Formative Period Tracing and Driving Factors Analysis of the Lashagou Landslide Group in Jishishan County, China
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methodology
3.1. Datasets
3.2. Interferometric Processing and SBAS-InSAR Analysis
3.3. GNSS Data Processing
4. Results
4.1. LOS Displacements from December 2006 to February 2021
4.2. Formative Period Tracing
5. Discussion
6. Conclusions
- The formation of the Lashagou landslide group has been specifically categorized into three periods: L8 was formed before the construction of highway G310; L3, L4, L5, and L6 were formed during construction; and L1, L2, L7, R1, and R2 were formed within five years of the completion of the highway.
- Hillslope excavation during the construction of the highway was the direct cause and prerequisite for the formation of the landslide group, whereas summer precipitation and spring snowmelt were the primary driving factors contributing to its continuous downward movement.
- The occurrence of freeze–thaw landslides in spring may be related to the release of internal groundwater rather than the infiltration of meltwater.
- Both the long-term seasonal downslope movement and transient acceleration events of the Lashagou landslide group were strongly controlled by rainfall, and there was a time lag of approximately 1–2 days between the transient acceleration and heavy rainfall events. More importantly, the movement of shallow loess landslides is not only highly sensitive to rainfall intensity but is also influenced by the preceding rainfall.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, H.P.; Wei, M.P.; Xuan, C.Q. Analysis of landslide stability of a highway interchange section in Linxia. Subgrade Eng. 2022, 6, 220–225. [Google Scholar] [CrossRef]
- Lacroix, P.; Bièvre, G.; Pathier, E.; Kniess, U.; Jongmans, D. Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens. Environ. 2018, 215, 507–516. [Google Scholar] [CrossRef]
- Walton, G.; Christiansen, C.; Kromer, R.; Silaev, A. Evaluation of rockfall trends at a sedimentary rock cut near Manitou Springs, Colorado, using daily photogrammetric monitoring: Evaluation of rockfall trends at a sedimentary rock cut. Landslides 2023, 20, 2657–2674. [Google Scholar] [CrossRef]
- Dille, A.; Kervyn, F.; Handwerger, A.L.; d’Oreye, N.; Derauw, D.; Bibentyo, T.M.; Samsonov, S.; Malet, J.P.; Kervyn, M.; Dewitte, O. When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sens. Environ. 2021, 258, 112402. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, Z.H.; Yang, C.S.; Zhu, W.; Zeng, J.L.; Chen, L.Q.; Liu, C.J. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, B07407. [Google Scholar] [CrossRef]
- Bayer, B.; Simoni, A.; Schmidt, D.; Bertello, L. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng. Geol. 2017, 226, 20–32. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi, S.C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Khanna, K.; Jain, N.; Kumar, K.V. Time and path prediction of landslides using InSAR and flow model. Remote Sens. Environ. 2022, 271, 112899. [Google Scholar] [CrossRef]
- Zhang, S.C.; Fan, Q.Y.; Niu, Y.F.; Qiu, S.C.; Si, J.Z.; Feng, Y.H.; Zhang, S.Q.; Song, Z.W.; Li, Z.H. Two-dimensional deformation monitoring for spatiotemporal evolution and failure mode of Lashagou landslide group, Northwest China. Landslides 2023, 20, 447–459. [Google Scholar] [CrossRef]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Wu, S.B.; Yang, Z.F.; Ding, X.L.; Zhang, B.C.; Zhang, L.; Lu, Z. Two decades of settlement of Hong Kong International Airport measured with multi-temporal InSAR. Remote Sens. Environ. 2020, 248, 111976. [Google Scholar] [CrossRef]
