Research Progress, Hotspots, and Evolution of Nighttime Light Pollution: Analysis Based on WOS Database and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Literature Database
2.1.2. Remote Sensing Data
2.2. Methods
2.2.1. Database Search Strategies
2.2.2. Literature Selection Methods
- Retrieval. A total of 723 unduplicated documents were retrieved from the Web of Science database, including a variety of types such as books, articles, reviews, patents, abstracts, meeting papers, editorial material, and data papers.
- Primary screening. For the 723 documents retrieved, the type of articles was restricted to “Book”, “Article”, “Review”, and “Meeting Paper” according to the established exclusion criteria in Table 1, and a total of 667 documents were obtained after refinement.
- Re-screening. The 667 documents obtained from the initial screening were skimmed, focusing on the keywords and abstracts of the articles, and those that were not relevant to the research topic, not available, and without full text (including unpublished preprints) were screened and excluded. In this way, 319 documents meeting the requirements were acquired after screening. Furthermore, another 25 thesis or review papers not included in WOS were selected as additional data when browsing the references. Finally, a total of 344 documents were obtained.
- Fine selection. After a thorough reading of the 344 documents, high-quality representative documents that are highly compatible with the research topic and in the top 160 cited were selected as the key reference contents for subsequent analysis (see Supplementary Materials for a complete list of literature).
2.2.3. Analysis of Keyword Co-Occurrence
2.2.4. Analysis of Nighttime Light Pollution in Typical Countries
- Rad. Sum was defined as the sum of the radiance values of each pixel cell in the study area, which represented the overall ALAN intensity and was also associated with the total economic volume of the country to some extent;
- Rad. Mean was set as the ratio of the total nighttime light (Rad. Sum) to the country’s territorial area, reflecting the illumination per unit area and indirectly revealing the density of nighttime economic activity in the country;
- Rad./1k Pop was expressed as the average ALAN per 1000 people in the target area, i.e., the ratio of total nighttime light (Rad. Sum) to the number of inhabitants (in thousands) in the country, which was an indicator that characterized the intensity of light radiation per capita and showed the degree of impact of ALAN on people’s lives within the territory.
3. Results
3.1. Statistical Analysis of Literature
3.1.1. Main Research Fields
3.1.2. Trend of Annual Publication Number
3.1.3. Countries with the Most Publications
3.2. Summary of Research Hotspots
3.2.1. Adverse Effects of Nighttime Light Pollution
- Health threat. The brightness of the environment is one of the most essential factors that synchronizes human circadian rhythms with the Earth’s light and dark cycles. A cross-border survey shows that two-thirds of the public believe that light pollution harms their health, and 84% think it affects their sleep quality at night [2,89,90]. Studies also have shown that the threshold of lighting intensity affecting human physiology is so low that only one lux may disrupt circadian rhythms [21,91,92]. Physiologically, when exposed to excessive blue light from outdoor lighting or indoor displays, the eyes may suffer from accidental retinal damage due to oxidative stress [22] and may even lead to reduced levels of melatonin, leading to daily rhythm phase shifts, which increases the incidence of some diseases, including but not limited to vision loss, metabolic disorders, diabetes, obesity, coronary heart disease, tumors, and even cancer [23,93,94,95,96,97,98,99,100]. Psychologically, the altered circadian rhythms triggered by the light environment may lead to alertness, rapid heart rate, sleep disturbances, mood disorders, and other derived problems such as depression, irritability, fatigue, and anxiety [25,26,101]. Newborns exposed to improper light often suffer from sleep and nutritional issues, possibly stimulating precocious puberty [15,102]. In addition, blinding lighting, such as dazzling glare from intense light sources, is one of the inducements resulting in traffic accidents. Excessively bright lighting will impair the vision of drivers or pedestrians, easily leading to visual disability and making the risk of traffic accidents much higher [27]. In conclusion, the threats of light pollution to the human body are multidimensional, and the resultant excess mortality is currently challenging to gauge accurately.
- Ecological damage. Nighttime light pollution affects the feeding, mating, migration, communication, competition, and predation habits of animals, including insects, birds, reptiles, amphibians, and even fish. For example, light pollution interferes with the navigational abilities of nocturnal insects such as moths, many of which congregate around light sources until exhaustion [30,103,104,105,106]. Nocturnal flowering plants that depend on these insects for pollination may face population declines due to the decrease in pollinators [31,107]. Not coincidentally, excessive ALAN on tall buildings and structures will attract migratory birds, disorienting them and diverting them from their migration routes, causing them to miss ideal timing and conditions for nesting or feeding [32,33,34,108]. Worse, millions of birds die each year from impacts with bright-looking buildings [32,33,109]. Moreover, studies have shown that long-term exposure to excessive amounts of ALAN can have a detrimental or disruptive effect on the immune function and reproductive rhythms of some mammals, such as rodents [110] and marsupials [111], and even cause habitat erosion [112,113]. Studies from Australia, Israel, and the United States have shown that ALAN affects the egg-laying behavior of mother turtles on the beach and causes disorientation of hatchlings, preventing their return to the sea [35,36,37,114]. The glare from ALAN can reach the wetland habitats where amphibians such as frogs survive, disrupting their nocturnal calls and reproductive behavior [38,39,115]. Migrating fish are also confused by ALAN, leading to excessive energy loss and spatial barriers to migration [40,116,117]. Light pollution likewise distorts the circadian rhythms of plants, affecting their germination, flowering, dormancy, defoliation, and other phenological behaviors, causing changes in community structure, which in turn affects the balance of the ecosystem [41,42,118,119]. In summary, excessive ALAN exposure causes indisputable negative effects on the physiology of both animals and plants and even threatens the service functions of entire ecosystems [120,121,122]. Accordingly, ecological damage has now become an attractive subfield in light pollution research.
- Energy waste. Although the advancement of lighting technologies such as LEDs has reduced the energy consumption of individual light equipment, excessive ALAN leads to a large amount of electricity consumption, thus creating a general situation of inefficient lighting, triggering energy waste and environmental pressure, which is contrary to the policy of energy saving and carbon reduction [43,123]. The heat emitted by various devices and the operation of power supply facilities also causes a temperature rise, exacerbating the “Urban Heat Island Effect” and global warming. According to IDA, the U.S. consumes 120 TWh (i.e., 100 million kWh) of electricity per year to illuminate streets and parking lots, which is comparable to the two-year electricity consumption of the entire New York City [44]. Due to an illogical lighting scheme, about 30% of outdoor lighting in America is wasted, along with an annual loss of USD 3.3 billion and 21 million tons of CO2 emissions, for which about 875 million trees must be planted per year to offset this detrimental consequence [124]. In brief, the energy wasted and the extra carbon emissions caused by light pollution are substantial, and the growth in carbon emissions further exacerbates the environmental burden, leading to a vicious circle.
