Modeling and Locating the Wind Erosion at the Dry Bottom of the Aral Sea Based on an InSAR Temporal Decorrelation Decomposition Model
Abstract
:1. Introduction
- Modeling the WEI of a pixel resolution unit and relate the WEI with the SITD of this pixel resolution unit.
- SITD estimation within a pixel resolution unit.
- Mapping the WEI of the dry lakebed of the Aral Sea.
2. Study Area
3. Method and Data
3.1. Soil Sampling and Volumetric Soil Moisture Data
3.2. Vegetation Fraction Coverage Data
3.3. Microwave Backscattering Data
3.4. Soil Sampling Data
3.5. Method
3.5.1. Wind Erosion Intensity Modeling
3.5.2. InSAR Temporal Decorrelation
3.5.3. The Relationship between InSAR Temporal Decorrelation and Wind Erosion Intensity
3.5.4. InSAR Temporal Decorrelation Decomposition Model
3.5.5. Backscattering Contribution Decomposition and Estimation within a Pixel Resolution Unit
3.5.6. SITD Estimation Based on LSM-SVD Method
4. Results
4.1. VFC and MBC of the Study Area
4.2. Potential Wind Erosion Areas
4.3. InSAR Temporal Decorrelation of Soil
4.4. Wind Erosion at the Dry Bottom of the Aral Sea
4.4.1. The Calculating Process and Results of Wind Erosion Intensity
4.4.2. Overview of Wind Erosion in the Aral Sea
4.4.3. Spatial Distribution of Wind Erosion
5. Discussion
- Can soil temporal decorrelation accurately describe dust activity intensity?
- Whether soil temporal decorrelation only depends on the mathematical expectation of phase random variation within the pixel resolution unit and whether other factors, such as variation in soil dielectric constant and soil roughness, will affect soil temporal decorrelation.
- Are the estimation results of soil temporal decorrelation accurate?
5.1. The Impact of Non-Phase Factors on Soil Temporal Decorrelation
5.2. The Results of SITD Estimation Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y. Physics and Modelling of Wind Erosion; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2009; Volume 37, pp. 1–452. [Google Scholar]
- Bagnold, R.A. Sand and Dust. In The Physics of Blown Sand and Desert Dunes; Springer: Dordrecht, The Netherlands, 1974; pp. 1–9. [Google Scholar]
- Lu, H.; Shao, Y.P. A new model for dust emission by saltation bombardment. J. Geophys. Res.-Atmos. 1999, 104, 16827–16841. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Behaviour of Sand Grains in the Air. In The Physics of Blown Sand and Desert Dunes; Springer: Dordrecht, The Netherlands, 1974; pp. 10–24. [Google Scholar]
- Ungar, J.E.; Haff, P.K. Steady-State Saltation in Air. Sedimentology 1987, 34, 289–299. [Google Scholar] [CrossRef]
- Anderson, R.S.; Sørensen, M.; Willetts, B.B. A Review of Recent Progress in Our Understanding of Aeolian Sediment Transport; Springer: Vienna, Austria, 1991; pp. 1–19. [Google Scholar]
- Ruff, S.W.; Pankine, A.A.; Barta, G. Aeolian Dust Deposits. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2015; pp. 12–18. [Google Scholar]
- Rice, M.A.; Willetts, B.B.; McEwan, I.K. Observations of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology 1996, 43, 21–31. [Google Scholar] [CrossRef]
- Pye, K.; Tsoar, H. Mechanics of Aeolian Sand Transport. In Aeolian Sand and Sand Dunes; Springer: Berlin/Heidelberg, Germany, 2009; pp. 99–139. [Google Scholar]
- Wang, Z.-T.; Zhang, C.-L.; Wang, H.-T. Forces on a saltating grain in air. Eur. Phys. J. E 2013, 36, 112. [Google Scholar] [CrossRef] [PubMed]
- Owen, P.R. Saltation of Uniform Grains in Air. J. Fluid Mech. 1964, 20, 225–242. [Google Scholar] [CrossRef]
