Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. GCMs Temperature Data
2.2.2. ERA5 Land Temperature Data
2.3. Cross-Validation of Interpolation Methods
2.4. GCMs Performance Assessment and Ranking
2.5. Multi-Model Ensemble and Future Projections
3. Results
3.1. Cross-Evaluation of Interpolation Methods
3.2. Ranking and Assessment of GCMs
3.3. Geospatial Performance Analysis
3.4. Multi-Model Ensemble
3.4.1. Determining Ensemble Members
3.4.2. Simple Averages vs. Random Forest Multi-Model Ensemble
3.5. Future Temperature Projections
4. Discussion
4.1. Downscaling of GCMs Temperature Data
4.2. Ranking, Assessment and Ensemble of GCMs
4.3. The Sizzling Future of the Euro-Med
5. Conclusions
- Empirical Bayesian Kriging (EBK) stands out as the least data-modifying approach for downscaling GCMs and aligning them with ERA5 Land resolution (0.1°). Its Mean Error (ME) is close to 0 °C, while its Root Mean Square Error (RMSE) is less than 0.5 °C. Moreover, its performance is notable across all models and does not exhibit significant errors in specific areas of the study region, even performing well in mountainous regions. Other Kriging methods, particularly Cokriging, yield discouraging results. Bilinear interpolation (BI), the most commonly used GCM downscaling method to date, tends to underestimate temperatures significantly; thus, we do not recommend its use for these purposes.
- MPI-ESM1-2-HR, GFDL-ESM4, CNRM-CM6-1, MRI-ESM2-0, CNRM-ESM2-1, and IPSL-CM6A-LR are the top six GCMs regarding annual temperature simulation in the Euro-Med region across all five metrics used in the assessment. On the other hand, the MCM-UA-1-0 model and the MIROC models demonstrate poor simulation and should not be used in this region of the globe.
- Significant geospatial differences exist in the performance of GCMs across the Euro-Med region. MPI-ESM1-2-HR performs better in elevated regions such as the Alps, Sierra Nevada, and Carpathian Mountains but fails in the Central Iberian and French areas. GFDL-ESM4 and MRI-ESM2-0 demonstrate more consistent performance across the region. The CNRM models excel in simulating the Cantabrian coast and Greece but fall short in the northwestern half of France. Models from the Hadley Center and FGOALS-f3-L perform well in simulating the Northwestern Iberian and French regions. The MIROC, MCM-UA-1-0, GISS-E2-2-G, and BCC-ESM1 models exhibit mean performance values below 0.25 in any area.
- The optimal number of GCMs for ensemble was determined to be six, maximizing the correlation (0.97) and explained variance (0.93). The Random Forest Ensemble (RFE) method effectively replicates the interannual temperature variability. Additionally, it positively correlates with the ranking value assigned to each GCM (rho = 0.23), although it overestimates the relevance of models with high correlation with the reanalyzed temperature, such as the GFDL-ESM4.
- Significant differences arise between the projections made using the method applied in our research and the IPCC projections at both the global and regional scales. Winter temperatures in the medium-to-long term, particularly in spring, warm up between 1 and more than 2 °C less than what the IPCC expects for any emission scenario. On the other hand, winter temperatures in the short term and summer and autumn temperatures in the short-to-medium term warm up between 1 and more than 2 °C more than expected. The warming is especially found in the higher-elevation regions of the study area and in the Mediterranean islands, where temperatures increase by more than 2 °C compared to the official predictions in all scenarios. In the long term, the projections for summer and autumn in our research show broad agreement with the IPCC confidence interval, exceeding 70% in the pessimistic scenario (SSP5-RCP8.5).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SSP1-RCP2.6 | SSP2-RCP4.5 | SSP5-RCP8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Short | Medium | Long | Short | Medium | Long | Short | Medium | Long | ||
Annual | GL | 0.8–1.2 | 1.0–2.6 | 0.9–2.6 | 0.8–1.2 | 1.2–1.7 | 1.8–2.6 | 0.9–1.2 | 1.6–2.2 | 3.3–4.9 |
MED | 1.0–1.5 | 1.3–1.9 | 1.3–2.0 | 1.3–1.4 | 1.6–2.1 | 2.3–3.1 | 1.4–1.7 | 2.1–2.7 | 4.1–5.8 | |
Winter (DJF) | GL | 0.8–1.2 | 1.0–1.6 | 1.0–1.7 | 0.8–1.1 | 1.3–1.8 | 1.9–2.7 | 0.9–1.3 | 1.6–2.3 | 3.5–5.1 |
MED | 0.8–1.3 | 1.0–1.8 | 1.1–1.8 | 0.9–1.3 | 1.3–1.7 | 1.9–2.9 | 0.9–1.4 | 1.6–2.4 | 3.4–4.9 | |
Spring (MAM) | GL | 0.7–1.1 | 0.9–1.5 | 0.9–1.6 | 0.8–1.0 | 1.1–1.6 | 1.7–2.5 | 0.8–1.1 | 1.5–2.1 | 3.1–4.7 |
MED | 0.8–1.3 | 1.1–1.8 | 1.2–1.9 | 1.0–1.4 | 1.4–1.9 | 2.0–2.8 | 0.9–1.6 | 1.7–2.5 | 3.7–5.0 | |
Summer (JJA) | GL | 0.8–1.1 | 0.9–1.5 | 0.9–1.7 | 0.8–1.1 | 1.1–1.7 | 1.7–2.7 | 0.9–1.2 | 1.5–2.2 | 3.2–4.9 |
MED | 1.3–1.9 | 1.6–2.4 | 1.6–2.4 | 1.4–1.8 | 1.9–2.7 | 3.0–3.9 | 1.5–2.6 | 2.7–3.4 | 5.3–6.9 | |
Autumn (SON) | GL | 0.8–1.2 | 1.0–1.6 | 1.0–1.7 | 0.8–1.1 | 1.3–1.8 | 1.8–2.7 | 0.9–1.3 | 1.6–2.3 | 3.4–5.0 |