- Other impairments. A significant portion of ALAN is emitted toward the sky above the city, substantially increasing the brightness of the natural sky background, limiting the ability of humans to capture stars with naked eyes [125]. The over-expansion of ALAN also affects astronomers’ studies of the stars with the help of observational instruments [20,126]. If there is an ALAN source within sight of the astronomical equipment, it will directly obscure the light from the target object, which greatly increases the exploration difficulty [127]. Another thing that most people may not be aware of is that today’s world is gradually losing the beautiful dark sky together with its cultural values [128]. In that case, lots of young people growing up in cities may never be able to enjoy the spectacular scenery of the Milky Way galaxy in the future as the pure dark night fades away [47].
3.2.2. Monitoring Technologies of Nighttime Light Pollution
- Monitoring based on field data.
- Monitoring based on remote-sensing data.
3.3. Evolution of ALAN in Typical Countries from 2013 to 2021
4. Discussion
4.1. A Joint Analysis of the Bibliometric Results and Night-Light Remote Sensing Data
4.2. Comparison and Prospects of Light Pollution Monitoring Technologies
4.3. Management Recommendations for Protecting the Nighttime Environment
4.3.1. Improving Legal Norms
4.3.2. Promoting Technology Innovation
4.3.3. Raising Awareness and Education
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, Y.M.; Ryu, S.H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of Artificial Light at Night on Human Health: A Literature Review of Observational and Experimental Studies Applied to Exposure Assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; de Miguel, A.S. Environmental Impacts of Artificial Light at Night. Annu. Rev. Environ. Resour. 2022, 47, 373–398. [Google Scholar] [CrossRef]
- Stone, T. The Value of Darkness: A Moral Framework for Urban Nighttime Lighting. Sci. Eng. Ethics 2018, 24, 607–628. [Google Scholar] [CrossRef] [PubMed]
- Zielinska-Dabkowska, K.M.; Bobkowska, K. Rethinking Sustainable Cities at Night: Paradigm Shifts in Urban Design and City Lighting. Sustainability 2022, 14, 6062. [Google Scholar] [CrossRef]
- Aubé, M. Physical Behaviour of Anthropogenic Light Propagation into the Nocturnal Environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140117. [Google Scholar] [CrossRef]
- Ściężor, T. Effect of Street Lighting on the Urban and Rural Night-Time Radiance and the Brightness of the Night Sky. Remote Sens. 2021, 13, 1654. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.; de Miguel, A.S.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2014, 7, 1–23. [Google Scholar] [CrossRef]
- Katabaro, J.M.; Yan, Y.; Hu, T. A Review of the Effects of Artificial Light at Night in Urban Areas on the Ecosystem Level and the Remedial Measures. Front. Public Health 2022, 10, 969945. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The New World Atlas of Artificial Night Sky Brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Cox, D.T.C.; de Miguel, A.S.; Dzurjak, S.A.; Bennie, J.; Gaston, K.J. National Scale Spatial Variation in Artificial Light at Night. Remote Sens. 2020, 12, 1591. [Google Scholar] [CrossRef]
- Barentine, J.C. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. J. Imaging 2019, 5, 54. [Google Scholar] [CrossRef]
- Wei, J.; Guojin, H.; Tengfei, L.; Wang, G.; Ranyu, Y.; Weili, J. Global Light Pollution Dynamics from 1992 to 2012 Based on Nighttime Light Remote Sensing. In Proceedings of the 5th International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2018—Proceedings, Xi’an, China, 18–20 June 2018. [Google Scholar]
- Kocifaj, M.; Solano-Lamphar, H.A.; Videen, G. Night-Sky Radiometry Can Revolutionize the Characterization of Light-Pollution Sources Globally. Proc. Natl. Acad. Sci. USA 2019, 116, 7712–7717. [Google Scholar] [CrossRef]
- Cauwels, P.; Pestalozzi, N.; Sornette, D. Dynamics and Spatial Distribution of Global Nighttime Lights. EPJ Data Sci. 2014, 3, 2. [Google Scholar] [CrossRef]
- Aulsebrook, A.E.; Jones, T.M.; Mulder, R.A.; Lesku, J.A. Impacts of Artificial Light at Night on Sleep: A Review and Prospectus. J. Exp. Zool. A Ecol. Integr. Physiol. 2018, 329, 409–418. [Google Scholar] [CrossRef]
- Kumar, P.; Rehman, S.; Sajjad, H.; Tripathy, B.R.; Rani, M.; Singh, S. Analyzing Trend in Artificial Light Pollution Pattern in India Using NTL Sensor’s Data. Urban Clim. 2019, 27, 272–283. [Google Scholar] [CrossRef]
- Bennie, J.; Duffy, J.P.; Davies, T.W.; Correa-Cano, M.E.; Gaston, K.J. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef]
- Ye, Y.; Xue, X.; Huang, L.; Gan, M.; Tong, C.; Wang, K.; Deng, J. A New Perspective to Map the Supply and Demand of Artificial Night Light Based on Loujia1-01 and Urban Big Data. J. Clean. Prod. 2020, 276, 123244. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, J.; Yao, S.; Zhang, M. Research Status of Light Pollution Caused by Artificial Lighting at Night. China Illum. Eng. J. 2021, 32, 94–99. (In Chinese) [Google Scholar]
- Joseph, J.H.; Kaufman, Y.J.; Mekler, Y. Urban Light Pollution: The Effect of Atmospheric Aerosols on Astronomical Observations at Night. Appl. Opt. 1991, 30, 3047–3058. [Google Scholar] [CrossRef]
- Argys, L.M.; Averett, S.L.; Yang, M. Light Pollution, Sleep Deprivation, and Infant Health at Birth. South. Econ. J. 2021, 87, 849–888. [Google Scholar] [CrossRef]
- Human Health. Available online: https://www.darksky.org/light-pollution/human-health/ (accessed on 2 March 2023).
- Blask, D.E. Melatonin, Sleep Disturbance and Cancer Risk. Sleep Med. Rev. 2009, 13, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, W.; Zhang, Y.; Chen, H.; Bai, C.; Yang, Z.; Lorenz, T.; Liu, K.; Shirai, K.; Song, J.; et al. Association between Outdoor Artificial Light at Night and Sleep Duration among Older Adults in China: A Cross-Sectional Study. Environ. Res. 2022, 212, 113343. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Smits, M.; Spence, W.; Srinivasan, V.; Cardinali, D.P.; Lowe, A.D.; Kayumov, L. Dim Light Melatonin Onset (DLMO): A Tool for the Analysis of Circadian Phase in Human Sleep and Chronobiological Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bedrosian, T.A.; Nelson, R.J. Influence of the Modern Light Environment on Mood. Mol. Psychiatry 2013, 18, 751–757. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, J.T. Effects of Security Lighting Lamps on Discomfort Glare to Indoor Occupants. KIEAE J. 2015, 15, 21–28. [Google Scholar] [CrossRef]
- Light Pollution Effects on Wildlife and Ecosystems. Available online: https://www.darksky.org/light-pollution/wildlife/ (accessed on 2 March 2023).