- Cignetti, M.; Godone, D.; Notti, D.; Lanteri, L.; Giordan, D. Impacts on mountain settlements of a large slow rock-slope deformation: A multi-temporal and multi-source investigation. Landslides 2024, 21, 327–337. [Google Scholar] [CrossRef]
- Xu, Y.K.; Kim, J.; George, D.L.; Lu, Z. Characterizing seasonally rainfall-driven movement of a translational landslide using SAR imagery and SMAP soil moisture. Remote Sens. 2019, 11, 2347. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The role of satellite InSAR for landslide forecasting: Limitations and openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, W.; Deng, Y.k.; Tian, W.M.; Sha, Y.L. Long-Term and Emergency Monitoring of Zhongbao Landslide Using Space-Borne and Ground-Based InSAR. Remote Sens. 2021, 13, 1578. [Google Scholar] [CrossRef]
- Rodriguez, J.; Deane, E.; Macciotta, R.; Evans, T.; Gräpel, C.; Skirrow, R. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides. Landslides 2021, 18, 3671–3684. [Google Scholar] [CrossRef]
- Huang, G.W.; Du, S.; Wang, D. GNSS techniques for real-time monitoring of landslides: A review. Satell. Navig. 2023, 4, 5. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Cenni, N.; Fiaschi, S.; Fabris, M. Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides 2021, 18, 2247–2263. [Google Scholar] [CrossRef]
- Yang, H.Q.; Song, K.L.; Chen, L.C.; Qu, L.L. Hysteresis effect and seasonal step-like creep deformation of the Jiuxianping landslide in the Three Gorges Reservoir Region. Eng. Geol. 2023, 317, 107089. [Google Scholar] [CrossRef]
- Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys. Res. Lett. 2018, 45, 1453–1462. [Google Scholar] [CrossRef]
- Zhao, L.D.; Ma, X.P.; Xiang, Z.F.; Zhang, S.C.; Hu, C.; Zhou, Y.; Chen, G.C. Landslide deformation extraction from terrestrial laser scanning data with weighted least squares regularization iteration solution. Remote Sens. 2022, 14, 2897. [Google Scholar] [CrossRef]
- Chen, B.; Song, C.; Chen, Y.; Li, Z.; Yu, C.; Liu, H.; Jiang, H.; Liu, Z.; Cai, X.; Nai, Y.; et al. Emergency identification and influencing factor analysis of coseismic landslides and building damages induced by the 2023 Ms 6.2 Jishishan (Gansu, China) earthquake. Geomat. Inf. Sci. Wuhan Univ. 2024. [Google Scholar] [CrossRef]
- Huang, G.; Jing, C.; Li, D.; Huang, X.; Wang, L.; Zhang, K.; Yang, H.; Xie, S.; Bai, Z.; Wang, D. Deformation analysis of Jishishan Mw 6.2 earthquake on the landslide hazard areas. Geomat. Inf. Sci. Wuhan Univ. 2023. [Google Scholar] [CrossRef]
- Liu, S.; He, B.; Wang, T.; Liu, J.; Cao, J.; Wang, H.; Zhang, S.; Li, K.; Li, R.; Zhang, Y.; et al. Development characteristics and susceptibility assessment of co-seismic geological hazards in Jishishan Ms 6.2 earthquake, Gansu Province. J. Geomech. 2024. [Google Scholar] [CrossRef]
- Cai, G.Z.; Yang, Z.H.; Wang, D.P.; Sun, Y.L.; Zhou, S.D. Cause analysis and defense countermeasures of geological hazards in Linxia city, Gansu Province. J. Agric. Catastrophology 2015, 5, 32–35. [Google Scholar] [CrossRef]