MED | 1.1–1.6 | 1.3–2.0 | 1.3–2.0 | 1.1–1.6 | 1.6–2.3 | 2.3–3.5 | 1.2–1.8 | 2.2–3.0 | 4.3–6.2 |
SSP1-RCP2.6 | SSP2-RCP4.5 | SSP5-RCP8.5 | |||||||
---|---|---|---|---|---|---|---|---|---|
Short | Medium | Long | Short | Medium | Long | Short | Medium | Long | |
Annual | 35.00 | 59.55 | 60.20 | 29.77 | 40.57 | 52.55 | 39.76 | 32.92 | 66.43 |
Winter (DJF) | 20.44 | 33.22 | 33.29 | 14.33 | 21.40 | 20.40 | 20.02 | 28.11 | 5.26 |
Spring (MAM) | 17.93 | 24.70 | 22.83 | 18.34 | 24.77 | 26.21 | 25.41 | 35.53 | 44.77 |
Summer (JJA) | 30.56 | 48.19 | 51.04 | 31.24 | 46.74 | 64.42 | 57.49 | 39.36 | 71.92 |
Autumn (SON) | 31.50 | 36.10 | 39.98 | 25.54 | 34.53 | 60.31 | 29.40 | 32.69 | 71.95 |
References
- Weart, S. The Discovery of Rapid Climate Change. Phys. Today 2003, 56, 30–36. [Google Scholar] [CrossRef]
- Jones, P.D.; Wigley, T.M.L.; Folland, C.K.; Parker, D.E.; Angell, J.K.; Lebedeff, S.; Hansen, J.E. Evidence for Global Warming in the Past Decade. Nature 1988, 332, 790. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Barros, V.R., Field, C.B., Eds.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- Koutsoyiannis, D. Revisiting the Global Hydrological Cycle: Is It Intensifying? Hydrol. Earth Syst. Sci. 2020, 24, 3899–3932. [Google Scholar] [CrossRef]
- Otto, F.E.L. Attribution of Extreme Events to Climate Change. Annu. Rev. Environ. Resour. 2023, 48, 813–828. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A Long-Term Climatology of Medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Carvalho, L.M.V. Assessing Precipitation Trends in the Americas with Historical Data: A Review. Wiley Interdiscip. Rev. Clim. Change 2020, 11, e627. [Google Scholar] [CrossRef]
- Meng, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Increase in Compound Dry-Warm and Wet-Warm Events under Global Warming in CMIP6 Models. Glob. Planet. Change 2022, 210, 103773. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Sexton, D.M.H.; Ma, Z. Potential Shifts in Climate Zones under a Future Global Warming Scenario Using Soil Moisture Classification. Clim. Dyn. 2021, 56, 2071–2092. [Google Scholar] [CrossRef]
- Wakatsuki, H.; Ju, H.; Nelson, G.C.; Farrell, A.D.; Deryng, D.; Meza, F.; Hasegawa, T. Research Trends and Gaps in Climate Change Impacts and Adaptation Potentials in Major Crops. Curr. Opin. Environ. Sustain. 2023, 60, 101249. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Huang, G.; Baetz, B.; Cheng, G.; Zeng, X.; Wang, X. Assessment of Climate Change Impacts on Energy Capacity Planning in Ontario, Canada Using High-Resolution Regional Climate Model. J. Clean. Prod. 2020, 274, 123026. [Google Scholar] [CrossRef]
- Loucks, D.P. Meeting Climate Change Challenges: Searching for More Adaptive and Innovative Decisions. Water Resour. Manag. 2023, 37, 2235–2245. [Google Scholar] [CrossRef]
- Si, X.; Wang, L.; Mengersen, K.; Hu, W. Epidemiological Features of Seasonal Influenza Transmission among 11 Climate Zones in Chinese Mainland. Infect. Dis. Poverty 2024, 13, 4. [Google Scholar] [CrossRef]
- Cork, S.; Alexandra, C.; Alvarez-Romero, J.G.; Bennett, E.M.; Berbés-Blázquez, M.; Bohensky, E.; Bok, B.; Costanza, R.; Hashimoto, S.; Hill, R.; et al. Exploring Alternative Futures in the Anthropocene. Annu. Rev. Environ. Resour. 2023, 48, 25–54. [Google Scholar] [CrossRef]
- Paravantis, J.; Santamouris, M.; Cartalis, C.; Efthymiou, C.; Kontoulis, N. Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece. Sustainability 2017, 9, 606. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Oppenheimer, M.; Warren, R.; Hallegatte, S.; Kopp, R.E.; Pörtner, H.O.; Scholes, R.; Birkmann, J.; Foden, W.; Licker, R.; et al. IPCC Reasons for Concern Regarding Climate Change Risks. Nat. Clim. Change 2017, 7, 28–37. [Google Scholar] [CrossRef]
- Fried, C.; Huybers, P. A Simple Relationship between the Magnitude and Spatial Extent of Global Surface Temperature Anomalies. Geophys. Res. Lett. 2024, 51, e2023GL106537. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, L.; Liu, Y.; Wei, T.; Guo, Z. CMIP6 Model Simulation of Concurrent Continental Warming Holes in Eurasia and North America since 1990 and Their Relation to the Indo-Pacific SST Warming. Glob. Planet. Change 2022, 213, 103824. [Google Scholar] [CrossRef]
- Dai, T.; Dong, W.; Sun, S.; Wang, G. Exploring the Asymmetry and Rate of SAT Warming over the Global Land Area under the 1.5 °C and 2 °C Climate Change Targets. Meteorol. Atmos. Phys. 2023, 135, 19. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, Á. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a Warming World: Assessing Projected Hydro-Climate Changes in California and Other Mediterranean Climate Regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Raffaele, F. On the Dependency of GCM-Based Regional Surface Climate Change Projections on Model Biases, Resolution and Climate Sensitivity. Clim. Dyn. 2022, 58, 2843–2862. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D.; Lubchenco, J. Anthropogenic Warming Has Increased Drought Risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, A.; Álvarez-Esteban, R.; Penas, Á.; Del Río, S. Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.). Appl. Sci. 2022, 12, 5831. [Google Scholar] [CrossRef]