- Charlesworth, S.M.; Booth, C.A. Urban Pollution: Science and Management; John Wiley & Sons, Ltd.: Chichester, UK, 2018. [Google Scholar]
- Owens, A.C.S.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light Pollution Is a Driver of Insect Declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial Light at Night as a New Threat to Pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Horton, K.G.; Nilsson, C.; van Doren, B.M.; la Sorte, F.A.; Dokter, A.M.; Farnsworth, A. Bright Lights in the Big Cities: Migratory Birds’ Exposure to Artificial Light. Front. Ecol. Env. 2019, 17, 209–214. [Google Scholar] [CrossRef]
- Wang, J.S.; Tuanmu, M.N.; Hung, C.M. Effects of Artificial Light at Night on the Nest-Site Selection, Reproductive Success and Behavior of a Synanthropic Bird. Environ. Pollut. 2021, 288, 117805. [Google Scholar] [CrossRef]
- Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M. Mapping the Fine-Scale Spatial Pattern of Artificial Light Pollution at Night in Urban Environments from the Perspective of Bird Habitats. Sci. Total Environ. 2020, 702, 134725. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Moloney, J.; Hamann, M. Coastal Light Pollution and Marine Turtles: Assessing the Magnitude of the Problem. Endanger. Species Res. 2013, 19, 85–98. [Google Scholar] [CrossRef]
- Brei, M.; Pérez-Barahona, A.; Strobl, E. Environmental Pollution and Biodiversity: Light Pollution and Sea Turtles in the Caribbean. J. Environ. Econ. Manag. 2016, 77, 95–116. [Google Scholar] [CrossRef]
- Tuxbury, S.M.; Salmon, M. Competitive Interactions between Artificial Lighting and Natural Cues during Seafinding by Hatchling Marine Turtles. Biol. Conserv. 2005, 121, 311–316. [Google Scholar] [CrossRef]
- McMahon, T.A.; Rohr, J.R.; Bernal, X.E. Light and Noise Pollution Interact to Disrupt Interspecific Interactions. Ecology 2017, 98, 1290–1299. [Google Scholar] [CrossRef]
- Luo, B.; Xu, R.; Li, Y.; Zhou, W.; Wang, W.; Gao, H.; Wang, Z.; Deng, Y.; Liu, Y.; Feng, J. Artificial Light Reduces Foraging Opportunities in Wild Least Horseshoe Bats. Environ. Pollut. 2021, 288, 117765. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The Nature, Extent, and Ecological Implications of Marine Light Pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef]
- Singhal, R.K.; Kumar, M.; Bose, B. Eco-Physiological Responses of Artificial Night Light Pollution in Plants. Russ. J. Plant Physiol. 2019, 66, 190–202. [Google Scholar] [CrossRef]
- Day, J.; Baker, J.; Schofield, H.; Mathews, F.; Gaston, K.J. Part-Night Lighting: Implications for Bat Conservation. Anim. Conserv. 2015, 18, 512–516. [Google Scholar] [CrossRef]
- Light Pollution Wastes Energy and Money. Available online: https://www.darksky.org/light-pollution/energy-waste/ (accessed on 2 March 2023).
- Isobe, S.; Hamamura, S. Light Pollution and Its Energy Loss. Astrophys. Space Sci. 2000, 273, 289–294. [Google Scholar] [CrossRef]
- Leccese, F.; Tuoni, G. On the Environmental Pollution and Energy Waste Due to Urban Lighting. In Proceedings of the Advances in Ecological Sciences; WIT Press: Boston, MA, USA, 2003; Volume 18. [Google Scholar]
- Night Sky Heritage. Available online: https://www.darksky.org/light-pollution/night-sky-heritage/ (accessed on 2 March 2023).
- Gallaway, T. On Light Pollution, Passive Pleasures, and the Instrumental Value of Beauty. J. Econ. Issues 2010, 44, 71–88. [Google Scholar] [CrossRef]
- Davies, T.W.; Smyth, T. Why Artificial Light at Night Should Be a Focus for Global Change Research in the 21st Century. Glob. Chang. Biol. 2018, 24, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Rovira, C.; Codina, L.; Guerrero-Solé, F.; Lopezosa, C. Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus. Future Internet 2019, 11, 202. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Gavel, Y.; Iselid, L. Web of Science and Scopus: A Journal Title Overlap Study. Online Inf. Rev. 2008, 32, 8–21. [Google Scholar] [CrossRef]
- Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (Wos) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS Night-Time Lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Justice, C.O.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and Cryosphere Products from Suomi NPP VIIRS: Overview and Status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef]
- Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Oudrari, H.; Sun, J.; Wang, Z.; et al. VIIRS On-Orbit Calibration Methodology and Performance. J. Geophys. Res. 2014, 119, 5065–5078. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T.; et al. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying Uncertainties in Nighttime Light Retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band Data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Ajmar, A.; Arco, E.; Eusebio, A. The VIIRS Nighttime Lights Average Annual Global Dataset: Exploratory and Brisk Trend Analysis on Three Different Domains. In Proceedings of the MELECON 2022—IEEE Mediterranean Electrotechnical Conference, Proceedings, Palermo, Italy, 14–16 June 2022. [Google Scholar]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble Nighttime Lights Product Suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Wang, Z.; Shrestha, R.M.; Roman, M.O.; Kalb, V.L. NASA’s Black Marble Multiangle Nighttime Lights Temporal Composites. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3176616. [Google Scholar] [CrossRef]
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 2 March 2023).
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual Version 1.6.16; Univeristeit Leiden: Leiden, The Netherlands, 2020. [Google Scholar]
- VOSviewer Welcome to VOSviewer. Centre for Science and Technology Studies; Leiden University: Leiden, The Netherlands, 2021. [Google Scholar]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Clarivate KeyWords Plus Generation, Creation, and Changes. Available online: https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-changes?language=en_US (accessed on 30 March 2023).
