. 2024. "Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC)" Remote Sensing 16, no. 18: 3440. https://doi.org/10.3390/rs16183440
APA StyleFavareto, L., Rudorff, N., Brotas, V., Tracana, A., Sá, C., Palma, C., & Brito, A. C. (2024). Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC). Remote Sensing, 16(18), 3440. https://doi.org/10.3390/rs16183440