- Adeola, A.M.; Kruger, A.; Makgoale, T.E.; Botai, J.O. Observed Trends and Projections of Temperature and Precipitation in the Olifants River Catchment in South Africa. PLoS ONE 2022, 17, e0271974. [Google Scholar] [CrossRef]
- Ndlovu, M.; Clulow, A.D.; Savage, M.J.; Nhamo, L.; Magidi, J.; Mabhaudhi, T. An Assessment of the Impacts of Climate Variability and Change in Kwazulu-Natal Province, South Africa. Atmosphere 2021, 12, 427. [Google Scholar] [CrossRef]
- Trancoso, R.; Syktus, J.; Toombs, N.; Ahrens, D.; Wong, K.K.H.; Pozza, R.D. Heatwaves Intensification in Australia: A Consistent Trajectory across Past, Present and Future. Sci. Total Environ. 2020, 742, 140521. [Google Scholar] [CrossRef] [PubMed]
- MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Mediterranean Experts on Climate and Environmental Change (MedECC): Marseille, France, 2020. [Google Scholar]
- Fan, X.; Duan, Q.; Shen, C.; Wu, Y.; Xing, C. Global Surface Air Temperatures in CMIP6: Historical Performance and Future Changes. Environ. Res. Lett. 2020, 15, 104056. [Google Scholar] [CrossRef]
- Almazroui, M.; Ashfaq, M.; Islam, M.N.; Rashid, I.U.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson, A.A.; et al. Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. ESEV 2021, 5, 155–183. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, C.; Zhang, W.; He, D.; Qi, Y. Extreme Temperature Indices in Eurasia in a CMIP6 Multi-Model Ensemble: Evaluation and Projection. Int. J. Climatol. 2021, 41, 5368–5385. [Google Scholar] [CrossRef]
- Shi, J.; Tian, Z.; Lang, X.; Jiang, D. Projected Changes in the Interannual Variability of Surface Air Temperature Using CMIP6 Simulations. Clim. Dyn. 2023, 62, 431–446. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate Data Challenges in the 21st Century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef]
- Hausfather, Z.; Drake, H.F.; Abbott, T.; Schmidt, G.A. Evaluating the Performance of Past Climate Model Projections. Geophys. Res. Lett. 2020, 47, e2019GL085378. [Google Scholar] [CrossRef]
- Balaji, V.; Couvreux, F.; Deshayes, J.; Gautrais, J.; Hourdin, F.; Rio, C. Are General Circulation Models Obsolete? Proc. Natl. Acad. Sci. USA 2022, 119, e2202075119. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Brands, S. A Circulation-Based Performance Atlas of the CMIP5 and 6 Models for Regional Climate Studies in the Northern Hemisphere Mid-to-High Latitudes. Geosci. Model. Dev. 2022, 15, 1375–1411. [Google Scholar] [CrossRef]
- Fernandez-Granja, J.A.; Casanueva, A.; Bedia, J.; Fernandez, J. Improved Atmospheric Circulation over Europe by the New Generation of CMIP6 Earth System Models. Clim. Dyn. 2021, 56, 3527–3540. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, Y.; Liu, J. Comparison of Trends in the Hadley Circulation between CMIP6 and CMIP5. Sci. Bull. 2020, 65, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res.-Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Guo, H.; Zhan, C.; Ning, L.; Li, Z.; Hu, S. Evaluation and Comparison of CMIP6 and CMIP5 Model Performance in Simulating the Runoff. Theor. Appl. Climatol. 2022, 149, 1451–1470. [Google Scholar] [CrossRef]
- Li, J.; Huo, R.; Chen, H.; Zhao, Y.; Zhao, T. Comparative Assessment and Future Prediction Using CMIP6 and CMIP5 for Annual Precipitation and Extreme Precipitation Simulation. Front. Earth Sci. 2021, 9, 687976. [Google Scholar] [CrossRef]
- Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.A.; Samsó, M. The Mediterranean Climate Change Hotspot in the CMIP5 and CMIP6 Projections. Earth Syst. Dyn. 2022, 13, 321–340. [Google Scholar] [CrossRef]
- Zhou, C.; Penner, J.E. Why Do General Circulation Models Overestimate the Aerosol Cloud Lifetime Effect? A Case Study Comparing CAM5 and a CRM. Atmos. Chem. Phys. 2017, 17, 21–29. [Google Scholar] [CrossRef]
- Boberg, F.; Christensen, J.H. Overestimation of Mediterranean Summer Temperature Projections Due to Model Deficiencies. Nat. Clim. Change 2012, 2, 433–436. [Google Scholar] [CrossRef]
- Das, R.S.; Rao, S.A.; Pillai, P.A.; Srivastava, A.; Pradhan, M.; Ramu, D.A. Why Coupled General Circulation Models Overestimate the ENSO and Indian Summer Monsoon Rainfall (ISMR) Relationship? Clim. Dyn. 2022, 59, 2995–3011. [Google Scholar] [CrossRef]
- Loehle, C. The Epistemological Status of General Circulation Models. Clim. Dyn. 2018, 50, 1719–1731. [Google Scholar] [CrossRef]
- Maraun, D.; Truhetz, H.; Schaffer, A. Regional Climate Model Biases, Their Dependence on Synoptic Circulation Biases and the Potential for Bias Adjustment: A Process-Oriented Evaluation of the Austrian Regional Climate Projections. J. Geophys. Res.-Atmos. 2021, 126, e2020JD032824. [Google Scholar] [CrossRef]