- Tripathi, M.; Kumar, S.; Sonker, S.K.; Babbar, P. Occurrence of Author Keywords and Keywords plus in Social Sciences and Humanities Research: A Preliminary Study. COLLNET J. Scientometr. Inf. Manag. 2018, 12, 215–232. [Google Scholar] [CrossRef]
- Pech, G.; Delgado, C.; Sorella, S.P. Classifying Papers into Subfields Using Abstracts, Titles, Keywords and KeyWords Plus through Pattern Detection and Optimization Procedures: An Application in Physics. J. Assoc. Inf. Sci. Technol. 2022, 73, 1513–1528. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing Keywords plus of WOS and Author Keywords: A Case Study of Patient Adherence Research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.H.; Ho, Y.S. Trends in Research on Global Climate Change: A Science Citation Index Expanded-Based Analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, J.; Ho, Y.S. Assessment of World Aerosol Research Trends by Bibliometric Analysis. Scientometrics 2008, 77, 113–130. [Google Scholar] [CrossRef]
- Huang, C.P. Bibliometric Analysis of Obstructive Sleep Apnea Research Trends. J. Chin. Med. Assoc. 2009, 72, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Kirton, J.J. G20 Governance for a Globalized World; Routledge: London, UK, 2013. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Alhaji, U.U.; Yusuf, A.S.; Edet, C.O.; Oche, C.O.; Agbo, E.P. Trend Analysis of Temperature in Gombe State Using Mann Kendall Trend Test. J. Sci. Res. Rep. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS Data Are Superior to DMSP for Mapping Nighttime Lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- IEA—The Global Energy Authority. Available online: https://www.iea.org/ (accessed on 2 March 2023).
- World Bank Open Data | Data. Available online: https://data.worldbank.org.cn/ (accessed on 2 March 2023).
- Schuler, L.D.; Schatz, R.; Berweger, C.D. From Global Radiance to an Increased Local Political Awareness of Light Pollution. Environ. Sci. Policy 2018, 89, 142–152. [Google Scholar] [CrossRef]
- Bará, S.; Falchi, F.; Lima, R.C.; Pawley, M. Keeping Light Pollution at Bay: A Red-Lines, Target Values, Top-down Approach. Environ. Chall. 2021, 5, 100212. [Google Scholar] [CrossRef]
- Han, G.; Zhou, T.; Sun, Y.; Zhu, S. The Relationship between Night-Time Light and Socioeconomic Factors in China and India. PLoS ONE 2022, 17, e0262503. [Google Scholar] [CrossRef]
- Patel, P.C. Light Pollution and Insufficient Sleep: Evidence from the United States. Am. J. Hum. Biol. 2019, 31, e23300. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Tao, F.; Sun, Y. Association between Exposure to Light at Night (LAN) and Sleep Problems: A Systematic Review and Meta-Analysis of Observational Studies. Sci. Total Environ. 2023, 857, 159303. [Google Scholar] [CrossRef]
- Paksarian, D.; Rudolph, K.E.; Stapp, E.K.; Dunster, G.P.; He, J.; Mennitt, D.; Hattar, S.; Casey, J.A.; James, P.; Merikangas, K.R. Association of Outdoor Artificial Light at Night with Mental Disorders and Sleep Patterns among US Adolescents. JAMA Psychiatry 2020, 77, 1266–1275. [Google Scholar] [CrossRef]
- Ouyang, J.Q.; Davies, S.; Dominoni, D. Hormonally Mediated Effects of Artificial Light at Night on Behavior and Fitness: Linking Endocrine Mechanisms with Function. J. Exp. Biol. 2018, 221, jeb156893. [Google Scholar] [CrossRef]
- Walker, W.H.; Bumgarner, J.R.; Becker-Krail, D.D.; May, L.E.; Liu, J.A.; Nelson, R.J. Light at Night Disrupts Biological Clocks, Calendars, and Immune Function. Semin. Immunopathol. 2022, 44, 165–173. [Google Scholar] [CrossRef]
- Dominoni, D.M.; Borniger, J.C.; Nelson, R.J. Light at Night, Clocks and Health: From Humans to Wild Organisms. Biol. Lett. 2016, 12, 20160015. [Google Scholar] [CrossRef]
- Walker, W.H.; Bumgarner, J.R.; Walton, J.C.; Liu, J.A.; Meléndez-Fernández, O.H.; Nelson, R.J.; Devries, A.C. Light Pollution and Cancer. Int. J. Mol. Sci. 2020, 21, 9360. [Google Scholar] [CrossRef]
- Dufier, J.L.; Touitou, Y. Light Pollution and Public Health. Bull. Acad. Natl. Med. 2021, 205, 867–878. [Google Scholar] [CrossRef]
- Fonken, L.K.; Aubrecht, T.G.; Meléndez-Fernández, O.H.; Weil, Z.M.; Nelson, R.J. Dim Light at Night Disrupts Molecular Circadian Rhythms and Increases Body Weight. J. Biol. Rhythm. 2013, 28, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Tossa, P.; Souques, M. Effects of Artificial Light at Night and Light Pollution on Human Circadian Rhythms. Environ. Risques Sante 2019, 18, 477–487. [Google Scholar] [CrossRef]
- Zubidat, A.E.; Haim, A. Artificial Light-At-Night-a Novel Lifestyle Risk Factor for Metabolic Disorder and Cancer Morbidity. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.M.A.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; et al. Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef]
- Tancredi, S.; Urbano, T.; Vinceti, M.; Filippini, T. Artificial Light at Night and Risk of Mental Disorders: A Systematic Review. Sci. Total Environ. 2022, 833, 155185. [Google Scholar] [CrossRef]
- Cho, J.R.; Joo, E.Y.; Koo, D.L.; Hong, S.B. Let There Be No Light: The Effect of Bedside Light on Sleep Quality and Background Electroencephalographic Rhythms. Sleep Med. 2013, 14, 1422–1425. [Google Scholar] [CrossRef]
- van Geffen, K.G.; van Eck, E.; de Boer, R.A.; van Grunsven, R.H.A.; Salis, L.; Berendse, F.; Veenendaal, E.M. Artificial Light at Night Inhibits Mating in a Geometrid Moth. Insect Conserv. Divers. 2015, 8, 282–287. [Google Scholar] [CrossRef]
- Owens, A.C.S.; Lewis, S.M. The Impact of Artificial Light at Night on Nocturnal Insects: A Review and Synthesis. Ecol. Evol. 2018, 8, 11337–11358. [Google Scholar] [CrossRef]
- Grubisic, M.; van Grunsven, R.H.A.; Kyba, C.C.M.; Manfrin, A.; Hölker, F. Insect Declines and Agroecosystems: Does Light Pollution Matter? Ann. Appl. Biol. 2018, 173, 180–189. [Google Scholar] [CrossRef]
- Bolliger, J.; Hennet, T.; Wermelinger, B.; Bösch, R.; Pazur, R.; Blum, S.; Haller, J.; Obrist, M.K. Effects of Traffic-Regulated Street Lighting on Nocturnal Insect Abundance and Bat Activity. Basic Appl. Ecol. 2020, 47, 44–56. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. Effects of Street Lighting Technologies on the Success and Quality of Pollination in a Nocturnally Pollinated Plant. Ecosphere 2019, 10, e02550. [Google Scholar] [CrossRef]
