Radio Frequency Interference Mitigation in Synthetic Aperture Radar Data Based on Instantaneous Spectrum Forward Consecutive Mean Excision
Abstract
:1. Introduction
2. SAR Signal Model with RFI
3. The Proposed RFI Mitigation Method
3.1. Interference Detection
3.1.1. Short-Time Fourier Transform
3.1.2. Statistical Detection
3.2. Interference Mitigation
3.2.1. Instantaneous Spectrum Forward Consecutive Mean Excision
Algorithm 1 Instantaneous spectrum FCME |
Input: The RFI-polluted instantaneous spectrum , the maximum iteration number , the threshold factor , the initial spectrum selection ratio , the data point number in instantaneous spectrum. Output: The interference-free set , the interference set . Initialization: . Procedure:
|
3.2.2. TF Screening Based on Connected Component Analysis
3.2.3. Inverse Short-Time Fourier Transform
3.3. Evaluation Metric
3.3.1. ISR
3.3.2. SDR
3.3.3. MNR
4. Experimental Results
4.1. Results of the Single Pulse-Echo Signal
4.1.1. Single Interference Type Mitigation
4.1.2. Mixed Interference Type Mitigation
4.2. Parameter Setting of FCME
- In the case of a fixed spectrum selection ratio , as the threshold factor gradually increases, the false alarm level decreases, and the signal components filtered via FCME become less, hence lowering the ISR;
- As a signal protection measure, a higher spectrum selection ratio means a smaller proportion of instantaneous frequency points are involved in the FCME iterative calculation. Thus, in the case of a fixed threshold factor , ISR shows a downward trend in general with the growth of the spectrum selection ratio, which is especially evident when is set below a certain level;
- With the spectrum selection ratio remaining fixed, the SDR value falls first and then rises with the increase in fixed threshold factors . This is because RFI is not fully suppressed under high conditions, and useful signal loss becomes larger under lower conditions;
- With a low threshold factor , SDR also first declines and then increases with the growth in the spectrum selection ratio . When the threshold factors are relatively high, SDR witnesses a drop at first and then remains unchanged as decreases. This shows that the interference cannot be removed completely when is too high, and there may be significant useful signal loss if is set at a lower value;
- Owing to the introduction of the subsequent connected component analysis, when the spectrum selection ratio is relatively large (higher than 0.7), ISR and SDR tend to converge with the decline in the threshold factor . Similarly, when is larger than 3, it can be seen that ISR and SDR eventually converge to certain values as decreases. Altogether, this designed TF screening process effectively inhibits the further loss of useful target signals.
4.3. Results of the Distributed Target Echo Signal
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Reigber, A.; Scheiber, R.; Jager, M.; Pau, P.; Hajnsek, I.; Jagdhuber, T. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications. Proc. IEEE 2013, 101, 759–783. [Google Scholar] [CrossRef]
- Dudczyk, J.; Kawalec, A. Optimizing the minimum cost flow algorithm for the phase unwrapping processing in SAR radar. Bull. Pol. Acad. Sci. Tech. Sci. 2014, 62, 511–516. [Google Scholar]
- Huang, Y.; Liao, G.; Xu, J.; Li, J. GMTI and parameter estimation via time-doppler chirp-varying approach for single-channel airborne SAR system. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4367–4383. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, M.; Wang, G.; Wang, H. Range-dependent map-drift algorithm for focusing UAV SAR imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1158–1162. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Y.; Zhang, L.; Lin, C.; Tang, S. Ground moving target imaging and analysis for near-space hypersonic vehicle-borne synthetic aperture radar system with squint angle. Remote Sens. 2018, 10, 1966. [Google Scholar] [CrossRef]
- Shimada, M. L-band radio interference observed by the JERS-1 SAR and its global distribution. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; pp. 2752–2755. [Google Scholar]