- Ali, Z.; Hamed, M.M.; Muhammad, M.K.I.; Iqbal, Z.; Shahid, S. Performance Evaluation of CMIP6 GCMs for the Projections of Precipitation Extremes in Pakistan. Clim. Dyn. 2023, 61, 4717–4732. [Google Scholar] [CrossRef]
- Feyissa, T.A.; Demissie, T.A.; Saathoff, F.; Gebissa, A. Evaluation of General Circulation Models CMIP6 Performance and Future Climate Change over the Omo River Basin, Ethiopia. Sustainability 2023, 15, 6507. [Google Scholar] [CrossRef]
- Nguyen-Duy, T.; Ngo-Duc, T.; Desmet, Q. Performance Evaluation and Ranking of CMIP6 Global Climate Models over Vietnam. J. Water Clim. Change 2023, 14, 1831–1846. [Google Scholar] [CrossRef]
- Peng, S.; Wang, C.; Li, Z.; Mihara, K.; Kuramochi, K.; Toma, Y.; Hatano, R. Climate Change Multi-Model Projections in CMIP6 Scenarios in Central Hokkaido, Japan. Sci. Rep. 2023, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Sa’adi, Z.; Alias, N.E.; Yusop, Z.; Iqbal, Z.; Houmsi, M.R.; Houmsi, L.N.; Ramli, M.W.A.; Muhammad, M.K.I. Application of Relative Importance Metrics for CMIP6 Models Selection in Projecting Basin-Scale Rainfall over Johor River Basin, Malaysia. Sci. Total Environ. 2024, 912, 169187. [Google Scholar] [CrossRef] [PubMed]
- Raju, K.S.; Kumar, D.N. Review of Approaches for Selection and Ensembling of GCMs. J. Water Clim. Change 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Abadie, L.M.; Moral, M.P. A Method for Selecting a Climate Model: An Application for Maximum Daily Temperature in Southern Spain. Theor. Appl. Climatol. 2023, 152, 773–786. [Google Scholar] [CrossRef]
- Peres, D.J.; Senatore, A.; Nanni, P.; Cancelliere, A.; Mendicino, G.; Bonaccorso, B. Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean Area) Historical Simulations by High-Quality Observational Datasets in Southern Italy: Insights on Drought Assessment. Nat. Hazard Earth Syst. 2020, 20, 3057–3082. [Google Scholar] [CrossRef]
- Bağçaci, S.Ç.; Yucel, I.; Duzenli, E.; Yilmaz, M.T. Intercomparison of the Expected Change in the Temperature and the Precipitation Retrieved from CMIP6 and CMIP5 Climate Projections: A Mediterranean Hot Spot Case, Turkey. Atmos. Res. 2021, 256, 105576. [Google Scholar] [CrossRef]
- Seker, M.; Gumus, V. Projection of Temperature and Precipitation in the Mediterranean Region through Multi-Model Ensemble from CMIP6. Atmos. Res. 2022, 280, 106440. [Google Scholar] [CrossRef]
- Jury, M.W.; Prein, A.F.; Truhetz, H.; Gobiet, A. Evaluation of CMIP5 Models in the Context of Dynamical Downscaling over Europe. J. Clim. 2015, 28, 5575–5582. [Google Scholar] [CrossRef]
- Palmer, T.E.; Booth, B.B.B.; McSweeney, C.F. How Does the CMIP6 Ensemble Change the Picture for European Climate Projections? Environ. Res. Lett. 2021, 16, 094042. [Google Scholar] [CrossRef]
- Tuel, A.; Kang, S.; Eltahir, E.A.B. Understanding Climate Change over the Southwestern Mediterranean Using High-Resolution Simulations. Clim. Dyn. 2021, 56, 985–1001. [Google Scholar] [CrossRef]
- Drobinski, P.; Da Silva, N.; Bastin, S.; Mailler, S.; Muller, C.; Ahrens, B.; Christensen, O.B.; Lionello, P. How Warmer and Drier Will the Mediterranean Region Be at the End of the Twenty-First Century? Reg. Environ. Change 2020, 20, 78. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J.A. Multi-Model, Multi-Scenario, and Multi-Domain Analysis of Regional Climate Projections for the Mediterranean. Reg. Environ. Change 2019, 19, 2621–2635. [Google Scholar] [CrossRef]
- Zhang, L.; Jiapaer, G.; Yu, T.; Umuhoza, J.; Tu, H.; Chen, B.; Liang, H.; Lin, K.; Ju, T.; De Maeyer, P.; et al. Evaluating and Correcting Temperature and Precipitation Grid Products in the Arid Region of Altay, China. Remote Sens. 2024, 16, 283. [Google Scholar] [CrossRef]
- Sun, P.; Zou, Y.; Yao, R.; Ma, Z.; Bian, Y.; Ge, C.; Lv, Y. Compound and Successive Events of Extreme Precipitation and Extreme Runoff under Heatwaves Based on CMIP6 Models. Sci. Total Environ. 2023, 878, 162980. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.R.; Denman, K.L.; Hayashida, H.; Holdsworth, A.M.; Lee, W.G.; Riche, O.G.J.; Shao, A.E.; Steiner, N.; Swart, N.C. Ocean Biogeochemistry in the Canadian Earth System Model Version 5.0.3: CanESM5 and CanESM5-CanOE. Geosci. Model. Dev. 2022, 15, 4393–4424. [Google Scholar] [CrossRef]
- Salzmann, M.; Ferrachat, S.; Tully, C.; Münch, S.; Watson-Parris, D.; Neubauer, D.; Siegenthaler-Le Drian, C.; Rast, S.; Heinold, B.; Crueger, T.; et al. The Global Atmosphere-Aerosol Model ICON-A-HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002699. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic Map and Overall Architecture of the Alpine Orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San Pedro de Montes de Oca, Costa Rica, 1967. [Google Scholar]
- WMO. Updated 30-Year Reference Period Reflects Changing Climate. Available online: https://public.wmo.int/en/media/news/updated-30-year-reference-period-reflects-changing-climate (accessed on 5 May 2023).