- Ouyang, J.Q.; de Jong, M.; van Grunsven, R.H.A.; Matson, K.D.; Haussmann, M.F.; Meerlo, P.; Visser, M.E.; Spoelstra, K. Restless Roosts: Light Pollution Affects Behavior, Sleep, and Physiology in a Free-Living Songbird. Glob. Chang. Biol. 2017, 23, 4987–4994. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Fink, D.; Buler, J.J.; Farnsworth, A.; Cabrera-Cruz, S.A. Seasonal Associations with Urban Light Pollution for Nocturnally Migrating Bird Populations. Glob. Chang. Biol 2017, 23, 4609–4619. [Google Scholar] [CrossRef]
- Bedrosian, T.A.; Fonken, L.K.; Walton, J.C.; Nelson, R.J. Chronic Exposure to Dim Light at Night Suppresses Immune Responses in Siberian Hamsters. Biol. Lett. 2011, 7, 468–471. [Google Scholar] [CrossRef]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial Light at Night Desynchronizes Strictly Seasonal Reproduction in a Wild Mammal. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151745. [Google Scholar] [CrossRef]
- Duffy, J.P.; Bennie, J.; Durán, A.P.; Gaston, K.J. Mammalian Ranges Are Experiencing Erosion of Natural Darkness. Sci. Rep. 2015, 5, 12042. [Google Scholar] [CrossRef]
- Guetté, A.; Godet, L.; Juigner, M.; Robin, M. Worldwide Increase in Artificial Light At Night around Protected Areas and within Biodiversity Hotspots. Biol. Conserv. 2018, 223, 97–103. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, H.; Huang, Y. Association between Nighttime Artificial Light Pollution and Sea Turtle Nest Density along Florida Coast: A Geospatial Study Using VIIRS Remote Sensing Data. Environ. Pollut. 2018, 239, 30–42. [Google Scholar] [CrossRef]
- Dananay, K.L.; Benard, M.F. Artificial Light at Night Decreases Metamorphic Duration and Juvenile Growth in a Widespread Amphibian. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180367. [Google Scholar] [CrossRef]
- Bassi, A.; Love, O.P.; Cooke, S.J.; Warriner, T.R.; Harris, C.M.; Madliger, C.L. Effects of Artificial Light at Night on Fishes: A Synthesis with Future Research Priorities. Fish Fish. 2022, 23, 631–647. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Franke, S.; Preuer, T.; Kloas, W. Spotlight on Fish: Light Pollution Affects Circadian Rhythms of European Perch but Does Not Cause Stress. Sci. Total Environ. 2015, 511, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological Effects of Artificial Light at Night on Wild Plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Y.; Román, M.O.; Stokes, E.C.; Wang, Z.; Asrar, G.R.; Mao, J.; Richardson, A.D.; Gu, L.; Wang, Y. Artificial Light at Night: An Underappreciated Effect on Phenology of Deciduous Woody Plants. PNAS Nexus 2022, 1, pgac046. [Google Scholar] [CrossRef]
- Abraham, H.; Scantlebury, D.M.; Zubidat, A.E. The Loss of Ecosystem-Services Emerging from Artificial Light at Night. Chronobiol. Int. 2019, 36, 296–298. [Google Scholar] [CrossRef]
- Halfwerk, W.; Jerem, P. A Systematic Review of Research Investigating the Combined Ecological Impact of Anthropogenic Noise and Artificial Light at Night. Front. Ecol. Evol. 2021, 9, 765950. [Google Scholar] [CrossRef]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci. 2020, 14, 1183. [Google Scholar] [CrossRef]
- de Miguel, A.S.; Bennie, J.; Rosenfeld, E.; Dzurjak, S.; Gaston, K.J. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution. Remote Sens. 2021, 13, 3311. [Google Scholar] [CrossRef]
- Faid, M.S.; Shariff, N.N.M.; Hamidi, Z.S. The Risk of Light Pollution on Sustainability. ASM Sci. J. 2019, 12, 134–142. [Google Scholar]
- Bará, S. Naked-Eye Astronomy: Optics of the Starry Night Skies. In Proceedings of the 12th Education and Training in Optics and Photonics Conference, Porto, Portugal, 23–26 July 2013; Volume 9289. [Google Scholar]
- Walker, M.F. Light Pollution in California and Arizona. Publ. Astron. Soc. Pac. 1973, 85, 508. [Google Scholar] [CrossRef]
- Riegel, K.W. Light Pollution: Outdoor Lighting Is a Growing Threat to Astronomy. Science 1973, 179, 179. [Google Scholar] [CrossRef]
- Wainscoat, R.J. The Magnificent Night Sky—Why It Must Be Protected from Light Pollution. Proc. Int. Astron. Union 2009, 5, 442–448. [Google Scholar] [CrossRef]
- Bará, S.; Tapia, C.E.; Zamorano, J. Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors. Sensors 2019, 19, 1336. [Google Scholar] [CrossRef]
- Bertolo, A.; Binotto, R.; Ortolani, S.; Sapienza, S. Measurements of Night Sky Brightness in the Veneto Region of Italy: Sky Quality Meter Network Results and Differential Photometry by Digital Single Lens Reflex. J. Imaging 2019, 5, 56. [Google Scholar] [CrossRef]
- Jechow, A.; Kyba, C.C.M.; Hölker, F. Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef]
- Fiorentin, P.; Bettanini, C.; Bogoni, D.; Aboudan, A.; Colombatti, G. Calibration of an Imaging System for Monitoring Light Pollution from Small UAVs. In Proceedings of the 2019 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2019—Proceedings, Turin, Italy, 19–21 June 2019. [Google Scholar]
- Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring Hourly Night-Time Light by an Unmanned Aerial Vehicle and Its Implications to Satellite Remote Sensing. Remote Sens. Environ. 2020, 247, 111942. [Google Scholar] [CrossRef]
- Hao, Q. Research on Digital Observation and Spatial Model Construction of Multi-Dimensional Urban Nighttime Light Environment; Dalian University of Technology: Dalian, China, 2019. (In Chinese) [Google Scholar]
- Kolláth, Z. Measuring and Modelling Light Pollution at the Zselic Starry Sky Park. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 218. [Google Scholar]
- Falchi, F. Campaign of Sky Brightness and Extinction Measurements Using a Portable CCD Camera. Mon. Not. R Astron. Soc. 2011, 412, 33–48. [Google Scholar] [CrossRef]
- Jin, X.; Li, Y.; Zhang, J.; Zheng, J.; Liu, H. An Approach to Evaluating Light Pollution in Residential Zones: A Case Study of Beijing. Sustainability 2017, 9, 652. [Google Scholar] [CrossRef]
- Fiorentin, P.; Bettanini, C.; Bogoni, D. Calibration of an Autonomous Instrument for Monitoring Light Pollution from Drones. Sensors 2019, 19, 5091. [Google Scholar] [CrossRef]
- Massetti, L.; Paterni, M.; Merlino, S. Monitoring Light Pollution with an Unmanned Aerial Vehicle: A Case Study Comparing RGB Images and Night Ground Brightness. Remote Sens. 2022, 14, 2052. [Google Scholar] [CrossRef]
- Sky Quality Meter-L. Available online: http://www.unihedron.com/projects/sqm-l/ (accessed on 2 March 2023).
