Deep Blind Fault Activity—A Fault Model of Strong Mw 5.5 Earthquake Seismogenic Structures in North China
Abstract
:1. Introduction
2. Geological and Geodynamic Setting
3. Data and Methods
4. Results
4.1. Pre-Existing Fault Development
4.2. Three-Dimensional Imaging of the Tuqiao Fault
4.3. InSAR Observation and Results
5. Discussion
5.1. Relationship between Deep Structures and Seismic Activity
5.2. Seismotectonic Model of the Eastern Basin in North China
6. Conclusions
- (1)
- The 3D model of the Tuqiao Fault shows that the fault strikes NE and dips to the SE and that its depth ranges from 2.5 to 11 km. However, this fault occurrence does not match the focal mechanism solution. The depth of aftershocks is concentrated within 10–30 km, exceeding the development depth of the Tuqiao Fault. Moreover, the aftershock clusters trend to the NW, perpendicular to the Tuqiao Fault. Therefore, the Tuqiao Fault is not the seismogenic fault of the Pingyuan MW 5.5 earthquake, and this study supports the previous results suggesting a deeper hypocenter location.
- (2)
- Based on the research results of other strong earthquakes in the eastern NCC, it is speculated that the seismogenic fault of the Pingyuan MW 5.5 earthquake may be a high-angle strike-slip fault developed in the basement, which slid and ruptured under the current NEE compressive stress to produce this earthquake.
- (3)
- The velocity structure profile indicates the presence of a low-velocity layer at the bottom of the depression, potentially indicating the location of the detachment. The presence of the detachment separates two sets of structural systems: shallow extension faults and basement strike-slip faults. The seismogenic structure is unrelated to shallow structures but rather controlled by basement strike-slip faults. This seismogenic mode matches the structural model of the Xingtai earthquake, with decoupling of the upper and lower crust.
- (4)
- Because the depth of the hypocenter constrained from seismic data exceeds 10 km and the moment magnitude is less than 5.6, InSAR observations are likely unable to detect accurate coseismic deformation signals. Therefore, the coseismic deformation pattern remains unidentified, thus failing to provide helpful information about the fault kinematics of the earthquake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Xu, L.S.; Fang, L.H. The Mw5.5 Earthquake on August 6, 2023, in Pingyuan, Shandong: A Rupture on a Buried Fault. Earthq. Sci. 2024, 1, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.C. The feature of earthquake tectonics display by the seismicity pattern in north China. Earthq. Res. Chin. 1993, 9, 223–228. [Google Scholar]
- Xu, J.; Wang, R.B.; Wang, C.H.; Song, C.Q. Preliminary study on two newly-generated seismotectonic zones in north and southwest China. Northwest Seismol. J. 1998, 20, 2–8. [Google Scholar]
- Wang, C.Y.; Duan, Y.H.; Wu, Q.J.; Wang, Z.L. Exploration on the deep tectonic environment of strong earthquakes in north China and relevant research findings. Acta Seismol. Sin. 2016, 38, 511–549. [Google Scholar]
- Gu, G.X. Catalogue of Chinese Earthquakes 1831 B.C.–1969 A.D; Scientific Publishing House: Singapore, 1983. [Google Scholar]
- Wang, C.Y.; Zhang, X.K.; Lin, Z.Y.; Wu, Q.J.; Zhang, Y.S. Crustal structure beneath the Xingtai earthquake area in North China and its tectonic implications. Tectonophysics 1997, 274, 307–319. [Google Scholar] [CrossRef]
- Xu, X.W.; Yu, G.H.; Wang, F.; Gu, M.L.; Sun, Z.G.; Liu, B.J.; You, H.C. Seismogenic model for the 1966 Xingtai earthquakes-Nucleation of new-born fault or strick-slip of pre-existing fault? Earthq. Res. Chin. 2000, 16, 364–378. [Google Scholar]
- Huang, J.L.; Zhao, D.P. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Phys. Earth Planet. Inter. 2009, 173, 330–348. [Google Scholar] [CrossRef]
- Liu, G.D.; Shi, S.L.; Wang, B.J. The high-conductivity layer in the crust and its relationship with tectonic activity in north China. Sci. Chin. 1984, 09, 839–848. [Google Scholar]