- Meyer, F.; Nicoll, J.; Doulgeris, A. Characterization and extent of randomly-changing radio frequency interference in ALOS PALSAR data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2448–2451. [Google Scholar]
- Zhou, F.; Tao, M. Research on methods for narrow-band interference suppression in synthetic aperture radar data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3476–3485. [Google Scholar] [CrossRef]
- Natsuaki, R.; Motohka, T.; Watanabe, M.; Shimada, M.; Suzuki, S. An autocorrelation-based radio frequency interference detection and removal method in azimuth-frequency domain for SAR image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5736–5751. [Google Scholar] [CrossRef]
- Ulug, B. An Algorithm for Sinusoidal Interference Reduction Using Iterative Maximum Likehood Estimation Techniques. Master’s Thesis, Ohio State University, Columbus, OH, USA, 1992. [Google Scholar]
- Miller, T.; Potter, L. RFI suppression for ultra wideband radar. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 1142–1156. [Google Scholar] [CrossRef]
- Huang, X.; Liang, D. Gradual RELAX algorithm for RFI suppression. Electron. Lett. 1999, 35, 1916–1917. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, F.; Tao, M.; Sheng, M. A new method for SAR radio frequency interference mitigation based on maximum a posterior estimation. In Proceedings of the 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, QC, Canada, 19–26 August 2017; pp. 1–4. [Google Scholar]
- Liu, Z.; Liao, G.; Yang, Z. Time variant RFI suppression for SAR using iterative adaptive approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1424–1428. [Google Scholar] [CrossRef]
- Yang, Z.; Du, W.; Liu, Z. WBI suppression for SAR using iterative adaptive method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1008–1014. [Google Scholar] [CrossRef]
- Djukanovic, S.; Dakovic, M.; Thayaparan, T.; Stankovic, L. Method for non-stationary jammer suppression in noise radar system. IET Signal Process. 2010, 4, 305–313. [Google Scholar] [CrossRef]
- Djukanovic, S.; Popovic, V. A parametric method for multicomponent interference suppression in noise radars. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2730–2738. [Google Scholar] [CrossRef]
- Meyer, F.; Nicoll, J.; Doulgeris, A. Correction and characterization of radio frequency interference signatures in L-band synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef]
- Xu, W.; Xing, W.; Fang, C.; Huang, P.; Tan, W. RFI suppression based on linear prediction in synthetic aperture radar data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 2127–2131. [Google Scholar] [CrossRef]
- Dakovic, M.; Thayaparan, T.; Djukanovic, S.; Stankovic, L. Time-frequency-based non-stationary interference suppression for noise radar systems. IET Radar Sonar Navig. 2008, 2, 306–314. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, F.; Zhang, Z. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 74–87. [Google Scholar] [CrossRef]
- Davis, M. Frequency allocation challenges for ultra-wideband radars. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 12–18. [Google Scholar] [CrossRef]
- Le, C.; Hensley, S.; Chapin, E. Removal of radio frequency interference in wideband radars. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 2032–2034. [Google Scholar]
- Lord, R.; Inggs, M. Efficient RFI suppression in SAR using a LMS adaptive filter with sidelobe suppression integrated with the range-doppler algorithm. In Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 574–576. [Google Scholar]
- Luo, X.; Ulander, L.; Askne, J.; Smith, G.; Frolind, P. RFI suppression in ultra-wideband SAR systems using LMS filters in frequency domain. Electron. Lett. 2001, 37, 241–243. [Google Scholar] [CrossRef]
- Lamont-Smith, T.; Hill, R.; Hayward, S.; Yates, G.; Blake, A. Filtering approaches for interference suppression in low-frequency SAR. IEE Proc.-Radar Sonar Navig. 2006, 153, 338–344. [Google Scholar] [CrossRef]
- Zhou, F.; Xing, M.; Bai, X.; Sun, G.; Bao, Z. Narrow-band interference suppression for SAR based on complex empirical mode decomposition. IEEE Geosci. Remote Sens. Lett. 2009, 6, 423–427. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, R.; Xing, M.; Bao, Z. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR. IEEE Geosci. Remote Sens. Lett. 2007, 4, 75–79. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Y.; Dong, Z.; Liang, D. SVD-based method for radio frequency interference suppression applied to SAR. Defence Sci. J. 2012, 62, 132–136. [Google Scholar]
