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Abstract: Radio frequency interference (RFI) poses major threats to synthetic aperture radar (SAR)
systems. Due to the suppression of useful target signals via high-power RFI, the SAR imaging quality
is severely degraded. Nevertheless, existing studies on RFI mitigation mainly focus on narrowband
filtering, while wideband RFI mitigation methods are relatively lacking and perform non-robustly. In
this paper, an RFI mitigation scheme is proposed based on instantaneous spectrum forward consecu-
tive mean excision (FCME), which is suitable for both narrowband and wideband RFI mitigation.
The SAR echo signal is first transformed into a time–frequency (TF) domain through a short-time
Fourier transform (STFT). On this basis, the instantaneous spectra polluted via RFI are detected via a
kurtosis-based statistical test and then filtered via FCME to achieve RFI mitigation. Finally, connected
component analysis is applied as a safety measure so as to avoid the unnecessary loss of useful
target signal. The combination of FCME and connected component analysis enables the proposed
method to thoroughly filter out RFI while retaining more useful target signals compared with other
competing methods. The experimental results on real SAR raw data validate the effectiveness of the
proposed method.

Keywords: interference mitigation; synthetic aperture radar; radio frequency interference; instanta-
neous spectrum filtering; forward consecutive mean excision

1. Introduction

Synthetic aperture radar (SAR) is an active remote sensing radar system. With its
unique synthetic aperture technology, SAR can provide high-resolution imaging under
all-day and all-weather conditions, and it has broad applications in military and civilian
fields [1–6]. With the expansion in application scope and the continuous improvement
in detection capability, SAR is currently facing increasingly complicated electromagnetic
environments. The available electromagnetic spectrum resources have been gradually
occupied by communication devices, television networks, and military radars, making
SAR vulnerable to the radio frequency interference (RFI) generated by these radiation
sources [7]. In terms of action mechanism, RFI significantly reduces the signal-to-jamming
ratio (SJR) of SAR echo signals through its high-power characteristics. As a result, the
resulting SAR images have blurs and bright lines, which mask the targets of interest and
invalidate subsequent image interpretations [8–10]. Evidently, the existence of RFI has
posed serious threats to SAR functioning; thus, it is of paramount importance to study the
signal characteristics, as well as mitigation schemes, of RFI.

According to the relative bandwidth of the interference signal, RFI can be generally
classified into narrowband interference (NBI) and wideband interference (WBI). The energy
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distribution of NBI in the frequency domain is relatively concentrated, while WBI accounts
for a considerable portion of the useful target signal’s bandwidth, with its instantaneous
frequency constantly changing with time. Figure 1 shows a range–frequency azimuth-time
representation of SAR echo data contaminated with NBI and WBI, respectively. In Figure 1a,
some isolated bright spots or vertical bright lines appear in the data polluted by NBI, which
corresponds to the narrowband characteristics of NBI in each single pulse, possessing only
a few frequency bins. In contrast, WBI appears as multiple horizontal lines in Figure 1b,
indicating a significantly larger bandwidth occupied by the interference signal. From an
overall perspective, NBI and WBI markedly differ in signal characteristics and, therefore,
are often treated distinctively.

Remote Sens. 2024, 16, x FOR PEER REVIEW 2 of 23 
 

 

According to the relative bandwidth of the interference signal, RFI can be generally 
classified into narrowband interference (NBI) and wideband interference (WBI). The 
energy distribution of NBI in the frequency domain is relatively concentrated, while WBI 
accounts for a considerable portion of the useful target signal’s bandwidth, with its 
instantaneous frequency constantly changing with time. Figure 1 shows a range–
frequency azimuth-time representation of SAR echo data contaminated with NBI and 
WBI, respectively. In Figure 1a, some isolated bright spots or vertical bright lines appear 
in the data polluted by NBI, which corresponds to the narrowband characteristics of NBI 
in each single pulse, possessing only a few frequency bins. In contrast, WBI appears as 
multiple horizontal lines in Figure 1b, indicating a significantly larger bandwidth 
occupied by the interference signal. From an overall perspective, NBI and WBI markedly 
differ in signal characteristics and, therefore, are often treated distinctively. 

(a) (b) 

Figure 1. Range–frequency azimuth-time representations of the RFI-polluted SAR echoes: (a) NBI-
polluted SAR echoes; (b) WBI-polluted SAR echoes. 

In recent years, studies on RFI have received increasing attention, and a variety of 
RFI mitigation methods have been proposed, which can be mainly divided into two 
categories: parametric and non-parametric. 

Parametric methods characterize the specific interference form with a mathematical 
model, and RFI components can be reconstructed and subtracted from radar echoes by 
estimating the key parameters of the established mathematical model. Typical 
approaches, such as maximum likelihood (ML) [11], least squares (LS) [12], gradual 
relaxation [13], and Bayesian inference [14], model NBI as a summation of sinusoidal 
signals and estimate the interference parameters by minimizing the difference between 
the reconstructed signal and received signal. On this basis, Liu et al. realized the fast 
convergence of a time-varying model estimation by means of an iterative adaptive 
approach (IAA) [15,16]. Also, high-order ambiguity functions (HAFs) were utilized in 
[17,18] for polynomial phase approximation, which improves the phase estimation 
accuracy of the interference signal to some extent. Given complete modeling and precise 
parameter approximations, parametric methods are theoretically optimum for RFI 
mitigation. However, such methods are not robust enough since their performance 
heavily depends on complex modeling and accurate parameter estimation. 

Non-parametric methods mainly include notch filtering methods [19–23], adaptive 
filtering methods [24–27], and other component decomposition methods [28–36]. The 
commonality these methods share is based on the feature difference between RFI and the 
useful target signal. The received radar echo signal is transformed into a certain transform 
domain; then, RFI filtering is performed with a specially designed filter. In contrast with 
parametric methods, non-parametric methods can carry out RFI suppression without any 

Figure 1. Range–frequency azimuth-time representations of the RFI-polluted SAR echoes: (a) NBI-
polluted SAR echoes; (b) WBI-polluted SAR echoes.