- Zeng, R.S.; Zhu, L.P.; He, Z.Q.; Ding, Z.F.; Sun, W.G. A seismic source model of the large earthquakes in north China extensional basin and discussion on the genetic processes of the extensional basin and earthquakes. Acta Geophys. Sin. 1991, 34, 288–301. [Google Scholar]
- Liu, B.J.; Qu, G.S.; Sun, M.X.; Liu, K.; Zhao, C.B.; Xu, X.W.; Feng, S.Y.; Kou, K.M. Crustal structures and tectonics of Tangshan earthquake area: Results from deep seismic reflection profiling. Seismol. Geol. 2011, 33, 901–912. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhao, J.; Diao, G.L. A preliminary study of the relation between focal faults and deep and shallow structures in north China area. N. Chin. Earthq. Sci. 1995, 13, 1–10. [Google Scholar]
- Wei, W.B.; Tan, H.D.; Jin, S.; Deng, M.; Ye, G.F.; Deng, J.W.; Wan, Z.S. Conductivity structure of lithosphere in central north China: Magnetotelluric study of Yingxian-Shanghe profile. Earth Sci. 2002, 27, 645–650. [Google Scholar]
- Zhang, Y.G.; Zheng, W.J.; Wang, Y.J.; Zhang, D.L.; Tian, Y.T.; Wang, M.; Zhang, Z.Q.; Zhang, P.Z. Contemporary deformation of the North China plain from global positioning system data. Geophys. Res. Let. 2018, 45, 1851–1859. [Google Scholar] [CrossRef]
- Li, X.N.; Hammond, W.C.; Pierce, K.D.; Bormann, J.M.; Zhang, Z.Q.; Li, C.Y.; Zheng, W.J.; Zhang, P.Z. Present-day strike-slip faulting and intracontinental deformation of North China: Constraints from improved GPS observations. Geochem. Geophys. Geosyst. 2023, 24, e2022GC010781. [Google Scholar] [CrossRef]
- Zhu, W.L.; Mi, L.J.; Gong, Z.S. Oil and Gas Accumulation and Exploration in the Bohai Sea Area; Science and Technology Publishing Co., Ltd.: Beijing, China, 2009. [Google Scholar]
- Li, D.S. Geology and structural characteristics of Bohai Bay, China. Acta Pet. Sin. 1980, 1, 6–20. [Google Scholar]
- Liu, C.Y.; Huang, L.; Zhang, D.D.; Zhao, J.F.; Deng, Y.; Guo, P.; Huang, Y.J.; Wang, J.Q. Genetic causes of oil-rich and-poor reservoirs: Implications from two Cenozoic basins in the eastern North China Craton. Sci. Chin. Earth Sci. 2018, 48, 1506–1526. [Google Scholar] [CrossRef]
- Qi, J.F.; Zhang, Y.W.; Lu, K.Z.; Yang, Q. Cenozoic tectonic evolution in Bohai Bay Basin province. J. China Univ. Pet. Ed. Nat. Sci. 1995, 19, 1–6. [Google Scholar]
- Ren, J.; Tamaki, K.; Li, S.; Zhang, J. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent area. Tectonophysics 2002, 344, 175–205. [Google Scholar] [CrossRef]
- Hsiao, L.Y.; Graham, S.A.; Tilander, N. Seismic reflection imaging of a major strike-slip fault zone in a rift system: Paleogene structure and evolution of the Tan-Lu fault system, Liaodong Bay, Bohai, offshore China. AAPG Bull. 2004, 88, 71–97. [Google Scholar] [CrossRef]
- Wang, M.J.; He, D.F.; Li, W.T.; Lu, R.Q.; Gui, B.L. Geometry, formation evolution and mechanism of Lanliao fault: The boundary of eastern Linqing depression, Bohaiwan Gulf. Geol. Sci. 2011, 46, 775–786. [Google Scholar]
- Qi, J.F.; Yang, Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Mar. Pet. Geol. 2010, 27, 757–771. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Santosh, M.; Dai, L.M.; Liu, X.; Yu, S.; Zhao, S.J.; Jin, C. Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Block. Geol. J. 2013, 48, 543–560. [Google Scholar] [CrossRef]
- Li, Z.H.; Qu, H.J.; Gong, W.B. Late Mesozoic basin development and tectonic setting of the northern North China Craton. J. Asian Earth Sci. 2015, 114, 115–139. [Google Scholar] [CrossRef]
- Zhao, S.J.; Li, S.Z.; Niu, C.M.; Zhang, J.T.; Zhang, Z.; Dai, L.M.; Yang, Y.; Li, J.Y. Multistage structural superimposition and its control on buried hills in the Lyuda uplift zone, Bohai Bay Basin. Oil Gas Geol. 2023, 44, 1188–1202. [Google Scholar]
- Qi, J.F.; Wang, D.R.; Chen, S.P.; Zhao, Y.B.; Cheng, X.S.; Xie, C.; Xu, Z.Q. Impact of geometry and kinematics of Lanliao fault on structural styles in Dongpu sag. Oil Gas Geol. 2006, 27, 451–459. [Google Scholar]
