Conditional Diffusion Model for Urban Morphology Prediction
Abstract
:1. Introduction
- (1)
- Assuming that the urban morphology follows a certain probability distribution, the attribute-based urban morphology prediction task is modeled as a condition distribution. By implicitly approximating the condition distribution through a conditional diffusion model, iterative sampling is used to achieve urban morphology prediction under given attributes.
- (2)
- The conditional diffusion model learns the gradient of the condition distribution to be approximated by predicting the noise added to the original urban morphology, and then implicitly represents the condition distribution through the gradient. By combining gradient-based annealing sampling, high-quality urban morphology prediction results can be generated.
- (3)
- The experimental results showed that compared with urban morphology prediction methods based on GAN models, the method proposed in this paper achieved improvements of 5.5%, 5.9%, and 13.2% in the low-level pixel feature, shallow structural feature, and deep structural feature metrics, respectively.
2. Related Work
2.1. Statistical-Based Methods
2.2. Gan-Based Methods
3. Methodology
3.1. Problem Formalization
3.2. Method Framework
- (1)
- Training stage. Specifically, multi-level Gaussian noise is added to the original to obtain the perturbed , after which and the guidance condition are used as inputs to the conditional diffusion model. The gradient of the conditional distribution is approximated with the noise predicted by the conditional diffusion model, where is the output of the conditional diffusion model.
- (2)
- Generation stage. The conditional distribution is parameterized with the noise predicted by the conditional diffusion model, and the generation target is updated by sampling from the distribution, until iteration is completed. Specifically, the pure noise is first sampled from the Gaussian distribution as the initial value of the generation target, which is used as input to the conditional diffusion model, along with the guidance condition . The conditional distribution is parameterized with the noise predicted by the conditional diffusion model, and the updated generation target is sampled from the distribution. The above process is iterated until the final generation target is sampled from the conditional distribution .
3.2.1. Training Stage
3.2.2. Generation Stage
Algorithm 1 Gradient-Based Annealing Sampling Method |
|
4. Experiment and Discussion
4.1. Description of the Dataset
4.2. Baseline Methods
4.3. Experiment and Parameter Setup
4.4. Evaluations
- (1)
- Evaluating whether the generation target was similar to the actual label in terms of the visual features.
- (2)
- Verifying whether the spatial morphology of the generation target was consistent with the actual label.
4.4.1. Low-Level Pixel Feature
4.4.2. Shallow Structural Feature
4.4.3. Deep Structural Feature
4.4.4. Spatial Morphology Feature
4.5. Experimental Results
4.5.1. Evaluation of the Multi-Level Visual Features
4.5.2. Validation of the Spatial Morphology Feature
4.6. Ablation Experiments
4.6.1. Comparison of Two Types of Aggregation Method
4.6.2. Comparison of Different Parameters w
4.7. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Næss, P. Built environment, causality and urban planning. Plan. Theory Pract. 2016, 17, 52–71. [Google Scholar] [CrossRef]
- Bettencourt, L.M.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Guo, Z.; Zhong, R.; Song, W.; Cao, S. Urban Functional Zone Classification Using Light-Detection-and-Ranging Point Clouds, Aerial Images, and Point-of-Interest Data. Remote Sens. 2024, 16, 386. [Google Scholar] [CrossRef]
- Li, R.; Dong, L.; Zhang, J.; Wang, X.; Wang, W.X.; Di, Z.; Stanley, H.E. Simple spatial scaling rules behind complex cities. Nat. Commun. 2017, 8, 1841. [Google Scholar] [CrossRef]
- Fuglsang, M.; Münier, B.; Hansen, H.S. Modelling land-use effects of future urbanization using cellular automata: An Eastern Danish case. Environ. Model. Softw. 2013, 50, 1–11. [Google Scholar] [CrossRef]