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Zou, J.; Lu, N.; Jiang, H.; Qin, J.; Yao, L.; Xin, Y.; Su, F. Performance of Air Temperature from ERA5-Land Reanalysis in Coastal Urban Agglomeration of Southeast China. Sci. Total Environ. 2022, 828, 154459. [Google Scholar] [CrossRef]
- De Araújo, C.S.P.; Silva, I.A.C.E.; Ippolito, M.; de Almeida, C.D.G.C. Evaluation of Air Temperature Estimated by ERA5-Land Reanalysis Using Surface Data in Pernambuco, Brazil. Environ. Monit. Assess. 2022, 194, 381. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. A First Evaluation of ERA5-Land Reanalysis Temperature Product over the Chinese Qilian Mountains. Front. Earth Sci. 2022, 10, 907730. [Google Scholar] [CrossRef]
- Barbosa, S.; Scotto, M.G. Extreme Heat Events in the Iberia Peninsula from Extreme Value Mixture Modeling of ERA5-Land Air Temperature. Weather Clim. Extrem. 2022, 36, 100448. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Liu, J.; Fiifi, D.; Hagan, T.; Liu, Y.; Liu, J.; Hagan, D.F.T.; Liu, Y. Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sens. 2021, 13, 44. [Google Scholar] [CrossRef]
- Yilmaz, M. Consistency of Spatiotemporal Variability of MODIS and ERA5-Land Surface Warming Trends over Complex Topography. Environ. Sci. Pollut. R 2023, 30, 94414–94435. [Google Scholar] [CrossRef]
- Tan, M.L.; Armanuos, A.M.; Ahmadianfar, I.; Demir, V.; Heddam, S.; Al-Areeq, A.M.; Abba, S.I.; Halder, B.; Cagan Kilinc, H.; Yaseen, Z.M. Evaluation of NASA POWER and ERA5-Land for Estimating Tropical Precipitation and Temperature Extremes. J. Hydrol. 2023, 624, 129940. [Google Scholar] [CrossRef]
- Scafetta, N. Testing the CMIP6 GCM Simulations versus Surface Temperature Records from 1980–1990 to 2011–2021: High ECS Is Not Supported. Climate 2021, 9, 161. [Google Scholar] [CrossRef]
- Collazo, S.; Barrucand, M.; Rusticucci, M. Evaluation of CMIP6 Models in the Representation of Observed Extreme Temperature Indices Trends in South America. Clim. Change 2022, 172, 21. [Google Scholar] [CrossRef]
- Ali, Z.; Hamed, M.M.; Muhammad, M.K.I.; Shahid, S. A Novel Approach for Evaluation of CMIP6 GCMs in Simulating Temperature and Precipitation Extremes of Pakistan. Int. J. Climatol. 2024, 44, 592–612. [Google Scholar] [CrossRef]
- Blanke, J.H.; Lindeskog, M.; Lindström, J.; Lehsten, V. Effect of Climate Data on Simulated Carbon and Nitrogen Balances for Europe. J. Geophys. Res. Biogeosci. 2016, 121, 1352–1371. [Google Scholar] [CrossRef]
- Graux, A.I.; Bellocchi, G.; Lardy, R.; Soussana, J.F. Ensemble Modelling of Climate Change Risks and Opportunities for Managed Grasslands in France. Agric. For. Meteorol. 2013, 170, 114–131. [Google Scholar] [CrossRef]
- Čejka, T.; Trnka, M.; Krusic, P.J.; Stobbe, U.; Oliach, D.; Václavík, T.; Tegel, W.; Büntgen, U. Predicted Climate Change Will Increase the Truffle Cultivation Potential in Central Europe. Sci. Rep. 2020, 10, 21281. [Google Scholar] [CrossRef]
- Chilès, J.-P.; Desassis, N. Fifty Years of Kriging. In Handbook of Mathematical Geosciences; Daya Sagar, B.S., Cheng, Q., Agterberg, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 589–612. [Google Scholar]
- Mühlenstädt, T.; Kuhnt, S. Kernel Interpolation. Comput. Stat. Data Anal. 2011, 55, 2962–2974. [Google Scholar] [CrossRef]
- Antal, A.; Guerreiro, P.M.P.; Cheval, S. Comparison of Spatial Interpolation Methods for Estimating the Precipitation Distribution in Portugal. Theor. Appl. Climatol. 2021, 145, 1193–1206. [Google Scholar] [CrossRef]
- Katipoğlu, O.M. Spatial Analysis of Seasonal Precipitation Using Various Interpolation Methods in the Euphrates Basin, Turkey. Acta Geophys. 2022, 70, 859–878. [Google Scholar] [CrossRef]
- ESRI ArcGIS 2019. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop (accessed on 28 January 2023).
- Di Virgilio, G.; Ji, F.; Tam, E.; Nishant, N.; Evans, J.P.; Thomas, C.; Riley, M.L.; Beyer, K.; Grose, M.R.; Narsey, S.; et al. Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling: Model Performance, Independence, and Climate Change Signals. Earth’s Future 2022, 10, e2021EF002625. [Google Scholar] [CrossRef]
- Lei, X.; Xu, C.; Liu, F.; Song, L.; Cao, L.; Suo, N. Evaluation of CMIP6 Models and Multi-Model Ensemble for Extreme Precipitation over Arid Central Asia. Remote Sens. 2023, 15, 2376. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using Multi-Model Ensembles of CMIP5 Global Climate Models to Reproduce Observed Monthly Rainfall and Temperature with Machine Learning Methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902. [Google Scholar] [CrossRef]
- Hernanz, A.; García-Valero, J.A.; Domínguez, M.; Rodríguez-Camino, E. Evaluation of Statistical Downscaling Methods for Climate Change Projections over Spain: Present Conditions with Imperfect Predictors (Global Climate Model Experiment). Int. J. Climatol. 2022, 42, 6793–6806. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-Model Ensemble Predictions of Precipitation and Temperature Using Machine Learning Algorithms. Atmos. Res. 2020, 236, 104806. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; et al. 2021: Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: New York, NY, USA, 2021; pp. 1927–1929. [Google Scholar]