- Anderson, R.S.; Haff, P.K. Simulation of Eolian Saltation. Science 1988, 241, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Walter, B.; Horender, S.; Voegeli, C.; Lehning, M. Experimental assessment of Owen’s second hypothesis on surface shear stress induced by a fluid during sediment saltation. Geophys. Res. Lett. 2014, 41, 6298–6305. [Google Scholar] [CrossRef]
- Malina, F.J. Recent developments in the dynamics of wind erosion. Trans.-Am. Geophys. Union 1941, 22, 262–287. [Google Scholar]
- Anderson, R.S. The Pattern of Grainfall Deposition in the Lee of Aeolian Dunes. Sedimentology 1988, 35, 175–188. [Google Scholar] [CrossRef]
- Ning, H.; Yandan, G.U. Review of the Mechanism of Dust Emission and Deposition. Adv. Earth Sci. 2009, 24, 1175–1184. [Google Scholar]
- Chepil, W.S. Dynamics of Wind Erosion. 1. Nature of Movement of Soil by Wind. Soil Sci. 1945, 60, 305–320. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Armbrust, D.V. A Monthly Climatic Factor for Wind Erosion Equation. J. Soil Water Conserv. 1968, 23, 103–104. [Google Scholar]
- Bocharov, A. A Description of Devices Used in the Study of Wind Erosion of Soils; Wiley Online Library: Rotterdam, The Netherlands, 1984; pp. 15–90. [Google Scholar]
- Singh, U.B.; Gregory, J.M.; Wilson, G.R. Texas erosion analysis model: Theory and validation. In Proceedings of the Wind Erosion: An International Symposium/Workshop, Manhattan, KS, USA, 3–5 June 1997; pp. 3–5. [Google Scholar]
- Shao, Y.P.; Raupach, M.R.; Leys, J.F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 1996, 34, 309–342. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Zobeck, T.M.; Potter, K.N.; Stout, J.E.; Popham, T.W. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Environ. Model. Softw. 2004, 19, 191–198. [Google Scholar] [CrossRef]
- Hagen, L. A wind erosion prediction system to meet user needs. J. Soil Water Conserv. 1991, 46, 106–111. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Wang, T.; Liao, M.; Perissin, D. InSAR Coherence-Decomposition Analysis. IEEE Geosci. Remote Sens. Lett. 2010, 7, 156–160. [Google Scholar] [CrossRef]
- Wegmuller, U.; Strozzi, T.; Farr, T.; Werner, C.L. Arid land surface characterization with repeat-pass SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 776–781. [Google Scholar] [CrossRef]
- Bodart, C.; Ozer, A. The use of SAR interferometric coherence images to study sandy desertification in southeast Niger: Preliminary results. Eur. Space Agency. Sci. Tech. Rep. 2007, 636–637. [Google Scholar]
- Bodart, C.; Gassani, J.; Salmon, M.; Ozer, A. Contribution of SAR interferometry (from ERS1/2) in the study of aeolian transport processes: The cases of Niger, Mauritania and Morocco. In Desertification and Risk Analysis Using High and Medium Resolution Satellite Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–136. [Google Scholar]
- Gaber, A.; Abdelkareem, M.; Abdelsadek, I.S.; Koch, M.; El-Baz, F. Using InSAR Coherence for Investigating the Interplay of Fluvial and Aeolian Features in Arid Lands: Implications for Groundwater Potential in Egypt. Remote Sens. 2018, 10, 832. [Google Scholar] [CrossRef]
- Havivi, S.; Amir, D.; Schvartzman, I.; August, Y.; Maman, S.; Rotman, S.R.; Blumberg, D.G. Mapping dune dynamics by InSAR coherence. Earth Surf. Process. Landf. 2018, 43, 1229–1240. [Google Scholar] [CrossRef]
- Song, Y.; Chen, C.; Xu, W.; Zheng, H.; Bao, A.; Lei, J.; Luo, G.; Chen, X.; Zhang, R.; Tan, Z. Mapping the temporal and spatial changes in crescent dunes using an interferometric synthetic aperture radar temporal decorrelation model. Aeolian Res. 2020, 46, 100616. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, H.; Chen, X.; Bao, A.; Lei, J.; Xu, W.; Luo, G.; Guan, Q. Desertification Extraction Based on a Microwave Backscattering Contribution Decomposition Model at the Dry Bottom of the Aral Sea. Remote Sens. 2021, 13, 4850. [Google Scholar] [CrossRef]