- Yang, W.M.; Wan, F.P.; Ma, S.Q.; Qu, J.K.; Zhang, C.S.; Tang, H.B. Hazard assessment and formation mechanism of debris flow outbursts in a small watershed of the Linxia Basin. Front. Earth Sci. 2023, 10, 994593. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.C.; Zhang, Q.; Liu, Q.; Ma, Z.M.; Wang, T.; Tian, J.; Li, X.R. Research of deformation and soil moisture in loess landslide simultaneous retrieved with ground-based GNSS. Remote Sens. 2022, 14, 5687. [Google Scholar] [CrossRef]
- Qiang, D.X.; Ma, H.Z.; Zhu, Z.P.; Xun, Y.M. Spatial distribution and analysis of debris flow in Jishishan county of Gansu province. Bull. Surv. Mapp. 2022, 7, 107–111. [Google Scholar] [CrossRef]
- Zhong, C.H.; Li, X.R.; Zhang, S.C.; Wang, X.Q. GAMIT/TrackRT used in landslide real-time GNSS monitoring. Sci. Surv. Mapp. 2022, 47, 57–65. [Google Scholar] [CrossRef]
- Shi, X.G.; Zhang, L.; Zhou, C.; Li, M.H.; Liao, M.S. Retrieval of time series three-dimensional landslide surface displacements from multi-angular SAR observations. Landslides 2018, 15, 1015–1027. [Google Scholar] [CrossRef]
- Pradhan, S.; Toll, D.G.; Rosser, N.J.; Brain, M.J. An investigation of the combined effect of rainfall and road cut on landsliding. Eng. Geol. 2022, 307, 106787. [Google Scholar] [CrossRef]
- Iverson, R.M.; George, D.L.; Allstadt, K.E.; Reid, M.E.; Collins, B.D.; Vallance, J.W.; Schilling, S.P.; Godt, J.W.; Cannon, C.M.; Magirl, C.S.; et al. Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 2015, 412, 197–208. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef]
- Kong, J.X.; Zhuang, J.Q.; Peng, J.B.; Ma, P.H.; Zhan, J.W.; Mu, J.Q.; Wang, J.; Zhang, D.; Zheng, J.; Fu, Y.T.; et al. Failure mechanism and movement process of three loess landslides due to freeze-thaw cycle in the Fangtai village, Yongjing County, Chinese Loess Plateau. Eng. Geol. 2023, 315, 107030. [Google Scholar] [CrossRef]
Sensor | Envisat | ALOS-1 | Sentinel-1A |
---|---|---|---|
Band | C | L | C |
Orbit direction | Descending | Ascending | Ascending |
Polarization | VV | HH | VV |
Heading (°) | −168.13 | −10.26 | −9.76 |
Incidence angle (°) | 22.91 | 38.73 | 42.12 |
Pixel spacing (m) | 7.8 × 4.0 | 4.7 × 3.2 | 2.3 × 13.9 |
Date range | December 2006 to September 2010 | March 2007 to September 2009 | November 2015 to February 2021 |
Number of images | 26 | 12 | 138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Zhang, S.; Niu, Y.; Si, J.; Li, X.; Wu, W.; Zeng, X.; Jiang, J. Formative Period Tracing and Driving Factors Analysis of the Lashagou Landslide Group in Jishishan County, China. Remote Sens. 2024, 16, 1739. https://doi.org/10.3390/rs16101739
Fan Q, Zhang S, Niu Y, Si J, Li X, Wu W, Zeng X, Jiang J. Formative Period Tracing and Driving Factors Analysis of the Lashagou Landslide Group in Jishishan County, China. Remote Sensing. 2024; 16(10):1739. https://doi.org/10.3390/rs16101739
Chicago/Turabian StyleFan, Qianyou, Shuangcheng Zhang, Yufen Niu, Jinzhao Si, Xuhao Li, Wenhui Wu, Xiaolong Zeng, and Jianwen Jiang. 2024. "Formative Period Tracing and Driving Factors Analysis of the Lashagou Landslide Group in Jishishan County, China" Remote Sensing 16, no. 10: 1739. https://doi.org/10.3390/rs16101739
APA StyleFan, Q., Zhang, S., Niu, Y., Si, J., Li, X., Wu, W., Zeng, X., & Jiang, J. (2024). Formative Period Tracing and Driving Factors Analysis of the Lashagou Landslide Group in Jishishan County, China. Remote Sensing, 16(10), 1739. https://doi.org/10.3390/rs16101739