- Liu, A.; Qu, C.; Zhang, J.; Sun, W.; Shi, C.; Lima, A.; De Vivo, B.; Huang, H.; Palmisano, M.; Guarino, A.; et al. Screening and Optimization of Interpolation Methods for Mapping Soil-Borne Polychlorinated Biphenyls. Sci. Total Environ. 2024, 913, 169498. [Google Scholar] [CrossRef] [PubMed]
- Krivoruchko, K.; Gribov, A. Distance Metrics for Data Interpolation over Large Areas on Earth’s Surface. Spat. Stat. 2020, 35, 100396. [Google Scholar] [CrossRef]
- Biernacik, P.; Kazimierski, W.; Włodarczyk-Sielicka, M. Comparative Analysis of Selected Geostatistical Methods for Bottom Surface Modeling. Sensors 2023, 23, 3941. [Google Scholar] [CrossRef] [PubMed]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian Kriging Implementation and Usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef]
- Liu, Z.N.; Yu, X.Y.; Jia, L.F.; Wang, Y.S.; Song, Y.C.; Meng, H.D. The Influence of Distance Weight on the Inverse Distance Weighted Method for Ore-Grade Estimation. Sci. Rep. 2021, 11, 2689. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Guagliardi, I. The De Martonne Aridity Index in Calabria (Southern Italy). J. Maps 2019, 15, 788–796. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Khan, N.; Virk, Z.T.; Johar, W. Evaluation of Global Climate Models for Precipitation Projection in Sub-Himalaya Region of Pakistan. Atmos. Res. 2020, 245, 105061. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.S. Selection of Multi-Model Ensemble of General Circulation Models for the Simulation of Precipitation and Maximum and Minimum Temperature Based on Spatial Assessment Metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef]
- Dubrovsky, M.; Trnka, M.; Holman, I.P.; Svobodova, E.; Harrison, P.A. Developing a Reduced-Form Ensemble of Climate Change Scenarios for Europe and Its Application to Selected Impact Indicators. Clim. Change 2015, 128, 169–186. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; Carrillo-García, J.; Soto, J.; Abbaspour, K.; Srinivasan, R.; Ashraf Vaghefi, S.; Faramarzi, M.; Chen, L. Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain). Water 2017, 9, 149. [Google Scholar] [CrossRef]
- Pastor, M.A.; Casado, M.J. Use of Circulation Types Classifications to Evaluate AR4 Climate Models over the Euro-Atlantic Region. Clim. Dyn. 2012, 39, 2059–2077. [Google Scholar] [CrossRef]
- Topál, D.; Hatvani, I.G.; Kern, Z. Refining Projected Multidecadal Hydroclimate Uncertainty in East-Central Europe Using CMIP5 and Single-Model Large Ensemble Simulations. Theor. Appl. Climatol. 2020, 142, 1147–1167. [Google Scholar] [CrossRef]
- Adeyeri, O.E.; Zhou, W.; Wang, X.; Zhang, R.; Laux, P.; Ishola, K.A.; Usman, M. The Trend and Spatial Spread of Multisectoral Climate Extremes in CMIP6 Models. Sci. Rep. 2022, 12, 21000. [Google Scholar] [CrossRef] [PubMed]
- Stryhal, J.; Huth, R. Classifications of Winter Atmospheric Circulation Patterns: Validation of CMIP5 GCMs over Europe and the North Atlantic. Clim. Dyn. 2019, 52, 3575–3598. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for Downscaling over Multiple Regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Karoly, D.J. Assessment of Precipitation and Temperature Data from CMIP3 Global Climate Models for Hydrologic Simulation. Hydrol. Earth Syst. Sci. 2015, 19, 361–377. [Google Scholar] [CrossRef]
- Hauglustaine, D.A.; Balkanski, Y.; Schulz, M. A Global Model Simulation of Present and Future Nitrate Aerosols and Their Direct Radiative Forcing of Climate. Atmos. Chem. Phys. 2014, 14, 11031–11063. [Google Scholar] [CrossRef]
- Crawford, J.; Venkataraman, K.; Booth, J. Developing Climate Model Ensembles: A Comparative Case Study. J. Hydrol. 2019, 568, 160–173. [Google Scholar] [CrossRef]
- Dey, A.; Sahoo, D.P.; Kumar, R.; Remesan, R. A Multimodel Ensemble Machine Learning Approach for CMIP6 Climate Model Projections in an Indian River Basin. Int. J. Climatol. 2022, 42, 9215–9236. [Google Scholar] [CrossRef]
- Hussain, M.; Yusof, K.W.; Mustafa, M.R.U.; Mahmood, R.; Jia, S. Evaluation of CMIP5 Models for Projection of Future Precipitation Change in Bornean Tropical Rainforests. Theor. Appl. Climatol. 2018, 134, 423–440. [Google Scholar] [CrossRef]
- Pielke, R., Jr.; Ritchie, J. How Climate Scenarios Lost Touch With Reality. Issues Sci. Technol. 2021, 37, 74–83. [Google Scholar]
- Carvalho, D.; Rafael, S.; Monteiro, A.; Rodrigues, V.; Lopes, M.; Rocha, A. How Well Have CMIP3, CMIP5 and CMIP6 Future Climate Projections Portrayed the Recently Observed Warming. Sci. Rep. 2022, 12, 11983. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.G.; Ritchie, J.; Shapland, J.; Pielke, R. IPCC Baseline Scenarios Have Over-Projected CO2 Emissions and Economic Growth. Environ. Res. Lett. 2020, 16, 014016. [Google Scholar] [CrossRef]
- Siegert, M.; Alley, R.B.; Rignot, E.; Englander, J.; Corell, R. Twenty-First Century Sea-Level Rise Could Exceed IPCC Projections for Strong-Warming Futures. One Earth 2020, 3, 691–703. [Google Scholar] [CrossRef]
- Freychet, N.; Hegerl, G.; Mitchell, D.; Collins, M. Future Changes in the Frequency of Temperature Extremes May Be Underestimated in Tropical and Subtropical Regions. Commun. Earth Environ. 2021, 2, 28. [Google Scholar] [CrossRef]
- Hu, D.; Jiang, D.; Tian, Z.; Lang, X. How Skillful Was the Projected Temperature over China during 2002–2018? Sci. Bull. 2022, 67, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.; Cardoso Pereira, S.; Rocha, A. Future Surface Temperatures over Europe According to CMIP6 Climate Projections: An Analysis with Original and Bias-Corrected Data. Clim. Change 2021, 167, 10. [Google Scholar] [CrossRef]