In recent years, studies on RFI have received increasing attention, and a variety of RFI
mitigation methods have been proposed, which can be mainly divided into two categories:
parametric and non-parametric.

Parametric methods characterize the specific interference form with a mathematical
model, and RFI components can be reconstructed and subtracted from radar echoes by
estimating the key parameters of the established mathematical model. Typical approaches,
such as maximum likelihood (ML) [11], least squares (LS) [12], gradual relaxation [13], and
Bayesian inference [14], model NBI as a summation of sinusoidal signals and estimate the
interference parameters by minimizing the difference between the reconstructed signal
and received signal. On this basis, Liu et al. realized the fast convergence of a time-
varying model estimation by means of an iterative adaptive approach (IAA) [15,16]. Also,
high-order ambiguity functions (HAFs) were utilized in [17,18] for polynomial phase
approximation, which improves the phase estimation accuracy of the interference signal to
some extent. Given complete modeling and precise parameter approximations, parametric
methods are theoretically optimum for RFI mitigation. However, such methods are not
robust enough since their performance heavily depends on complex modeling and accurate
parameter estimation.

Non-parametric methods mainly include notch filtering methods [19–23], adaptive
filtering methods [24–27], and other component decomposition methods [28–36]. The
commonality these methods share is based on the feature difference between RFI and
the useful target signal. The received radar echo signal is transformed into a certain
transform domain; then, RFI filtering is performed with a specially designed filter. In
contrast with parametric methods, non-parametric methods can carry out RFI suppres-
sion without any prior knowledge or parametric modeling. The range spectrum notch
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filtering method achieves RFI removal by zeroing the frequency bands that exceed the
preset threshold [19]. This method is effective and simple to implement, but it will lead to
spectral discontinuity and possible residual interference components. In order to resolve
these problems, Xu et al. adopt linear prediction extrapolation for spectrum completion
after two-step notch filtering, which eliminates the residual RFI components but cannot
guarantee the recovery of the filtered useful signal [20]. The mitigation of WBI is usu-
ally conducted through mask [21] and instantaneous spectrum notch filtering [22] in the
time–frequency (TF) domain so as to avoid the decrease in spatial resolution caused by
excessive spectrum zeroing [23]. These TF notch filtering methods are essentially the same
as the range spectrum notch filtering method, which may leave the edge part of the interfer-
ence signal unsuppressed in the TF domain, and are partially invalid under mixed strong
and weak interference situations. The adaptive filtering methods take the specific inter-
ference signal as the reference signal, and iteratively fit the RFI-free components through
typical adaptive filters like the least mean square (LMS) filter [24–26] and Wiener filter [27]
to realize the separation of useful target signals and RFI. Considering the computational
efficiency and practical effect, the adaptive filtering methods are widely applied in NBI
mitigation scenarios but suffer from unstable convergence performance, especially in the
cases of time-varying signals. Furthermore, scholars at home and abroad also put forward
some component decomposition methods. Based on the high intensity of NBI and the
assumption that the useful target signal approximately obeys Gaussian distribution, the
received SAR echo signal can be decomposed into a series of intrinsic mode functions via
complex empirical mode decomposition (CEMD) [28] or divided into interference subspace
and useful signal subspace via eigenvalue decomposition [29], as well as singular value
decomposition [30]. The NBI components usually correspond to several intrinsic mode
functions, eigenvalues, and singular values with the largest energy. On top of that, other
component decomposition methods achieve the simultaneous extraction of NBI and WBI
on account of the low-rank feature of RFI and the sparsity of useful target signals in the
TF domain [31–36]. Methodologically, numerous optimization models are involved in
decomposing the TF data matrix of the received echo signal, which efficaciously protects
the useful target signal with the constraints of the optimization models, at the cost of
computational complexity and performance robustness.

As can be concluded from the above literature review, the majority of anti-RFI schemes
at present focus on dealing with NBI, while those restraining WBI are relatively insuffi-
cient or perform non-robustly. In order to develop an effective method for both NBI and
WBI attenuation, an RFI mitigation method based on instantaneous spectrum forward
consecutive mean excision (FCME) is proposed in this paper. Firstly, the received SAR
echo signal is transformed into a TF domain via a short-time Fourier transform (STFT).
For every spectrum corresponding to a single time unit in the obtained TF data, i.e., the
instantaneous spectrum, a kurtosis-based statistical test is introduced to detect the presence
of RFI components. The instantaneous spectra with RFI are then filtered by means of FCME,
which screens out the RFI-corrupted instantaneous frequency points through iterative
calculation. Compared with competing methods, the edge part of RFI components in the
TF graph can be more finely removed. After the completion of instantaneous filtering,
TF screening based on connected component analysis is employed as a safety measure,
preventing unnecessary useful signal loss resulting from the false alarms of FCME. Lastly,
a temporal signal without interference can be regained through inverse STFT (ISTFT). The
proposed method achieves the detection and mitigation of both NBI and WBI by taking
full advantage of the narrowband characteristic of RFI in the instantaneous spectrum, and
its effectiveness is tested under various circumstances.

The remainder of this paper is arranged as follows: Section 2 presents the TF char-
acteristics of the SAR received signal with and without RFI. Section 3 elaborates on the
proposed RFI mitigation scheme, where the procedures of kurtosis-based statistical test,
instantaneous spectrum FCME, and subsequent connected component analysis are intro-
duced in detail. Section 4 conducts a series of simulated experiments on SAR raw data to
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verify the effectiveness of the proposed method, followed by comprehensive discussions
on the proposed method, and future research directions are presented in Section 5. Finally,
the main conclusions are drawn in Section 6.

2. SAR Signal Model with RFI

For SAR systems, the received complex-valued SAR echo signal consists of two di-
mensions of fast time t and slow time τ, which correspond to the distance direction and
azimuth direction of the resulting image, respectively. Therefore, the received SAR echo
signal can be modeled as:

Echo(t, τ) = S(t, τ) + I(t, τ) + N(t, τ), (1)

where S(t, τ), I(t, τ), and N(t, τ) denote the useful target signal, RFI, and addictive noise,
respectively. Specifically, RFI can be further categorized into NBI and WBI according to the
bandwidth of the interference signal.