- Nguyen, L.; Tran, T.; Do, T. Sparse models and sparse recovery for ultra-wideband SAR applications. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 940–958. [Google Scholar] [CrossRef]
- Nguyen, L.; Tran, T. RFI-radar signal separation via simultaneous low-rank and sparse recovery. In Proceedings of the 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5. [Google Scholar]
- Su, J.; Tao, H.; Tao, M.; Wang, L.; Xie, J. Narrow-band interference suppression via RPCA-based signal separation in time-frequency domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5016–5025. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Li, J.; Xu, J. Narrowband RFI suppression for SAR system via fast implementation of joint sparsity and low-rank property. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2748–2761. [Google Scholar] [CrossRef]
- Su, J.; Tao, M.; Wang, L.; Xie, J.; Zhang, W. RPCA based time-frequency signal separation algorithm for narrow-band interference suppression. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 3086–3089. [Google Scholar]
- Lyu, Q.; Han, B.; Li, G.; Sun, W.; Pan, Z.; Hong, W.; Hu, Y. SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time-frequency domain. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Sampling frequency (MHz) | 125 |
Carrier frequency (GHz) | 16.5 |
Bandwidth (MHz) | 80 |
Pulse width (µs) | 10 |
Receive window width (µs) | 40.8 |
Pulse repetition frequency (Hz) | 900 |
Range Spectrum Notch Filtering Method | Linear Prediction Extrapolation Method | TF Mask Method | Instantaneous Spectrum Notch Filtering Method | The Proposed Method | |
---|---|---|---|---|---|
ISR (dB) | 13.59 | 14.39 | 14.55 | 14.57 | 14.66 |
SDR (dB) | −4.16 | −6.26 | −9.81 | −10.15 | −11.03 |
Range Spectrum Notch Filtering Method | Linear Prediction Extrapolation Method | TF Mask Method | Instantaneous Spectrum Notch Filtering Method | The Proposed Method | |
---|---|---|---|---|---|
ISR (dB) | 14.83 | 16.31 | 15.72 | 15.74 | 15.96 |
SDR (dB) | −0.22 | −2.08 | −9.45 | −9.73 | −11.20 |
Range Spectrum Notch Filtering Method | Linear Prediction Extrapolation Method | TF Mask Method | Instantaneous Spectrum Notch Filtering Method | The Proposed Method | |
---|---|---|---|---|---|
ISR (dB) | 14.34 | 16.00 | 15.26 | 14.24 | 16.03 |
SDR (dB) | 0.48 | −1.66 | −5.88 | −2.38 | −9.96 |
Range Spectrum Notch Filtering Method | Linear Prediction Extrapolation Method | TF Mask Method | Instantaneous Spectrum Notch Filtering Method | The Proposed Method | |
---|---|---|---|---|---|
MNR (dB) | −10.11 | −11.64 | −11.65 | −12.85 | −13.19 |
Range Spectrum Notch Filtering Method | Linear Prediction Extrapolation Method | TF Mask Method | Instantaneous Spectrum Notch Filtering Method | The Proposed Method | |
---|---|---|---|---|---|
MNR (dB) | −4.66 | −5.49 | −6.46 | −6.67 | −6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yu, W.; Li, J.; Yu, Z.; Zhao, Y.; Luo, Y. Radio Frequency Interference Mitigation in Synthetic Aperture Radar Data Based on Instantaneous Spectrum Forward Consecutive Mean Excision. Remote Sens. 2024, 16, 150. https://doi.org/10.3390/rs16010150
Wang Z, Yu W, Li J, Yu Z, Zhao Y, Luo Y. Radio Frequency Interference Mitigation in Synthetic Aperture Radar Data Based on Instantaneous Spectrum Forward Consecutive Mean Excision. Remote Sensing. 2024; 16(1):150. https://doi.org/10.3390/rs16010150
Chicago/Turabian StyleWang, Zijian, Wenbo Yu, Jiamu Li, Zhongjun Yu, Yao Zhao, and Yunhua Luo. 2024. "Radio Frequency Interference Mitigation in Synthetic Aperture Radar Data Based on Instantaneous Spectrum Forward Consecutive Mean Excision" Remote Sensing 16, no. 1: 150. https://doi.org/10.3390/rs16010150
APA StyleWang, Z., Yu, W., Li, J., Yu, Z., Zhao, Y., & Luo, Y. (2024). Radio Frequency Interference Mitigation in Synthetic Aperture Radar Data Based on Instantaneous Spectrum Forward Consecutive Mean Excision. Remote Sensing, 16(1), 150. https://doi.org/10.3390/rs16010150