- Ribes, A.; Qasmi, S.; Gillett, N.P. Making Climate Projections Conditional on Historical Observations. Sci. Adv. 2021, 7, 671–693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, T.; Li, L.; Furtado, K.; Xin, X.; Xie, C.; Zheng, M.; Zhao, H.; Zhou, Y. Constraint on Regional Land Surface Air Temperature Projections in CMIP6 Multi-Model Ensemble. npj Clim. Atmos. Sci. 2023, 6, 85. [Google Scholar] [CrossRef]
- Gönençgil, B.; Acar, Z. Turkey: Clımate Variability, Extreme Temperature, and Precipitation. In Geographies of Mediterranean Europe; Lois-González, R.C., Ed.; Springer: Cham, Switzerland, 2021; pp. 167–180. [Google Scholar]
- Liuzzo, L.; Bono, E.; Sammartano, V.; Freni, G. Long-Term Temperature Changes in Sicily, Southern Italy. Atmos. Res. 2017, 198, 44–55. [Google Scholar] [CrossRef]
- Ribes, A.; Corre, L.; Gibelin, A.L.; Dubuisson, B. Issues in Estimating Observed Change at the Local Scale—A Case Study: The Recent Warming over France. Int. J. Climatol. 2016, 36, 3794–3806. [Google Scholar] [CrossRef]
- Sandonis, L.; González-Hidalgo, J.C.; Peña-Angulo, D.; Beguería, S. Mean Temperature Evolution on the Spanish Mainland 1916–2015. Clim. Res. 2021, 82, 177–189. [Google Scholar] [CrossRef]
- Spinoni, J.; Szalai, S.; Szentimrey, T.; Lakatos, M.; Bihari, Z.; Nagy, A.; Németh, Á.; Kovács, T.; Mihic, D.; Dacic, M.; et al. Climate of the Carpathian Region in the Period 1961–2010: Climatologies and Trends of 10 Variables. Int. J. Climatol. 2015, 35, 1322–1341. [Google Scholar] [CrossRef]
- Toreti, A.; Desiato, F. Temperature Trend over Italy from 1961 to 2004. Theor. Appl. Climatol. 2008, 91, 51–58. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Koutsogiannis, I.; Philippopoulos, K.; Deligiorgi, D. Recent Climate Trends over Greece. Atmos. Res. 2019, 230, 104623. [Google Scholar] [CrossRef]
- Castellanos, M.; García, M.Á.; Pérez, I.A.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Measuring Temperature Trends in the Mediterranean Basin. J. Atmos. Sol. Terr. Phys. 2021, 222, 105713. [Google Scholar] [CrossRef]
- Fernández, J.; Frías, M.D.; Cabos, W.D.; Cofiño, A.S.; Domínguez, M.; Fita, L.; Gaertner, M.A.; García-Díez, M.; Gutiérrez, J.M.; Jiménez-Guerrero, P.; et al. Consistency of Climate Change Projections from Multiple Global and Regional Model Intercomparison Projects. Clim. Dyn. 2019, 52, 1139–1156. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of Climate Change in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Bador, M.; Terray, L.; Boé, J.; Somot, S.; Alias, A.; Gibelin, A.L.; Dubuisson, B. Future Summer Mega-Heatwave and Record-Breaking Temperatures in a Warmer France Climate. Environ. Res. Lett. 2017, 12, 074025. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st Century Climate Change in the European Alps—A Review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected Changes in Heat Wave Characteristics in the Eastern Mediterranean and the Middle East. Reg. Environ. Change 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Brogli, R.; Kröner, N.; Sørland, S.L.; Lüthi, D.; Schär, C. The Role of Hadley Circulation and Lapse-Rate Changes for the Future European Summer Climate. J. Clim. 2019, 32, 385–404. [Google Scholar] [CrossRef]
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Brogli, R.; Lund Sørland, S.; Kröner, N.; Schär, C. Future Summer Warming Pattern under Climate Change Is Affected by Lapse-Rate Changes. Weather Clim. Dyn. 2021, 2, 1093–1110. [Google Scholar] [CrossRef]
- Noto, L.V.; Cipolla, G.; Pumo, D.; Francipane, A. Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses. Water Resour. Manag. 2023, 37, 2307–2323. [Google Scholar] [CrossRef]
- Wang, X.; Fenech, A.; Farooque, A.A. Possibility of Stabilizing the Greenland Ice Sheet. Earth’s Future 2021, 9, e2021EF002152. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-Related Mortality in Europe during the Summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef]
- Qasmi, S.; Ribes, A. Reducing Uncertainty in Local Temperature Projections. Sci. Adv. 2022, 8, 6872. [Google Scholar] [CrossRef]
Supporter Institution | GCM Name | Native Resolution (x, y) |
---|---|---|
Commonwealth Scientific and Industrial Research Organization (Australia) | ACCESS-CM2 | 1.875° × 1.250° |
ACCESS-ESM1-5 | ||
Canadian Centre for Climate Modelling and Analysis (Canada) | CanESM5 | 2.813° × 2.789° |
CanESM5-CanOE | ||
Beijing Climate Center (China) | BCC-CSM2-MR | 1.125° × 1.121° |
BCC-ESM1 | 2.813° × 2.789° | |
Chinese Academy of Meteorological Sciences (China) | CAMS-CSM1-0 | 1.125° × 1.121° |
Nanjing University of Information Science and Technology (China) | NESM3 | 1.875° × 1.865° |
Institute of Atmospheric Physics Chinese Academy of Sciences (China) | CAS-ESM2-0 | 1.406° × 1.417° |
Institute of Atmospheric Physics, Chinese Academy of Sciences (China) | FGOALS-f3-L | 1.250° × 1.000° |
The First Institution of Oceanography (China) | FIO-ESM2-0 | 1.250° × 0.942° |
Centre National de Recherches Météorologiques (France) | CNRM-CM6-1 | 1.406° × 1.400° |
CNRM-ESM2-1 | ||
Institut Pierre-Simon Laplace/Centre National de Recherche Scientifique (France) | IPSL-CM6A-LR | 2.500° × 1.268° |