- Zhao, W.; Li, M.; Wu, C.; Zhou, W.; Chu, G. Identifying urban functional regions from high-resolution satellite images using a context-aware segmentation network. Remote Sens. 2022, 14, 3996. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410. [Google Scholar]
- Zhang, W.; Ma, Y.; Zhu, D.; Dong, L.; Liu, Y. Metrogan: Simulating urban morphology with generative adversarial network. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2482–2492. [Google Scholar]
- Albert, A.; Kaur, J.; Strano, E.; Gonzalez, M. Spatial sensitivity analysis for urban land use prediction with physics-constrained conditional generative adversarial networks. arXiv 2019, arXiv:1907.09543. [Google Scholar]
- Albert, A.; Kaur, J.; Gonzalez, M.C. Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1357–1366. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Liu, X.; Park, D.H.; Azadi, S.; Zhang, G.; Chopikyan, A.; Hu, Y.; Shi, H.; Rohrbach, A.; Darrell, T. More control for free! image synthesis with semantic diffusion guidance. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 289–299. [Google Scholar]
- Efron, B. Tweedie’s formula and selection bias. J. Am. Stat. Assoc. 2011, 106, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Luo, C. Understanding diffusion models: A unified perspective. arXiv 2022, arXiv:2208.11970. [Google Scholar]
- Li, X.; Gong, P. Urban growth models: Progress and perspective. Sci. Bull. 2016, 61, 1637–1650. [Google Scholar] [CrossRef]
- Iacono, M.; Levinson, D.; El-Geneidy, A. Models of transportation and land use change: A guide to the territory. J. Plan. Lit. 2008, 22, 323–340. [Google Scholar] [CrossRef]
- Hunt, J.D.; Kriger, D.S.; Miller, E.J. Current operational urban land-use–transport modelling frameworks: A review. Transp. Rev. 2005, 25, 329–376. [Google Scholar] [CrossRef]
- Liu, X.; Ma, L.; Li, X.; Ai, B.; Li, S.; He, Z. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int. J. Geogr. Inf. Sci. 2014, 28, 148–163. [Google Scholar] [CrossRef]
- Ozturk, D. Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sens. 2015, 7, 5918–5950. [Google Scholar] [CrossRef]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef]
- Irwin, E.G.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yu, L. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. Int. J. Geogr. Inf. Sci. 2014, 28, 1317–1335. [Google Scholar] [CrossRef]
- Shu, B.; Bakker, M.M.; Zhang, H.; Li, Y.; Qin, W.; Carsjens, G.J. Modeling urban expansion by using variable weights logistic cellular automata: A case study of Nanjing, China. Int. J. Geogr. Inf. Sci. 2017, 31, 1314–1333. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef]
- Tian, G.; Ouyang, Y.; Quan, Q.; Wu, J. Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 2011, 222, 1129–1138. [Google Scholar] [CrossRef]
- Crooks, A.; Castle, C.; Batty, M. Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst. 2008, 32, 417–430. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Albert, A.; Strano, E.; Kaur, J.; González, M. Modeling urbanization patterns with generative adversarial networks. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2095–2098. [Google Scholar]
- Sun, S.; Mu, L.; Feng, R.; Wang, L.; He, J. GAN-based LUCC prediction via the combination of prior city planning information and land-use probability. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10189–10198. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, G.; Yao, J.; Wang, X.; Calautit, J.K.; Zhao, C.; An, N.; Peng, X. Accelerated environmental performance-driven urban design with generative adversarial network. Build. Environ. 2022, 224, 109575. [Google Scholar] [CrossRef]
- Ibrahim, H.; Khattab, Z.; Khattab, T.; Abraham, R. Generative Adversarial Network Approach to Future Sermonizing of Housing Dispersal in Emerging Cities. J. Urban Plan. Dev. 2022, 148, 04021067. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhou, X.; Kong, X.; Luo, J. Curb-gan: Conditional urban traffic estimation through spatio-temporal generative adversarial networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 842–852. [Google Scholar]