NBI is highly concentrated in the frequency domain and generally occupies less than
1% of the transmitted signal’s bandwidth [9], which can be expressed as:

INBI(t, τ) = ∑L
l=1 αN,l(t, τ)rect

(
t

TN,l(τ)

)
exp

{
j(2π fN,l(τ)t + φl(τ))

}
, (2)

where αN,l(t, τ), TN,l(τ), fN,l(τ), and φl(τ) represent the complex envelope, pulse width,
frequency, and initial phase of NBI from the lth interference source, respectively. rect(t/T)
is a rectangular window function with window width T and starting point 0.

Compared with NBI, WBI possesses a much larger bandwidth and its instantaneous
frequency keeps varying with time. In many application scenarios, WBI is linearly modu-
lated and can be formulated as:

IWBI(t, τ) = ∑Q
q=1 αW,q(t, τ)rect

(
t

TW,q(τ)

)
exp

{
j
(

2π fW,q(τ)t + πkq(τ)t2
)}

, (3)

where αW,q(t, τ), TW,q(τ), fW,q(τ), and kq(τ) are the complex envelope, pulse width, fre-
quency, and chirp rate of the qth WBI. This modeling reflects the time-varying characteristics
of the interference signals in practical applications.

Figure 2 demonstrates the RFI-contaminated SAR single pulse-echo signals in different
domains. It can be seen from Figure 2a,d that RFI differs from the useful target signal and
noise signal, primarily in the aspect of signal amplitude in the time domain, and owing
to the high intensity of the interference, the amplitude of the RFI-containing time units
is notably larger than the adjacent time units. In the frequency domain, as illustrated in
Figure 2b,e, the energy of NBI is extremely concentrated in merely a few frequency bins,
while that of WBI is evenly distributed within a certain bandwidth, accounting for many
more frequency bins. As for TF representation, NBI presents a straight line parallel to the
time axis in Figure 2c, indicating a fixed frequency. By comparison, WBI appears as an
oblique line in Figure 2f, with its instantaneous frequency finst changing in accordance with
the linear function finst(t, τ) = fW,q(τ) + kq(τ)t. Due to intensity differences, the useful
target signal and noise signal appear as the darker background in TF images.
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3. The Proposed RFI Mitigation Method

In this section, a detection and mitigation method against RFI is proposed, the detailed
process of which is depicted in Figure 3a. Firstly, the received SAR single pulse-echo signal
is converted into the TF domain through STFT, and a set of instantaneous spectra can be
obtained. For each instantaneous spectrum, a kurtosis-based statistical test is implemented
to detect the presence of RFI. If RFI exists, FCME will be applied to locate and filter out the
RFI-corrupted frequency bins. After processing all the instantaneous spectra in parallel,
connected component analysis is carried out on the TF graph to determine whether there are
false alarms in the filtered TF area. This TF screening process manages to avoid unnecessary
loss of useful target signals. In the end, the processed TF data are reverted to the time
domain by means of ISTFT, where RFI-free signals can finally be acquired.

The proposed method does not affect the parameter estimation and phase compen-
sation in the imaging process and, thus, can be well incorporated with conventional SAR
imaging algorithms. As shown in Figure 3b, after conducting the proposed RFI suppression
scheme on all the azimuth echoes, SAR data without RFI can be obtained. The image for-
mation process is first accomplished by range compression and range migration correction.
Subsequently, in order to acquire a high-quality remote sensing image, doppler parameter
estimation and motion compensation are required to correct the phase errors resulting from
the inevitable air turbulence during a flight. Finally, a well-focused image can be yielded
through azimuth compression.
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3.1. Interference Detection
3.1.1. Short-Time Fourier Transform

An interference signal is usually highly coupled to useful target signals in the time
or frequency domain; hence, one-dimensional analysis is not suitable for interference
mitigation in many cases, especially in the interference scenario of WBI. TF analysis reflects
the energy distribution of the signal into two dimensions and can explicitly display the
instantaneous frequency variation in the input signal with time. As a representative
realization of TF transform, STFT provides the time–local spectral information of the signal,
making it suitable for the analysis of time-varying and non-stationary signal components.
Suppose that the input signal is sig(t), given a certain sliding window win(t) with window
length Twin, the TF data acquired through STFT can be represented as:

TF(t, f ) =
∫ ∞

−∞
win

(
t′ − t
Twin

)
·e−j2π f t′ ·sig

(
t′
)
dt′. (4)

3.1.2. Statistical Detection

In practice, not all instantaneous spectra contain interference components because
of the time-varying characteristic of RFI. Consequently, in order to avoid useful signal
loss and computing resource waste caused by excessive processing, it is necessary to first
detect the instantaneous spectra polluted by RFI before taking interference suppression
measures. Figure 4 displays typical instantaneous spectra with and without RFI and their
corresponding approximate probability density functions. As shown in Figure 4a,b, since
radar echo signal approximately follows complex Gaussian distribution and STFT is a linear
transformation, the instantaneous spectra without interference still follow Gaussian-like
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distribution, with their amplitudes conforming to Rayleigh distribution. Nevertheless,
as can be seen from Figure 4c–f, NBI and WBI introduce peaks to the instantaneous
spectrum, endowing it with narrowband characteristics, which considerably increase
the sharpness of the instantaneous spectrum. Accordingly, extreme values arise in the
amplitude distribution, resulting in a tailing phenomenon in the right segment of the
probability density function.
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In view of the obvious statistical difference between the instantaneous spectra with
and without RFI, the kurtosis feature is used for interference detection. According to the
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statistical theory, kurtosis measures the outlier degree of data, and a larger kurtosis indicates
more extreme values in the data series, leading to more deviations from the Gaussian
distribution. Therefore, when RFI exists in the instantaneous spectrum, the corresponding
kurtosis value will be relatively larger. Given a set of instantaneous frequency points
Z = {z1, z2, · · · , zNum}, and Num is the number of instantaneous frequency points, then
instantaneous kurtosis can be calculated as:

K =
E
{
(|Z| − µ)4

}
σ4 =

1
Num ∑Num

i=1 (|zi| − µ)4(
1

Num ∑Num
i=1 (|zi| − µ)2

)2 , (5)

where E{·} denotes the expectation operator, and µ and σ are the mean value and standard
deviation of the instantaneous frequency amplitude, respectively.