IPSL-CM6A-LR-INCA | ||
Max-Planck-Institut fuer Meteorologie, Deutsches Klimarechenzentrum (Germany) | MPI-ESM1-2-HAM | 1.875° × 1.865° |
MPI-ESM1-2-LR | ||
MPI-ESM1-2-HR | 0.938° × 0.935° | |
Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy) | CMCC-ESM2 | 1.250° × 0.942° |
Indian Institute of Tropical Meteorology (India) | IITM-ESM | 1.875° × 1.904° |
National Institute for Environmental Studies, Japan Agency for Marine–Earth Science and Technology (Japan) | MIROC6 | 1.406° × 1.400° |
MIROC-ES2L | 2.813° × 2.789° | |
Meteorological Research Institute (Japan) | MRI-ESM2-0 | 1.125° × 1.121° |
Bjerknes Centre for Climate Research, Norwegian Meteorological Institute (Norway) | NorESM2-MM | 1.250° × 0.942° |
Russian Academy of Sciences, Institute of Numerical Mathematics (Russia) | INM-CM5-0 | 2.000° × 1.500° |
National Institute of Meteorological Sciences, Korea Met. Administration (South Korea) | KACE-1-0-G | 1.875° × 1.250° |
Korea Institute of Ocean Science and Technology (South Korea) | KIOST-ESM | 1.875° × 1.895° |
Met Office Hadley Centre (United Kingdom) | HadGEM-GC31-LL | 1.875° × 1.250° |
UKES-M1-1-LL | ||
National Center for Atmospheric Research | CESM2-WACCM | 1.250° × 0.942° |
Geophysical Fluid Dynamics Laboratory/NOAA (United States of America) | GFDL-ESM4 | 1.250° × 1.000 ° |
NASA Goddard Institute for Space Studies (United States of America) | GISS-E2-1-G | 2.500° × 2.000° |
GISS-E2-2-G | ||
University of Arizona—Department of Geosciences (United States of America) | MCM-UA-1-0 | 3.750° × 2.235° |
GCM | NRMSE (%) | NSE | KGE | CC | md | CRI |
---|---|---|---|---|---|---|
ACCESS-CM2 | 53.20 (16) | 0.72 (16) | 0.85 (5) | 0.87 (20) | 0.75 (14) | 0.58 (14) |
ACCESS-ESM1-5 | 57.60 (22) | 0.67 (22) | 0.72 (28) | 0.86 (23) | 0.72 (20) | 0.32 (24) |
BCC-CSM2-MR | 49.30 (12) | 0.76 (12) | 0.80 (13) | 0.87 (21) | 0.77 (11) | 0.59 (11) |
BCC-ESM1 | 66.60 (30) | 0.56 (30) | 0.65 (32) | 0.77 (32) | 0.67 (30) | 0.09 (31) |
CAMS-CSM1-0 | 51.70 (14) | 0.73 (14) | 0.82 (12) | 0.90 (10) | 0.73 (19) | 0.59 (12) |
CanESM5 | 58.70 (26) | 0.66 (26) | 0.75 (25) | 0.83 (28) | 0.72 (23) | 0.25 (28) |
CanESM5-CanOE | 58.20 (24) | 0.66 (24) | 0.76 (22) | 0.83 (29) | 0.72 (21) | 0.29 (26) |
CAS-ESM2-0 | 57.70 (23) | 0.67 (23) | 0.77 (20) | 0.91 (8) | 0.71 (25) | 0.42 (20) |
CESM2-WACCM | 57.40 (21) | 0.67 (21) | 0.75 (26) | 0.91 (5) | 0.71 (24) | 0.43 (19) |
CMCC-ESM2 | 55.60 (19) | 0.69 (19) | 0.78 (17) | 0.89 (13) | 0.73 (17) | 0.50 (17) |
CNRM-CM6-1 | 41.70 (3) | 0.83 (3) | 0.87 (3) | 0.91 (4) | 0.80 (3) | 0.91 (3) |
CNRM-ESM2-1 | 44.40 (7) | 0.80 (7) | 0.86 (4) | 0.91 (7) | 0.78 (7) | 0.81 (5) |
FGOALS-F3-L | 47.80 (9) | 0.77 (9) | 0.74 (27) | 0.89 (14) | 0.76 (12) | 0.58 (15) |
FIO-ESM2 | 59.20 (27) | 0.65 (27) | 0.77 (21) | 0.90 (9) | 0.70 (28) | 0.34 (23) |
GFDL-ESM4 | 42.40 (4) | 0.82 (4) | 0.89 (1) | 0.94 (1) | 0.80 (4) | 0.92 (2) |
GISS-E2-1-G | 46.90 (8) | 0.78 (8) | 0.78 (15) | 0.89 (15) | 0.77 (10) | 0.67 (10) |
GISS-E2-2-G | 73.60 (31) | 0.46 (31) | 0.72 (29) | 0.88 (17) | 0.61 (32) | 0.18 (29) |
HadGEM-GC31-LL | 48.00 (11) | 0.77 (11) | 0.84 (6) | 0.88 (16) | 0.77 (9) | 0.69 (8) |
IITM-ESM | 57.10 (20) | 0.67 (20) | 0.83 (10) | 0.84 (26) | 0.73 (18) | 0.45 (18) |
INM-CM5-0 | 62.90 (29) | 0.60 (29) | 0.68 (31) | 0.83 (30) | 0.70 (26) | 0.15 (30) |
IPSL-CM6A | 44.30 (6) | 0.80 (6) | 0.84 (7) | 0.90 (11) | 0.79 (6) | 0.79 (6) |
IPSL-CM6A-INCA | 44.10 (5) | 0.81 (5) | 0.83 (9) | 0.90 (12) | 0.79 (5) | 0.79 (7) |
KACE-1-0-G | 51.70 (13) | 0.73 (13) | 0.78 (18) | 0.87 (22) | 0.75 (13) | 0.54 (16) |
KIOST-ESM | 60.00 (28) | 0.64 (28) | 0.78 (16) | 0.88 (19) | 0.69 (29) | 0.29 (27) |
MCM-UA-1-0 | 76.00 (32) | 0.42 (32) | 0.51 (34) | 0.69 (34) | 0.59 (33) | 0.03 (34) |
MIROC6 | 90.90 (34) | 0.17 (34) | 0.68 (30) | 0.80 (31) | 0.58 (34) | 0.04 (32) |
MIROC-ES2L | 78.60 (33) | 0.38 (33) | 0.61 (33) | 0.71 (33) | 0.64 (31) | 0.04 (33) |
MPI-ESM1-2-HAM | 58.60 (25) | 0.66 (25) | 0.79 (14) | 0.85 (24) | 0.70 (27) | 0.32 (25) |
MPI-ESM1-2-HR | 41.00 (2) | 0.83 (2) | 0.88 (2) | 0.92 (3) | 0.82 (1) | 0.94 (1) |
MPI-ESM1-2-LR | 54.20 (17) | 0.71 (17) | 0.76 (24) | 0.85 (25) | 0.74 (16) | 0.42 (21) |
MRI-ESM2-0 | 40.20 (1) | 0.84 (1) | 0.83 (11) | 0.92 (2) | 0.81 (2) | 0.90 (4) |
NESM3 | 55.50 (18) | 0.69 (18) | 0.76 (23) | 0.83 (27) | 0.72 (22) | 0.36 (22) |
NorESM2-MM | 52.90 (15) | 0.72 (15) | 0.77 (19) | 0.91 (6) | 0.74 (15) | 0.59 (13) |
UKES-M1-1-LL | 47.90 (10) | 0.77 (10) | 0.83 (8) | 0.88 (18) | 0.78 (8) | 0.68 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreiro-Lera, G.-B.; Penas, Á.; del Río, S. Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region. Remote Sens. 2024, 16, 1831. https://doi.org/10.3390/rs16111831
Ferreiro-Lera G-B, Penas Á, del Río S. Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region. Remote Sensing. 2024; 16(11):1831. https://doi.org/10.3390/rs16111831
Chicago/Turabian StyleFerreiro-Lera, Giovanni-Breogán, Ángel Penas, and Sara del Río. 2024. "Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region" Remote Sensing 16, no. 11: 1831. https://doi.org/10.3390/rs16111831
APA StyleFerreiro-Lera, G. -B., Penas, Á., & del Río, S. (2024). Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region. Remote Sensing, 16(11), 1831. https://doi.org/10.3390/rs16111831