- He, S.; Luo, Q.; Du, R.; Zhao, L.; He, G.; Fu, H.; Li, H. STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph. Phys. Stat. Mech. Its Appl. 2023, 623, 128913. [Google Scholar] [CrossRef]
- Luo, Q.; He, S.; Han, X.; Wang, Y.; Li, H. LSTTN: A Long-Short Term Transformer-based spatiotemporal neural network for traffic flow forecasting. Knowl.-Based Syst. 2024, 293, 111637. [Google Scholar] [CrossRef]
- Zhu, J.; Han, X.; Deng, H.; Tao, C.; Zhao, L.; Wang, P.; Lin, T.; Li, H. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15055–15065. [Google Scholar] [CrossRef]
- Ho, J.; Salimans, T. Classifier-free diffusion guidance. arXiv 2022, arXiv:2207.12598. [Google Scholar]
- Shao, Z.; Ahmad, M.N.; Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sens. 2024, 16, 665. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
- Sarkar, N.; Chaudhuri, B.B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 1994, 24, 115–120. [Google Scholar] [CrossRef]
Dataset | First Feature | Second Feature | ||
---|---|---|---|---|
Min | Max | Min | Max | |
train | 0.01001 | 0.44452 | 0.04243 | 4.67531 |
test | 0.01007 | 0.22125 | 0.06554 | 3.44296 |
Dimension | Feature | Purpose | Metric |
---|---|---|---|
pixel feature | evaluation | PSNR | |
visual | shallow structural feature | evaluation | SSIM |
deep structural feature | evaluation | LPIPS | |
spatial | spatial morphological feature | validation | FD |
Method | PSNR ↑ | SSIM ↑ | LPIPS ↓ |
---|---|---|---|
XGBoost | 9.3806 | 0.4659 | 0.6593 |
U-Net | 11.7633 | 0.4771 | 0.3405 |
CityGAN | 10.4691 | 0.4241 | 0.3408 |
MetroGAN | 12.6011 | 0.5083 | 0.2687 |
Ours (fusion1 w = 0.1) | 13.2946 | 0.5382 | 0.2333 |
Ours (fusion2 w = 0.1) | 13.3618 | 0.5367 | 0.2497 |
Segment | Num | Average FD of Gen | Average FD of Label |
---|---|---|---|
0.0–0.1 | 130 | 2.7443 | 2.7482 |
0.1–0.2 | 47 | 2.6465 | 2.7059 |
0.2–0.3 | 16 | 2.5398 | 2.5805 |
0.3–0.4 | 6 | 2.4113 | 2.7416 |
>0.4 | 1 | 2.3027 | 2.7386 |
Segment | Num | Average FD of Gen | Average FD of Label |
---|---|---|---|
0.0–0.1 | 108 | 2.7184 | 2.7407 |
0.1–0.2 | 51 | 2.6456 | 2.7222 |
0.2–0.3 | 22 | 2.5834 | 2.6705 |
0.3–0.4 | 13 | 2.4044 | 2.7418 |
>0.4 | 6 | 2.4181 | 2.6170 |
PSNR ↑ | SSIM ↑ | LPIPS ↓ | Coefficient of FD ↑ | |
---|---|---|---|---|
w = 0.0 | 13.3465 | 0.5405 | 0.2353 | 0.7562 |
w = 0.1 | 13.2946 | 0.5382 | 0.2333 | 0.7609 |
w = 0.2 | 13.2457 | 0.5359 | 0.2320 | 0.7598 |
w = 0.3 | 13.2017 | 0.5334 | 0.2311 | 0.7702 |
w = 0.4 | 13.1637 | 0.5313 | 0.2301 | 0.7582 |
w = 0.5 | 13.1280 | 0.5292 | 0.2294 | 0.7635 |
w = 1.0 | 12.9691 | 0.5181 | 0.2292 | 0.7425 |
w = 2.0 | 12.7586 | 0.5006 | 0.2341 | 0.7235 |
w = 3.0 | 12.6156 | 0.4880 | 0.2380 | 0.7098 |
w = 4.0 | 12.4961 | 0.4772 | 0.2430 | 0.7069 |
PSNR ↑ | SSIM ↑ | LPIPS ↓ | Correlation of FD ↑ | |
---|---|---|---|---|
w = 0.0 | 13.4104 | 0.5389 | 0.2520 | 0.6495 |
w = 0.1 | 13.3618 | 0.5367 | 0.2497 | 0.6476 |
w = 0.2 | 13.3141 | 0.5344 | 0.2475 | 0.6390 |
w = 0.3 | 13.2700 | 0.5317 | 0.2469 | 0.6268 |
w = 0.4 | 13.2248 | 0.5290 | 0.2455 | 0.6225 |
w = 0.5 | 13.1843 | 0.5267 | 0.2450 | 0.6264 |
w = 1.0 | 13.0044 | 0.5143 | 0.2442 | 0.6286 |
w = 2.0 | 12.7755 | 0.4971 | 0.2473 | 0.6295 |
w = 3.0 | 12.6391 | 0.4858 | 0.2499 | 0.6294 |
w = 4.0 | 12.5058 | 0.4750 | 0.2545 | 0.6231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Zhao, L.; Liu, F.; Zhang, M.; Li, M.; Peng, C.; Li, H. Conditional Diffusion Model for Urban Morphology Prediction. Remote Sens. 2024, 16, 1799. https://doi.org/10.3390/rs16101799
Shi T, Zhao L, Liu F, Zhang M, Li M, Peng C, Li H. Conditional Diffusion Model for Urban Morphology Prediction. Remote Sensing. 2024; 16(10):1799. https://doi.org/10.3390/rs16101799
Chicago/Turabian StyleShi, Tiandong, Ling Zhao, Fanfan Liu, Ming Zhang, Mengyao Li, Chengli Peng, and Haifeng Li. 2024. "Conditional Diffusion Model for Urban Morphology Prediction" Remote Sensing 16, no. 10: 1799. https://doi.org/10.3390/rs16101799
APA StyleShi, T., Zhao, L., Liu, F., Zhang, M., Li, M., Peng, C., & Li, H. (2024). Conditional Diffusion Model for Urban Morphology Prediction. Remote Sensing, 16(10), 1799. https://doi.org/10.3390/rs16101799