By utilizing a kurtosis-based statistical test, the detection of RFI is converted to a
binary hypothesis test problem, which can be modeled as:{

K < γ,⇒ H0 : Echo(t, τ) = S(t, τ) + N(t, τ)
K ≥ γ,⇒ H1 : Echo(t, τ) = S(t, τ) + I(t, τ) + N(t, τ)

, (6)

where γ is the preset threshold. Under the null hypothesis H0, the tested instantaneous
spectrum is interference-free and approximately obeys complex Gaussian distribution,
while the instantaneous spectrum is tested with pollution by RFI and deviates notably from
complex Gaussian distribution under the alternate hypothesis H1.

Providing an appropriate kurtosis threshold, the instantaneous spectra with and
without interference can be well distinguished. On the ground of the Neyman–Pearson
criterion, the selected threshold needs to serve as a trade-off between the detection rate Pd
and false alarm rate Pf , which is to maximize the detection probability under the constraint
of a certain false alarm rate. This can be described as:{

γ∗ = argmax Pd
s.t. Pf ≤ ε

, (7)

where γ∗ represents the optimal threshold, and ε is the tolerable false alarm level. As a
result, the optimal threshold is data-driven rather than a fixed value and can be derived as
a function of the false alarm rate, i.e.:

γ∗ = µ f ree +
√

2σf reeerf−1(1 − 2ε), (8)

where erf−1(·) is the inverse error function, and µ f ree and σf ree separately represent the
mean value and standard deviation of the instantaneous kurtosis values estimated from
the RFI-free pulses.

3.2. Interference Mitigation
3.2.1. Instantaneous Spectrum Forward Consecutive Mean Excision

Taking full advantage of recursion and continuous iteration, FCME is a detection
algorithm with a variable threshold. In the first step, the amplitudes of all the instanta-
neous frequency points are sorted, and the frequency points with smaller amplitudes are
selected according to a preset proportion as the initially interference-free frequency point
set. Based on the mean amplitude value of the interference-free set, the initial threshold of
the iteration can be preliminarily obtained. In each subsequent iteration, the instantaneous
frequency points with amplitudes higher than the threshold are considered to be polluted
and categorized into interference set, while the set of frequency points that are otherwise
RFI-free are used to update the threshold for the next iteration. Through continuous it-
erative calculation, an accurate and stable threshold can be acquired after reaching the
balance, and the frequency points in the final interference set J are then removed to achieve
RFI mitigation.
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Assume M is the maximum number of iterations, and Fm and Jm are the interference-
free set and interference set after the mth iteration, respectively. Given a threshold factor
Ath, an initial spectrum selection ratio r, and the RFI-polluted instantaneous spectrum
Finst (with Ntotal data points), then the specific process of instantaneous spectrum FCME is
presented in Algorithm 1.

Algorithm 1 Instantaneous spectrum FCME

Input: The RFI-polluted instantaneous spectrum Finst, the maximum iteration number M, the
threshold factor Ath, the initial spectrum selection ratio r, the data point number Ntotal in
instantaneous spectrum.
Output: The interference-free set F, the interference set J.
Initialization: m = 1.
Procedure:

1. Calculate the instantaneous spectral amplitude |Finst|;
2. Sort the obtained amplitude values, the N1 = r ∗ Ntotal data points with the smallest

amplitudes are selected as the initially interference-free set F1, the remaining data points
make up the interference set J1;

3. Repeat M times
4. Calculate the mean value of Fm: Meanm = ∑|Fm|/Nm;
5. Calculate the threshold value for the mth iteration: Tm = Meanm ∗ Ath;
6. Compare the amplitudes of the data points in Jm with Tm;
7. m = m + 1;
8. Update Fm by adding the data points with amplitudes below Tm−1;
9. Update Jm with the remaining data points;
10. Until Jm = Jm−1 or m = M
11. Return F = Fm, J = Jm.

In this algorithm, the threshold factor Ath is related to the false alarm rate of FCME
filtering. A higher threshold factor value will result in a lower false alarm rate and,
therefore, less useful target signal loss, but may cause interference to be filtered out less
thoroughly. In addition, the initial spectrum selection ratio r acts as a useful signal pro-
tection mechanism and considers the initially selected signal components as useful target
signals. The interference-free set thus formed effectively prevents the loss of useful target
signals, which is highly suitable for attenuating RFI with narrowband characteristics in the
instantaneous spectrum.

3.2.2. TF Screening Based on Connected Component Analysis

Due to the inevitable false alarms in the filtering process, some useful target signal
components are filtered out unexpectedly. In consideration of this phenomenon, the
proposed method adopts connected component analysis to evaluate the filtered TF image
TFf iltered(t, f ). The input of connected component analysis is a binary graph Ψ(t, f ), which
can be expressed as:

Ψ(t, f ) =

{
1 TFf iltered(t, f ) = 0
0 TFf iltered(t, f ) ̸= 0

. (9)

For all the TF data points previously determined to be RFI-polluted (TFf iltered(t, f ) = 0),
the total number of connected areas is firstly counted, as shown in Figure 5. For the ith
independent connected area Ci, if the maximum intensity of its corresponding TF dataset is
higher than a data-based threshold, the area is still judged to be RFI-polluted and is denoted
by CI . Otherwise, expressed by CS, the area is determined to be a useful target signal area, and
the corresponding TF data that were previously filtered are recovered. Assume the original
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TF data before RFI mitigation are TF1(t, f ); then, the whole TF screening process can be
represented as:

TFclean(t, f ) =


TF1(t, f )⊙ CS(t, f ) (t, f )ϵCS

0 (t, f )ϵCI
TFf iltered(t, f ) else

, (10)

where ⊙ represents the Hadamard product operator, and the abovementioned data-based
threshold η = µ f iltered + σf iltered is equal to the sum of the mean value and standard de-
viation of TFf iltered(t, f ). Finally, the fully processed TF data TFclean(t, f ) can be obtained.
The application of connected component analysis serves as a safety measure for instanta-
neous spectrum FCME, which effectively prevents the useful signal loss caused by FCME
false alarms.
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3.2.3. Inverse Short-Time Fourier Transform

After the completion of TF data processing, the RFI-free temporal signal x̂ can be
recovered via ISTFT, which can be expressed as:

x̂(t) =
∫ ∞

−∞
TFclean

(
t′, f

)
·win

(
t − t′

Twin

)
·ej2π f t′d f dt′. (11)

By repeating the aforementioned process in a pulse-by-pulse manner, the radar echo
data without interference can be obtained and are ready for subsequent imaging processing.

3.3. Evaluation Metric

In order to verify the superiority of the proposed method quantitatively, the interfer-
ence suppression ratio (ISR), signal distortion ratio (SDR), and multiplicative noise ratio
(MNR) [22] are introduced to evaluate the performance of the proposed method as well as
other competing methods. In particular, the first two metrics are for a single pulse-echo
signal, while MNR is utilized to assess the final imaging quality.

3.3.1. ISR

ISR indicates the degree of interference suppression, which can be defined as the
ratio of signal power before and after interference mitigation. A larger ISR implies that
there are more signal components removed from the original received signal. Suppose
the RFI-corrupted SAR single pulse-echo signal is x; then, the expression of ISR can be
written as:

ISR = 10 log10

(
∑|x|2

∑|x̂|2

)
. (12)
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3.3.2. SDR

It is worth noting that a larger ISR is not always better, and sometimes it means
that more useful target signals are filtered out. Thus, SDR is employed to measure the
distortion of useful target signals after interference mitigation, which can be defined as
the normalized energy loss of the useful target signal caused by executing interference
mitigation schemes, i.e.:

SDR = 10 log10

(
∑|x0 − x̂|2

∑|x0|2

)
, (13)

where x0 is the original SAR single pulse-echo signal without interference.

3.3.3. MNR

As for the resulting SAR image, it suffers from multiplicative noise due to the inherent
imaging mechanism. Moreover, the existence of RFI may degrade the integrated side-lobe
ratio (ISLR), which is a key factor in increasing multiplicative noise. Therefore, MNR is
suitable for evaluating the SAR imaging quality, representing the average energy ratio of
the weak scattering area to that of the adjacent strong scattering area in the SAR images,
and a smaller MNR indicates a better imaging quality. Assume that Pw and Ps denote the
image pixel value of the weak scattering region and strong scattering region, and their
corresponding pixel numbers are Nw and NS, respectively; then, the MNR value can be
calculated as:

MNR = 10 log10

 1
Nw

∑Nw
j=1

∣∣Pw,j
∣∣2

1
NS

∑NS
i=1|Ps,i|2

. (14)

4. Experimental Results

In this section, the validity of the proposed method is verified under various conditions.
Specifically, from the perspectives of single pulse-echo signals as well as distributed target
echo signals, quantitative evaluations and qualitative analyses are conducted based on dif-
ferent datasets, and a parameter setting analysis is also provided for the comprehensiveness
of the study.

4.1. Results of the Single Pulse-Echo Signal
4.1.1. Single Interference Type Mitigation

In order to validate the effectiveness of the proposed method, the designed NBI and
WBI signals are intentionally added to the real measured pulse echoes. The echoes were
collected via an airborne SAR operating in the Ku-band, and its working parameters are
shown in Table 1.

Table 1. Airborne SAR dataset parameter.

Parameter Value

Sampling frequency (MHz) 125
Carrier frequency (GHz) 16.5

Bandwidth (MHz) 80
Pulse width (µs) 10

Receive window width (µs) 40.8
Pulse repetition frequency (Hz) 900

For the initial kurtosis-based statistical RFI detection, the data-dependent parameters
µ f ree and σf ree in Equation (8) are required to be estimated from the RFI-free pulses, which
are 3.1254 and 0.9780, respectively. On this basis, the variation trend of the kurtosis
threshold with respect to the false alarm level is illustrated in Figure 6, in which the kurtosis
threshold witnesses a downward trend with the increase in Pf . In this experiment, the false
alarm level Pf is empirically set as Pf = 10−8.
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and initial spectrum selection ratio 𝑟  are set as 5 and 90%, respectively. The RFI 
suppression performance of the proposed method is compared with the range spectrum 
notch filtering method [19], the linear prediction extrapolation method [20], the TF mask 
method [21], and the instantaneous spectrum notch filtering method [22]. 

The TF domains of the mitigation results are demonstrated in Figure 8, and the 
quantitative evaluation metrics ISR and SDR are accordingly provided in Table 2. 
According to Section 3.3.2, a larger ISR does not necessarily mean a greater degree of RFI 
removal, and sometimes, it implies more useful target signal loss. Therefore, the original 
TF data without interference are presented in Figure 8a for reference, with a reference ISR 

Figure 6. Variation trend of the kurtosis threshold versus false alarm level.

Figure 7a displays the NBI-corrupted pulse-echo signal in the TF domain, with a
jamming-to-signal ratio (JSR) of approximately 20 dB. As analyzed in Section 2, the NBI
component appears as a straight bright line parallel to the time axis, indicating a concen-
trated frequency distribution. Correspondingly, the kurtosis-based statistical test result is
shown in Figure 7b, which reveals that the instantaneous spectra containing NBI can be
correctly identified for the subsequent mitigation scheme.
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Figure 7. NBI-corrupted pulse-echo signal and its corresponding interference detection result: (a) TF
representation of the NBI-corrupted pulse-echo signal; (b) kurtosis-based statistical test result.