- Zhu, R.X.; Chen, L.; Wu, F.Y.; Liu, J.L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. Chin. Earth Sci. 2011, 41, 583–592. [Google Scholar] [CrossRef]
- Su, P.; He, H.L.; Tan, X.B.; Liu, Y.D.; Shi, F.; Kirby, E. Initiation and Evolution of the Shanxi Rift System in North China: Evidence From Low-Temperature Thermochronology in a Plate Reconstruction Framework. Tectonics 2021, 40, e2020TC006298. [Google Scholar] [CrossRef]
- Shen, F.M.; Wang, L.F.; Barbot, S.; Xu, J.H. North China as a mechanical bridge linking Pacific subduction and extrusion of the Tibetan Plateau. Earth Planet. Sci. Lett. 2023, 622, 118407. [Google Scholar] [CrossRef]
- Sun, H.F. Application of velocity field construction method in a certain work area of Bohai Bay. J. Yangtze Univ. Nat. Sci. 2011, 8, 45–48. [Google Scholar]
- Widess, M.B. How thin is a thin bed? Geophysics 1973, 38, 1021–1240. [Google Scholar] [CrossRef]
- Zhang, H.J.; Thurber, C.H. Double-difference tomography: The method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. 2003, 93, 1875–1889. [Google Scholar] [CrossRef]
- Yan, C.; Xu, L.S.; Zhang, X.; Li, C.L.; Xu, K.S. An inversion technique for mechanisms of local and regional earthquakes: Generalized polarity and amplitude technique (II): An application to real seismic events. Chin. J. Geophys. 2015, 58, 3601–3614. [Google Scholar]
- Carena, S.; Suppe, J. Lack of continuity of the San Andreas Fault in southern California: Three-dimensional fault models and earthquake scenarios. J. Geophys. Res. 2004, 109, B04313. [Google Scholar] [CrossRef]
- Lu, R.Q.; Xu, X.W.; He, D.F.; John, S.; Liu, B.; Wang, F.Y.; Tan, X.B.; Li, Y.Q. Seismotectonics of the 2013 Lushan Mw 6.7 earthquake: Inversion tectonics in the eastern margin of the Tibetan Plateau. Geophys. Res. Lett. 2017, 16, 8236–8243. [Google Scholar] [CrossRef]
- Plesch, A.; Shaw, J.H.; Ross, Z.E.; Hauksson, E. Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence. Bull. Seismol. Soc. Am. 2020, 110, 1818–1831. [Google Scholar] [CrossRef]
- Wang, M.J.; Zhang, X.H.; Zhang, Y.B.; He, D.F.; Li, W.T. Restoration of denuded formation thickness and prototype basin of early to middle jurassic in eastern Linqing depression. Spec. Oil Gas Reserv. 2012, 19, 17–21. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000; Volume 1620, p. 1620. [Google Scholar]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Electron. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Daout, S.; Sudhaus, H.; Kausch, T.; Steinberg, A.; Dini, B. Interseismic and Postseismic Shallow Creep of the North Qaidam Thrust Faults Detected with a Multitemporal InSAR Analysis. J. Geophys. Res. Solid Earth 2019, 124, 7259–7279. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II 2014, 2, 71–76. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Processing strategies for phase unwrapping for InSAR applications. In Proceedings of the EUSAR 2002, Cologne, Germany, 4–6 June 2002; pp. 4–6. [Google Scholar]
- Zhu, Z.P.; Zhang, X.K.; Gai, Y.J.; Zhang, J.S.; Nie, W.Y.; Shi, J.H.; Zhang, C.K.; Ruan, H. Study on the slow velocity structure of the crust in the Xingtai earthquake source area and adjacent areas. Acta Seismol. Sin. 1995, 17, 328–334. [Google Scholar]
- Deng, Q.H.; Zhang, M.S.; Zhan, Y.Y.; Liu, G.D.; Zhao, G.Z.; Tang, J. The observation of electromagnetic array profiling and electrical characteristics of the crust in Xingtai MS 7.2 earthquake area. Acta Geophys. Sin. 1998, 41, 218–225. [Google Scholar]
- Ding, G.Y.; Lu, Y.C. Discussion on the basic characteristics of new construction and deformation in the north China block. N. Chin. Earthq. Sci. 1983, 1, 1–9. [Google Scholar]
- Zheng, B.H.; Ma, Z.J. The faulting-block tectonics and structural detachment between middle and lower crust in the north part of north China. Earthq. Res. Chin. 1991, 7, 3–12. [Google Scholar]