- Li, M.; Wu, B.; Yan, C.; Zhou, W. Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing. Resour. Sci. 2004, 26, 153–159. [Google Scholar]
- Chen, W.N.; Dong, Z.B.; Li, Z.S.; Yang, Z.T. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J. Arid Environ. 1996, 34, 391–402. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Chen, C.; Cui, Y.; Wang, J. Wind tunnel experimental study on desert surface of Kubuqi desert, Inner Mongolia. China Environ. Sci. 2017, 37, 2888–2895. [Google Scholar]
- van Dijk, P.M.; Stroosnijder, L.; de Lima, J. The influence of rainfall on transport of beach sand by wind. Earth Surf. Process. Landf. 1996, 21, 341–352. [Google Scholar] [CrossRef]
- Bisal, F.; Hsieh, J. Influence of Moisture on Erodibility of Soil by Wind. Soil Sci. 1966, 102, 143–146. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Nickling, W.G. The Protective Role of Sparse Vegetation in Wind Erosion. Prog. Phys. Geogr. 1993, 17, 50–68. [Google Scholar] [CrossRef]
- Okin, G.S. A new model of wind erosion in the presence of vegetation. J. Geophys. Res.-Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, X.; Dong, G.; Liu, Y. Wind Tunnel Studies on Influences of Vegetation on Soil Wind Erosion. J. Soil Water Conserv. 2003, 17, 31–33. [Google Scholar]
- Indoitu, R.; Kozhoridze, G.; Batyrbaeva, M.; Vitkovskaya, I.; Orlovsky, N.; Blumberg, D.; Orlovsky, L. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Res. 2015, 17, 101–115. [Google Scholar] [CrossRef]
Footprint | Acquisition Date | Obit Number | Combination Mode | Time Baseline | Normal Baseline |
---|---|---|---|---|---|
North Aral Sea | 23 June 2020 | 33,138 | master | 12 days | −33.064 m |
5 July 2020 | 33,313 | slaver | |||
South Aral Sea | 23 June 2020 | 33,138 | master | 12 days | −35.154 m |
5 July 2020 | 33,313 | slave |
Interval Number | SITD Interval | SITD Interval | Percent (%) |
---|---|---|---|
1 | 1.0000 | 0.1736 | |
2 | 3.7238 | ||
3 | 27.2261 | ||
4 | 15.4784 | ||
5 | 15.3211 | ||
6 | 35.5420 | ||
7 | 2.2560 | ||
8 | 0.2790 | ||
total | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xun, X.; Zheng, H.; Chen, X.; Bao, A.; Liu, Y.; Luo, G.; Lei, J.; Xu, W.; Liu, T.; et al. Modeling and Locating the Wind Erosion at the Dry Bottom of the Aral Sea Based on an InSAR Temporal Decorrelation Decomposition Model. Remote Sens. 2024, 16, 1800. https://doi.org/10.3390/rs16101800
Song Y, Xun X, Zheng H, Chen X, Bao A, Liu Y, Luo G, Lei J, Xu W, Liu T, et al. Modeling and Locating the Wind Erosion at the Dry Bottom of the Aral Sea Based on an InSAR Temporal Decorrelation Decomposition Model. Remote Sensing. 2024; 16(10):1800. https://doi.org/10.3390/rs16101800
Chicago/Turabian StyleSong, Yubin, Xuelian Xun, Hongwei Zheng, Xi Chen, Anming Bao, Ying Liu, Geping Luo, Jiaqiang Lei, Wenqiang Xu, Tie Liu, and et al. 2024. "Modeling and Locating the Wind Erosion at the Dry Bottom of the Aral Sea Based on an InSAR Temporal Decorrelation Decomposition Model" Remote Sensing 16, no. 10: 1800. https://doi.org/10.3390/rs16101800
APA StyleSong, Y., Xun, X., Zheng, H., Chen, X., Bao, A., Liu, Y., Luo, G., Lei, J., Xu, W., Liu, T., Hellwich, O., & Guan, Q. (2024). Modeling and Locating the Wind Erosion at the Dry Bottom of the Aral Sea Based on an InSAR Temporal Decorrelation Decomposition Model. Remote Sensing, 16(10), 1800. https://doi.org/10.3390/rs16101800