After the detection step, the mitigation measures are then performed. As for the
parameter setting, the maximum iteration number M = 100, and the threshold factor Ath
and initial spectrum selection ratio r are set as 5 and 90%, respectively. The RFI suppression
performance of the proposed method is compared with the range spectrum notch filtering
method [19], the linear prediction extrapolation method [20], the TF mask method [21], and
the instantaneous spectrum notch filtering method [22].

The TF domains of the mitigation results are demonstrated in Figure 8, and the
quantitative evaluation metrics ISR and SDR are accordingly provided in Table 2. According
to Section 3.3.2, a larger ISR does not necessarily mean a greater degree of RFI removal, and
sometimes, it implies more useful target signal loss. Therefore, the original TF data without
interference are presented in Figure 8a for reference, with a reference ISR of 14.85 dB. In
other words, the performance of interference mitigation needs to be evaluated by combining
ISR and SDR, and the ISR value corresponding to an excellent mitigation effect is not always
the highest but often closer to the reference ISR. Figure 8b exhibits the NBI mitigation result
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of applying the range spectrum notch filtering method; it can be seen that the main body
of the interference has been eliminated, but there is still a considerable part of residual at
both ends of NBI in the TF image. In contrast, as shown in Figure 8c, the two-step notch
filtering of the linear prediction method further reduces the residue of NBI components
and extrapolates the missing spectrum, hence exhibiting a higher ISR and a lower SDR.
As demonstrated in Figure 8d,e, the TF filtering methods can better take care of both ends
of the RFI components in the TF domain, resulting in higher ISRs, which is especially
the case for the instantaneous spectrum notch filtering method. However, both methods
preserve the edges of NBI, leaving bright outlines in TF images. Figure 8f displays the
NBI processing result of the proposed method, where the edge part of the interference
component is treated very finely. Owing to the TF screening process, the proposed method
is able to remove RFI thoroughly while protecting useful target signals. Consequently, the
proposed method reveals better performance in both interference suppression and useful
signal preservation.
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Table 2. Performance comparison of NBI mitigation for a single pulse echo.

Range Spectrum
Notch Filtering

Method

Linear Prediction
Extrapolation

Method
TF Mask Method

Instantaneous
Spectrum Notch
Filtering Method

The Proposed
Method

ISR (dB) 13.59 14.39 14.55 14.57 14.66

SDR (dB) −4.16 −6.26 −9.81 −10.15 −11.03

As for WBI processing, Figure 9a shows the TF distribution of WBI-corrupted pulse-
echo signal, with a JSR of about 20 dB. It can be seen that WBI presents a slanted linear
distribution in TF images, occupying a large bandwidth. The statistical test result is
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accordingly demonstrated in Figure 9b; since both WBI and NBI are characterized with
narrowband features in instantaneous spectra, the kurtosis-based statistical test is as equally
effective for WBI detection as it is for NBI detection.
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In terms of WBI mitigation, Figure 10 compares the mitigation results of different
methods in the TF domain. Similarly, the TF distribution of the original interference-free
echo signal is provided in Figure 10a as a reference, with a reference ISR of 16.04 dB.
Figure 10b displays the WBI mitigation result of the range spectrum notch filtering method;
it can be seen that the whole frequency band containing WBI is filtered out, leading to
significant useful signal loss. Also, there remain residual interference components at both
ends of WBI. On this basis, the linear prediction extrapolation method fills in the missing
spectrum, decreasing useful signal loss to some extent, as shown in Figure 10c. Nevertheless,
the two-step filtering process eliminates a considerable amount of signal components,
resulting in the highest ISR with only a limited improvement in SDR. The obvious gap
between the ISR of the linear prediction extrapolation method and the reference ISR also
indicates this excessive signal filtering. Figure 10d,e exhibit the WBI mitigation results
of the TF mask method and instantaneous spectrum notch filtering method, respectively.
Both methods reveal decent comprehensive performance, but also leave the edges of WBI
unsuppressed in TF images. As illustrated in Figure 10f, the proposed method effectively
filters out the remaining WBI edges through iterative calculation, and no other signal
components except interference are filtered after connected component analysis-based TF
screening. The quantitative metrics of all the abovementioned methods are given in Table 3.

Table 3. Performance comparison of WBI mitigation for a single pulse echo.

Range Spectrum
Notch Filtering

Method

Linear Prediction
Extrapolation

Method
TF Mask Method

Instantaneous
Spectrum Notch
Filtering Method

The Proposed
Method

ISR (dB) 14.83 16.31 15.72 15.74 15.96

SDR (dB) −0.22 −2.08 −9.45 −9.73 −11.20
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4.1.2. Mixed Interference Type Mitigation

In practical applications, the interference scenarios faced by SAR are sometimes
complex, and there may be multiple interference sources. Considering the mitigation
of complex interference cases, a mixed interference scenario is set up in this section for
performance comparison. Specifically, WBI and NBI are added to the SAR echo signal with
a JSR of about 20 dB and 5 dB, respectively. For the purpose of exploring the influence of
interference interaction on the suppression effect, the two RFI signals are arranged to be
partly overlapped in the time dimension, as demonstrated in Figure 11a. The corresponding
detection result shown in Figure 11b indicates that statistical detection based on kurtosis
can simultaneously detect both strong and weak RFI signals, and the instantaneous kurtosis
values corresponding to only weak interference are relatively more prone to fluctuation. It
is worth mentioning that there is a sudden significant decline in the instantaneous kurtosis
value at the endpoint of WBI (also at the end of the overlap period). Still, the instantaneous
kurtosis value remains above the empirical false alarm level, which does not affect the final
RFI locating result.