- Wang, C.Y.; Zhang, X.K.; Wu, Q.J.; Zhu, Z.P. Seismic evidence of detachment in north China basin. Acta Geophys. Sin. 1994, 37, 613–620. [Google Scholar]
- Liu, G.D.; Gu, Q.; Shi, S.L.; Sun, J.; Shi, Z.S.; Liu, J.H. The electrical structure of the crust and upper mantle and its relationship with seismicity in the Beijing-Tianjin-Tangshan region and adjacent area. Acta Geophys. Sin. 1983, 26, 149–157. [Google Scholar]
- Duan, Y.H.; Wang, F.Y.; Zhang, X.K.; Lin, J.Y.; Liu, Z.; Liu, B.F.; Yang, Z.X.; Guo, W.B.; Wei, Y.H. Three dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0). Sci. Chin. Earth Sci. 2016, 46, 845–856. [Google Scholar] [CrossRef]
- Qu, G.S.; Zhang, H.; Ye, H. The principle stress orientations by the borehole breakouts in Huanghua depression. N. Chin. Earthq. Sci. 1993, 11, 9–18. [Google Scholar]
- Wang, M.; Shen, Z.K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Yang, S.H.; Pan, J.W.; Li, H.B.; Shi, Y.L. Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications: Constraints from GPS Measurements with ABIC Method. Acta Geol. Sin. 2024, 1, 265–275. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 2010, 488, 293–325. [Google Scholar] [CrossRef]
- Qi, J.F. Two tectonic systems in the Cenozoic Bohai Bay basin and their genetic interpretation. Geol. Chin. 2004, 31, 15–22. [Google Scholar]
- Xu, J.; Zhou, B.G.; Ji, F.J.; Gao, Z.W.; Chen, G.G.; Sun, J.B. Features of seismogenic structures of great earthquakes in the Bohai Bay basin area, north China. Seismol. Geol. 2012, 34, 618–636. [Google Scholar]
- Wang, C.Y.; Wu, Q.J.; Duan, Y.H.; Wang, Z.L.; Lou, H. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in north China. Sci. Chin. Earth Sci. 2017, 47, 684–719. [Google Scholar] [CrossRef]
- Xu, H.G.; Fan, X.P.; Ran, Y.K.; Gu, Q.P.; Zhang, P.; Li, L.M.; Zhao, Q.G.; Wang, J.Y. New evidences of the Holocene fault in Suqian segment of the Tanlu fault zone discovered by shallow seismic exploration method. Seismol. Geol. 2016, 38, 111–129. [Google Scholar]
- Tan, X.; Liang, K.; Ma, B.Q.; He, Z.T.; Liu, G.Y.; Li, Z.P.; Li, L.; Zhao, J.X. A catastrophic, buried fault-generating earthquake: The 1937 M 7.0 Heze earthquake in the south-central North China Plain. J. Struct. Geol. 2023, 177, 104988. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Li, Q.Z.; Gu, J.C.; Jin, Y.M.; Yang, M.Y.; Liu, W.Q. The fracture processes of the Tangshan earthquake and its mechanical analysis. Acta Seismol. Sin. 1980, 2, 3–21. [Google Scholar]
Time (yyyy/mm/dd) | Depth (km) | Nodal Plane Ⅰ (°) | Nodal Plane Ⅱ (°) | MW | Sources | ||||
---|---|---|---|---|---|---|---|---|---|
Strike | Dip | Rake | Strike | Dip | Rake | ||||
2023/08/05 | 18 | 221 | 74 | −158 | 125 | 69 | −17 | 5.6 | GCMT |
2023/08/05 | 18 | 37 | 70 | −171 | 304 | 81 | −21 | 5.44 | USGS |
2023/08/06 | 16 | 126 | 70 | −16 | 222 | 75 | −160 | 5.54 | Zhang et al., 2024 [1] |
2023/08/06 | 10 | / | / | / | / | / | / | / | CENC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Lu, R.; He, D.; Fang, L.; Zhang, Y.; Su, P.; Tao, W. Deep Blind Fault Activity—A Fault Model of Strong Mw 5.5 Earthquake Seismogenic Structures in North China. Remote Sens. 2024, 16, 1796. https://doi.org/10.3390/rs16101796
Liu G, Lu R, He D, Fang L, Zhang Y, Su P, Tao W. Deep Blind Fault Activity—A Fault Model of Strong Mw 5.5 Earthquake Seismogenic Structures in North China. Remote Sensing. 2024; 16(10):1796. https://doi.org/10.3390/rs16101796
Chicago/Turabian StyleLiu, Guanshen, Renqi Lu, Dengfa He, Lihua Fang, Yang Zhang, Peng Su, and Wei Tao. 2024. "Deep Blind Fault Activity—A Fault Model of Strong Mw 5.5 Earthquake Seismogenic Structures in North China" Remote Sensing 16, no. 10: 1796. https://doi.org/10.3390/rs16101796
APA StyleLiu, G., Lu, R., He, D., Fang, L., Zhang, Y., Su, P., & Tao, W. (2024). Deep Blind Fault Activity—A Fault Model of Strong Mw 5.5 Earthquake Seismogenic Structures in North China. Remote Sensing, 16(10), 1796. https://doi.org/10.3390/rs16101796