- Kocifaj, M. Light-Pollution Model for Cloudy and Cloudless Night Skies with Ground-Based Light Sources. Appl. Opt. 2007, 46, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F. Aerial Survey and Spatial Analysis of Sources of Light Pollution in Berlin, Germany. Remote Sens. Environ. 2012, 126, 39–50. [Google Scholar] [CrossRef]
- Ściȩzor, T. A New Astronomical Method for Determining the Brightness of the Night Sky and Its Application to Study Long-Term Changes in the Level of Light Pollution. Mon. Not. R Astron. Soc. 2013, 435, 303–310. [Google Scholar] [CrossRef]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of Artificial Lighting Sources on Light Pollution in Hong Kong Measured through a Night Sky Brightness Monitoring Network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Puschnig, J.; Schwope, A.; Posch, T.; Schwarz, R. The Night Sky Brightness at Potsdam-Babelsberg Including Overcast and Moonlit Conditions. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 76–81. [Google Scholar] [CrossRef]
- Kolláth, Z.; Száz, D.; Kolláth, K. Measurements and Modelling of Aritificial Sky Brightness: Combining Remote Sensing from Satellites and Ground-Based Observations. Remote Sens. 2021, 13, 3653. [Google Scholar] [CrossRef]
- Barentine, J.C.; Walczak, K.; Gyuk, G.; Tarr, C.; Longcore, T. A Case for a New Satellite Mission for Remote Sensing of Night Lights. Remote Sens. 2021, 13, 2294. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D.; Baugh, K.E. The Artificial Night Sky Brightness Mapped from DMSP Satellite Operational Linescan System Measurements. Mon. Not. R Astron. Soc. 2000, 318, 641–657. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting Trends in Light Pollution across Europe Based on Satellite Observed Night Time Lights. Sci. Rep. 2015, 4, 3789. [Google Scholar] [CrossRef]
- Prastyo, H.A.; Herdiwijaya, D. Spatial Analysis of Light Pollution Dynamics around Bosscha Observatory and Timau National Observatory Based on VIIRS-DNB Satellite Images. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1231. [Google Scholar]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Jiang, F.; Ye, Y.; He, Z.; Cai, J.; Shen, A.; Peng, R.; Chen, B.; Tong, C.; Deng, J. Revealing the Spatiotemporal Patterns of Anthropogenic Light at Night within Ecological Conservation Redline Using Series Satellite Nighttime Imageries (2000–2020). Remote Sens. 2022, 14, 3461. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q. Remote Sensing of Night Lights-beyond DMSP. Remote Sens. 2019, 11, 1472. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Leng, W.; Long, T.; Wang, G.; Liu, H.; Peng, Y.; Yin, R.; Guo, H. Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2018, 7, 243. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. The First World Atlas of the Artificial Night Sky Brightness. Mon. Not. R Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Zamorano, J.; Gómez Castaño, J.; Pascual, S. Evolution of the Energy Consumed by Street Lighting in Spain Estimated with DMSP-OLS Data. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 109–117. [Google Scholar] [CrossRef]
- Leng, W.; He, G.; Jiang, W. Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijingtianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data. Int. J. Environ. Res. Public Health 2019, 16, 1950. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. Naked-Eye Star Visibility and Limiting Magnitude Mapped from DMSP-OLS Satellite Data. Mon. Not. R Astron. Soc. 2001, 323, 34–46. [Google Scholar] [CrossRef]
- Chalkias, C.; Petrakis, M.; Psiloglou, B.; Lianou, M. Modelling of Light Pollution in Suburban Areas Using Remotely Sensed Imagery and GIS. J. Environ. Manag. 2006, 79, 57–63. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. The Propagation of Light Pollution in the Atmosphere. Mon. Not. R Astron. Soc. 2012, 427, 3337–3357. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Wang, C.; Ni, Y.; Ma, R. Assessing Light Pollution in China Based on Nighttime Light Imagery. Remote Sens. 2017, 9, 135. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a New Cross-Sensor Calibration Model for DMSP-OLS and Suomi-NPP VIIRS Night-Light Imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Gyenizse, P.; Soltész, E.; Lóczy, D.; Kovács, J.; Nagyváradi, L.; Elekes, T.; Gyenizse-Nagy, S.B.; Németh, G.; Halmai, Á. Light Pollution Mapping in Pécs City with the Help of SQM-L and VIIRS DNB. The Effect of Public Luminaire Replacements on the Sky Background of the Urban Sky. Geogr. Pannonica 2022, 26, 334–344. [Google Scholar] [CrossRef]
- Levin, N. The Impact of Seasonal Changes on Observed Nighttime Brightness from 2014 to 2015 Monthly VIIRS DNB Composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Nurbandi, W.; Yusuf, F.R.; Prasetya, R.; Afrizal, M.D. Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to Identify and Analyze Light Pollution. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 47. [Google Scholar]
- Cinzano, P.; Falchi, F. Quantifying Light Pollution. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 13–20. [Google Scholar] [CrossRef]
- Yerli, S.K.; Aksaker, N.; Bayazit, M.; Kurt, Z.; Aktay, A.; Erdoğan, M.A. The Temporal Analysis of Light Pollution in Turkey Using VIIRS Data. Astrophys. Space Sci. 2021, 366, 34. [Google Scholar] [CrossRef]
- Bagheri, S.; Karimzadeh, S.; Feizizadeh, B. Investigation and Modeling of Physical Development of Urban Areas and Its Effects on Light Pollution Using Night Light Data. Int. J. Eng. Geosci. 2022, 8, 98–110. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Kuester, T.; De Miguel, A.S.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially Lit Surface of Earth at Night Increasing in Radiance and Extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef]
- Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting. Sustainability 2019, 11, 6160. [Google Scholar] [CrossRef]