Figure 12 displays the mitigation results of this mixed RFI case. The original radar
echo signal after the TF transform is demonstrated in Figure 12a for comparison, with a
reference ISR of 16.16 dB. It can be seen from Figure 12b that the one-dimensional range
spectrum notch filtering method can effectively remove both strong and weak interference,
at the cost of considerable useful signal loss. As shown in Figure 12c, the remaining RFI
components at the endpoints of interference signals are further mitigated via the second
filtering in the linear prediction extrapolation method, and SDR is also improved compared
with the former method as a result of spectrum extrapolation. As for the TF filtering
method, Figure 12d shows that the TF mask method hollows out the middle part of the
RFI components, leaving out bright edges of NBI and WBI. Figure 12e illustrates that the
instantaneous spectrum notch filtering method is invalid when both strong and weak
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interferences exist in the instantaneous spectrum. Also, some isolated TF areas are falsely
filtered out in this image due to the fixed filtering threshold. In contrast, with the FCME
parameter setting remaining unchanged (M = 100, Ath = 5, and r = 90%), the proposed
method reveals excellent filtering performance, as displayed in Figure 12f, and the edges as
well as both ends of the strong and weak RFI are greatly suppressed, without additional
useful signal loss. The mitigation evaluation metrics in this mixed interference case are
accordingly provided in Table 4.
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Table 4. Performance comparison of mixed interference mitigation for a single pulse echo.

Range Spectrum
Notch Filtering

Method

Linear Prediction
Extrapolation

Method
TF Mask Method

Instantaneous
Spectrum Notch
Filtering Method

The Proposed
Method

ISR (dB) 14.34 16.00 15.26 14.24 16.03

SDR (dB) 0.48 −1.66 −5.88 −2.38 −9.96

4.2. Parameter Setting of FCME

In order to study the effect of parameter selection on the mitigation performance of
the proposed method, a series of simulations are conducted in this section with different
parameter combinations. In this experiment, WBI mitigation tests are performed with the
threshold factor Ath ranging from 2 to 7 and the initial spectrum selection ratio r from 70%
to 95%. Specifically, the bandwidth and temporal pulse width of the interference are set
as 16 MHz and 20 µs, respectively, and JSR is approximately 20 dB. After conducting the
WBI mitigation tests under the different FCME parameter settings, the resulting changing
curves of ISR and SDR versus Ath under different r settings are demonstrated in Figure 13,
from which some key conclusions can be drawn:

1. In the case of a fixed spectrum selection ratio r, as the threshold factor Ath gradually
increases, the false alarm level decreases, and the signal components filtered via FCME
become less, hence lowering the ISR;

2. As a signal protection measure, a higher spectrum selection ratio r means a smaller
proportion of instantaneous frequency points are involved in the FCME iterative
calculation. Thus, in the case of a fixed threshold factor Ath, ISR shows a downward
trend in general with the growth of the spectrum selection ratio, which is especially
evident when Ath is set below a certain level;

3. With the spectrum selection ratio r remaining fixed, the SDR value falls first and then
rises with the increase in fixed threshold factors Ath. This is because RFI is not fully
suppressed under high Ath conditions, and useful signal loss becomes larger under
lower Ath conditions;

4. With a low threshold factor Ath, SDR also first declines and then increases with the
growth in the spectrum selection ratio r. When the threshold factors Ath are relatively
high, SDR witnesses a drop at first and then remains unchanged as r decreases. This
shows that the interference cannot be removed completely when r is too high, and
there may be significant useful signal loss if r is set at a lower value;

5. Owing to the introduction of the subsequent connected component analysis, when
the spectrum selection ratio r is relatively large (higher than 0.7), ISR and SDR tend to
converge with the decline in the threshold factor Ath. Similarly, when Ath is larger
than 3, it can be seen that ISR and SDR eventually converge to certain values as r
decreases. Altogether, this designed TF screening process effectively inhibits the
further loss of useful target signals.

In conclusion, the parameter setting should take both ISR and SDR into account to
achieve decent performance. Considering the fact that RFI occupies only a fraction of
frequency points in each instantaneous spectrum due to its narrowband properties, the
spectrum selection ratio r should be set higher than 70%. It is recommended that Ath and r
take the intermediate values, at around 3.5 and 80%, respectively.
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4.3. Results of the Distributed Target Echo Signal

In this section, the measured datasets of the Radarsat-1 satellite are used to further
prove the validity of the proposed method. The SAR datasets were collected in C-band, with
a range sampling frequency of 32.317 MHz and a pulse repetition frequency of 1257 Hz. As
for the emitted radar signal, the pulse width and bandwidth are 41.75 µs and 30.116 MHz,
respectively. The original RFI-free radar echoes are intentionally mixed with simulated RFI
signals with varying jamming parameters so as to compare the RFI mitigation results of
different methods.

For the evaluation of NBI mitigation performance, the selected imaging area is English
Bay near the University of British Columbia, Vancouver, BC, Canada, and the corresponding
NBI-contaminated SAR imaging result is provided in Figure 14a, with a JSR of 20 dB. It is
clear that the resulting SAR image is obscured by the bright lines produced by NBI, which
significantly affects the acquisition of target information. The NBI mitigation result of the
range spectrum notch filtering method is shown in Figure 14b, where there are still some
bright lines overlaying the image. This phenomenon results from the fact that the range
spectrum notch filtering method leaves NBI residues in each NBI-polluted pulse echo. The
linear prediction extrapolation method completes spectrum reconstruction after removing
the remaining NBI components; thus, the bright lines as well as blurs in the imaging result
are notably mitigated, as shown in Figure 14c. Figure 14d,e display the NBI processing
results of the TF filtering method. It can be seen that all these three methods can effectively
filter out NBI; yet, the instantaneous spectrum notch filtering method and the proposed
method can inhibit the inherent SAR multiplicative noise to a greater extent in terms of
imaging details. For quantitative evaluation, the pixels in the yellow dashed box are used to
calculate the average energy ratio of the weak scattering area, and the pixels in the red solid
box correspond to the surrounding strong scattering area. Under this setting, the MNR
metrics corresponding to these SAR imaging results are listed in Table 5, which indicates
better image contrast and better system image response recovery of the proposed method.

Table 5. SAR image quality evaluation after NBI mitigation.

Range Spectrum
Notch Filtering

Method

Linear Prediction
Extrapolation

Method
TF Mask Method

Instantaneous
Spectrum Notch
Filtering Method

The Proposed
Method

MNR (dB) −10.11 −11.64 −11.65 −12.85 −13.19
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Figure 14. SAR imaging results before and after NBI mitigation: (a) the SAR image without NBI
mitigation; (b–f) the SAR imaging results after processing via the range spectrum notch filtering
method, the linear prediction extrapolation method, the TF mask method, the instantaneous spectrum
notch filtering method, and the proposed method, respectively.

As for WBI mitigation, the imaging area is selected as a ferry terminal area, where the
sea acts as the dark background with weaker scattering intensity. Figure 15a exhibits the
interference result of WBI. The main part of the resulting image is covered by a layer of white
gauze, leading to a severe degradation in imaging quality. As shown in Figure 15b, the range
spectrum notch filtering method cannot eradicate RFI, and the large signal distortion leads
to a slightly blurred imaging result. This phenomenon will become more obvious with the
increase in WBI bandwidth and the number of RFI-contaminated pulses. Due to the large
spectrum notch width in the case of WBI suppression, the linear prediction extrapolation
method cannot stably reduce the signal distortion degree after linear prediction. As a result,
there are still some bright lines in the image caused by inaccurate spectral prediction, which
is illustrated in Figure 15c. Technically speaking, the linear prediction extrapolation method
is relatively not applicable to WBI suppression, as wideband spectrum reconstruction may
bring about unstable performance. Figure 15d,e display the imaging results after applying
the TF mask method, instantaneous spectrum filtering method, and the proposed method.
It is noticeable that compared with processing only in the frequency domain, these TF
filtering methods are more suitable for WBI mitigation and can produce clearer images.
Assume that the pixels corresponding to the weak scattering area and strong scattering area
are separate in the yellow dashed box and red solid box; the MNR metrics are calculated
and given in Table 6, which reveals that better imaging quality can be obtained by applying
the proposed method.

In summary, according to the above experimental results, the proposed method is
highly suitable for the mitigation of both NBI and WBI, which can suppress the interference
signal thoroughly while keeping more useful signal components for the subsequent imaging
process. Moreover, the combined application of FCME and TF screening also improves the
robustness under complex interference scenarios.
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Table 6. SAR image quality evaluation after WBI mitigation.

Range Spectrum
Notch Filtering

Method

Linear Prediction
Extrapolation

Method
TF Mask Method

Instantaneous
Spectrum Notch
Filtering Method

The Proposed
Method

MNR (dB) −4.66 −5.49 −6.46 −6.67 −6.81

5. Discussion

Due to the different TF distribution characteristics between NBI and WBI, many classic
interference suppression approaches merely tend to target a certain interference signal
type in the usual case. Nevertheless, NBI and WBI share the commonality of narrowband
characteristics over the instantaneous spectrum, so there is no difference in the processing
of NBI and WBI from the perspective of instantaneous spectrum. On this basis, a mitigation
scheme for RFI is proposed in this paper based on instantaneous spectrum FCME, which
can mitigate both NBI and WBI simultaneously.

The proposed method follows the order of detection and mitigation, and the initial
detection process is of vital significance for it plays a role in avoiding useful signal loss and
computational resources waste caused by excessive processing. As for the detection princi-
ple, the instantaneous spectra with RFI display obvious narrowband characteristics, while
interference-free spectra approximately follow Gaussian distribution, with their amplitudes
conforming to Rayleigh distribution. This significant statistical difference turns interference
detection into a binary hypothesis test problem; thus, appropriate statistical features can
be selected as judgment criteria. For a given instantaneous spectrum, the presence of RFI
introduces sharp peaks (extreme values), resulting in more deviations from the Gaussian
distribution. Therefore, the kurtosis feature is a clear choice in the matter of RFI detection
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as it serves as a measurement of data outlier degree, which also reflects spectrum sharp-
ness as well as deviation from the Gaussian distribution according to the statistical theory.
The experimental results shown in the previous section have thoroughly validated the
effectiveness of the kurtosis-based statistical test and the subsequent mitigation schemes.

As for the RFI mitigation scheme, through iterative calculation, FCME can adaptively
filter out interference components for each instantaneous spectrum, which allows more
flexible filtering in contrast with fixed thresholds. Consequently, the proposed method
manages to remove RFI components more thoroughly compared with competing methods,
especially in dealing with the edge parts. Furthermore, the proposed method employs
connected component analysis to screen the filtered TF areas. As a result, the RFI compo-
nents remain filtered, while the TF data of the useful target signal that has been incorrectly
filtered due to FCME false alarms can be recovered. This design acts as a safety measure,
which reduces useful signal loss to the fullest extent while effectively suppressing RFI. For
future research directions, instead of going through all instantaneous spectra in the process
of interference detection, the robust localization of the RFI areas directly in TF images based
on image processing means may be of research value, such that the calculation amount is
further reduced.

6. Conclusions

For the purpose of suppressing RFI more thoroughly and robustly, a detection and
mitigation method for RFI is proposed in this paper. By making full use of RFI’s narrowband
characteristics in the instantaneous spectrum, the proposed method can be applied to the
mitigation of both NBI and WBI. Specifically, a kurtosis-based statistical test is first adopted
to determine the instantaneous spectra containing RFI, and the frequency points of these
instantaneous spectra are then classified via FCME into an interference-free set and an
interference set. In this process, the iterative calculation of FCME enables the proposed
method to flexibly deal with the local details of RFI in TF images, and the effect of RFI
mitigation can be achieved by zeroing the interference set. In the last step, connected
component analysis is implemented to screen the filtered area in the TF domain, thereby
preventing the useful signal loss caused by the false alarms of FCME.

The effectiveness of the proposed method is demonstrated on multiple datasets, where
the processing results of single pulse-echo signals and distributed target echo signals are
evaluated. Compared with other competing methods, the proposed method performs
better in complex cases with mixed interference and can remove RFI components more
thoroughly in the TF domain while retaining more useful target signals.
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