- Barentine, J.C.; Walker, C.E.; Kocifaj, M.; Kundracik, F.; Juan, A.; Kanemoto, J.; Monrad, C.K. Skyglow Changes over Tucson, Arizona, Resulting from a Municipal LED Street Lighting Conversion. J. Quant. Spectrosc. Radiat. Transf. 2018, 212, 10–23. [Google Scholar] [CrossRef]
- Zhao, F.; Chu, C.; Liu, R.; Peng, Z.; Du, Q.; Xie, Z.; Sun, Z.; Zeng, H.; Xia, J. Assessing Light Pollution Using POI and Luojia1-01 Night-Time Imagery from a Quantitative Perspective at City Scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7544–7556. [Google Scholar] [CrossRef]
- Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. High Sensitive Night-Time Light Imaging Camera Design and in-Orbit Test of Luojia1-01 Satellite. Sensors 2019, 19, 797. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Cui, W.; Wu, Y.; Wang, J.; Su, B.; Ji, M. Monitoring of Nighttime Light Pollution in Nanjing City Based on Luojia 1-01 Remote Sensing Data. Remote Sens. Nat. Resour. 2022, 34, 289–295. [Google Scholar]
- Li, J.; Xu, Y.; Cui, W.; Ji, M.; Su, B.; Wu, Y.; Wang, J. Investigation of Nighttime Light Pollution in Nanjing, China by Mapping Illuminance from Field Observations and Luojia 1-01 Imagery. Sustainability 2020, 12, 681. [Google Scholar] [CrossRef]
- Rybnikova, N.; de Miguel, A.S.; Rybnikov, S.; Brook, A. A New Approach to Identify On-Ground Lamp Types from Night-Time Iss Images. Remote Sens. 2021, 13, 4413. [Google Scholar] [CrossRef]
- Centrogeo, H.L. The Remote Sensing of Nocturnal Images from the ISS Can Contribute to Environmental and Socioeconomic Studies. In Proceedings of the 2022 IEEE Mexican International Conference on Computer Science, ENC 2022—Proceedings, Veracruz, Mexicom, 24–26 August 2022. [Google Scholar]
- Wei, S.; Jiao, W.; Long, T.; Liu, H.; Bi, L.; Jiang, W.; Portnov, B.A.; Liu, M. A Relative Radiation Normalization Method of Iss Nighttime Light Images Based on Pseudo Invariant Features. Remote Sens. 2020, 12, 3349. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Kyba, C.C.M.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour Remote Sensing of the Impact of Artificial Light at Night (I): The Potential of the International Space Station and Other DSLR-Based Platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Zielińska-Dabkowska, K.M.; Xavia, K.; Bobkowska, K. Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives. Sustainability 2020, 12, 4997. [Google Scholar] [CrossRef]
- Gallaway, T.; Olsen, R.N.; Mitchell, D.M. The Economics of Global Light Pollution. Ecol. Econ. 2010, 69, 658–665. [Google Scholar] [CrossRef]
- Guanglei, W.; Ngarambe, J.; Kim, G. A Comparative Study on Current Outdoor Lighting Policies in China and Korea: A Step toward a Sustainable Nighttime Environment. Sustainability 2019, 11, 3989. [Google Scholar] [CrossRef]
- Lapostolle, D.; Challéat, S. Making Darkness a Place-Based Resource: How the Fight against Light Pollution Reconfigures Rural Areas in France. Ann. Am. Assoc. Geogr. 2021, 111, 196–215. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Bouroussis, C.A. Ecological Impact of Artificial Light at Night: Effective Strategies and Measures to Deal with Protected Species and Habitats. Sustainability 2021, 13, 5991. [Google Scholar] [CrossRef]
- Zitelli, V.; di Sora, M.; Ferrini, F. Local and National Regulations on Light Pollution in Italy. Symp.-Int. Astron. Union 2001, 196, 111–116. [Google Scholar] [CrossRef]
- Li, D.; Li, X. An Overview on Data Mining of Nighttime Light Remote Sensing. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2015, 44, 591. [Google Scholar]
- Zheng, Y.; He, Y.; Wang, Y. Application Review and Prospect of Nighttime Light Remote Sensing Data. Remote Sens. Inf. 2020, 35, 1–14. [Google Scholar]
- Guk, E.; Levin, N. Analyzing Spatial Variability in Night-Time Lights Using a High Spatial Resolution Color Jilin-1 Image—Jerusalem as a Case Study. ISPRS J. Photogramm. Remote Sens. 2020, 163, 121–136. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying Urban Light Pollution—A Comparison between Field Measurements and EROS-B Imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Han, P.; Huang, J.; Li, R.; Wang, L.; Hu, Y.; Wang, J.; Huang, W. Monitoring Trends in Light Pollution in China Based on Nighttime Satellite Imagery. Remote Sens. 2014, 6, 5541–5558. [Google Scholar] [CrossRef]
- Barducci, A.; Marcoionni, P.; Pippi, I.; Poggesi, M. Effects of Light Pollution Revealed during a Nocturnal Aerial Survey by Two Hyperspectral Imagers. Appl. Opt. 2003, 42, 4349–4361. [Google Scholar] [CrossRef]
- Azman, M.I.; Dalimin, M.N.; Mohamed, M.; Abu Bakar, M.F. A Brief Overview on Light Pollution. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 269. [Google Scholar]
- Nechaev, D.; Zhizhin, M.; Poyda, A.; Ghosh, T.; Hsu, F.C.; Elvidge, C. Cross-Sensor Nighttime Lights Image Calibration for Dmsp/Ols and Snpp/Viirs with Residual u-Net. Remote Sens. 2021, 13, 5026. [Google Scholar] [CrossRef]
- Butt, M. Estimation of Light Pollution Using Satellite Remote Sensing and Geographic Information System Techniques. GIsci Remote Sens. 2012, 49, 621. [Google Scholar] [CrossRef]
- Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.C.; Henckel, D.; Hänel, A.; Kappeler, P.M.; Völker, S.; Schwope, A.; et al. The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecol. Soc. 2010, 15, 13. [Google Scholar] [CrossRef]
- Novák, T.; Sokanský, K.; Závada, P. Measurement of Obtrusive Light in Terms of Czech Republic. Prz. Elektrotechniczny 2011, 87, 32–34. [Google Scholar]
- Schulte-Römer, N.; Meier, J.; Dannemann, E.; Söding, M. Lighting Professionals versus Light Pollution Experts? Investigating Views on an Emerging Environmental Concern. Sustainability 2019, 11, 1696. [Google Scholar] [CrossRef]
- Schroer, S.; Hölker, F. Light Pollution Reduction. In Handbook of Advanced Lighting Technology; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Schroer, S.; Huggins, B.J.; Azam, C.; Hölker, F. Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. Sustainability 2020, 12, 2551. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the Impact of Light Pollution on Human Health, Environment and Stellar Visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef]
- Garces-Jimenez, A.; Castillo-Sequera, J.L.; del Corte-Valiente, A.; Gomez-Pulido, J.M.; Gonzalez-Seco, E.P.D. Analysis of Artificial Neural Network Architectures for Modeling Smart Lighting Systems for Energy Savings. IEEE Access 2019, 7, 119881. [Google Scholar] [CrossRef]
- Miki, M.; Hiroyasu, T.; Imazato, K. Proposal for an Intelligent Lighting System, and Verification of Control Method Effectiveness. In Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004. [Google Scholar]
- Pies, M.; Hajovsky, R. Monitoring Environmental Variables through Intelligent Lamps. In Proceedings of the Lecture Notes in Electrical Engineering; Springer: Singapore, 2018; Volume 425. [Google Scholar]
- He, J.; Zhu, Z.; Wang, F.; Li, J. Illumination Control of Intelligent Street Lamps Based on Fuzzy Decision. In Proceedings of the Proceedings—2019 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2019, Changsha, China, 12–13 January 2019. [Google Scholar]
- Lyytimäki, J. Avoiding Overly Bright Future: The Systems Intelligence Perspective on the Management of Light Pollution. Environ. Dev. 2015, 16, 4–14. [Google Scholar] [CrossRef]
- Percy, J.R. Light Pollution: Education of Students, Teachers and the Public. Symp.-Int. Astron. Union 2001, 196, 353–358. [Google Scholar] [CrossRef]
Items | Explanation |
---|---|
Used ub-databases | All sub-databases contained in WOS, which includes Web of Science Core Collection (with SCIE, SSCI, A&HCI, and ESCI), BIOSIS Citation Index (BCI), Chinese Science Citation Database (CSCD), Derwent Innovations Index (DII), the food science resource (FSTA), Korean Journal Database (KCI), MEDLINE, SciELO Citation Index, and Zoological Record |
Search keywords | “night”, “nighttime”, “night-time”, “light pollution”, “ALAN”, “artificial light at night”, “NTL”, “nighttime light”, “satellite”, “remote sensing” |
Time span | 1 January 2000–31 December 2022 |
Search field tag | Topic (including Title, Abstract, Author Keywords 1, and Keywords Plus 2) |
Search formula | TS = ((“night” OR “nighttime” OR “night-time”) AND “light pollution”* AND (“ALAN” OR “artificial light at night”* OR “NTL” OR “nighttime light”* OR “satellite” OR “remote sensing”*)) |
Inclusion criteria | The type of literature should be constrained to articles, review articles, meeting papers, and books, and the theme should focus on aspects related to nighttime light pollution |
Exclusion criteria | Preprints and documents that are not full text, not available online, and not related to the topics already specified above will be excluded |
Data | DMSP-OLS | NPP-VIIRS | LJ-1 01 |
---|---|---|---|
Waveband Range | 400–1100 nm | 505–890 nm | 460–980 nm |
Data Type | 0–63 (digital number) | Absolute radiation value | Absolute radiation value |
Satellite Launch Year | 1973 | 2012 | 2018 |
Spatial Resolution | ~1000 m | ~500 m/~750 m | ~130 m |
Temporal Resolution | 1 a | 1 a/1 month/1 d | 15 d |
Available Time | 1992–2013 | April 2012–present | June 2018–February 2019 |
Accessibility | Open-source | Open-source | Open-source |
Quantified Digits | 6 bits | 14 bits | 15 bits |
Data Source | NOAA | NASA/NOAA | Wuhan University |
Indicator | Country | Slope | Intercept |
---|---|---|---|
Rad. Sum | United States | −3.65 × 105 | 3.36 × 107 |
China | 8.89 × 105 | 1.30 × 107 | |
India | 1.67 × 105 | 1.01 × 107 | |
Brazil | 1.70 × 103 | 9.08 × 106 | |
Saudi Arabia | 2.30 × 105 | 7.01 × 106 | |
Russia | −3.56 × 103 | 5.94 × 106 | |
Rad. Mean | South Korea | 8.26 × 10−2 | 3.51 |
Italy | −9.48 × 10−3 | 3.22 | |
United Kingdom | −7.25 × 10−2 | 2.00 | |
Japan | −1.40 × 10−2 | 1.47 | |
France | −4.87 × 10−2 | 1.59 | |
Germany | −7.13 × 10−3 | 1.16 | |
Rad./1k Pop | Saudi Arabia | 6.72 | 204.80 |
United States | −1.11 | 101.85 | |
Italy | −0.22 | 76.26 | |
Argentina | 0.46 | 71.66 | |
Canada | −1.42 | 75.86 | |
Australia | 0.45 | 50.70 |
Indicator | Country | Mann–Kendall Statistic (S) | Test Statistic (Z) | p-Value 2 | Sen’s Slope (β) | Evolutionary Trend (of 90% Confidence) |
---|---|---|---|---|---|---|
Rad. Sum | United States | −24 | −2.3979 ** 1 | 0.0165 | −327,488.89 | Decreasing |
China | 34 | 3.4405 *** | 0.0006 | 18,057.29 | Increasing | |
India | 18 | 1.7724 * | 0.0763 | 157,139.13 | Increasing | |
Brazil | −2 | −0.1043 | 0.9170 | −1733.55 | No significant trend | |
Saudi Arabia | 24 | 2.3979 ** | 0.0165 | 231,392.38 | Increasing | |
Russia | −4 | −0.3128 | 0.7545 | −41,028.50 | No significant trend | |
Rad. Mean | South Korea | 32 | 3.2320 *** | 0.0012 | 0.0864 | Increasing |
Italy | −18 | −1.7724 * | 0.0763 | −0.0052 | Decreasing | |
United Kingdom | −34 | −3.4405 *** | 0.0006 | −0.0730 | Decreasing | |
Japan | −26 | −2.6064 *** | 0.0091 | −0.0115 | Decreasing | |
France | −34 | −3.4405 *** | 0.0006 | −0.0471 | Decreasing | |
Germany | −4 | −0.3128 | 0.7545 | −0.0074 | No significant trend | |
Rad./1k Pop | Saudi Arabia | 24 | 2.3979 ** | 0.0165 | 6.7750 | Increasing |
United States | −24 | −2.3979 ** | 0.0165 | −1.0214 | Decreasing | |
Italy | −17 | −1.6773 * | 0.0935 | −0.1146 | Decreasing | |
Argentina | 17 | 1.6773 * | 0.0935 | 0.5000 | Increasing | |
Canada | −24 | −2.3979 ** | 0.0165 | −1.5125 | Decreasing | |
Australia | 27 | 2.7255 *** | 0.0064 | 0.5000 | Increasing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Ye, Y.; Jin, Y.; Liang, B. Research Progress, Hotspots, and Evolution of Nighttime Light Pollution: Analysis Based on WOS Database and Remote Sensing Data. Remote Sens. 2023, 15, 2305. https://doi.org/10.3390/rs15092305
Huang C, Ye Y, Jin Y, Liang B. Research Progress, Hotspots, and Evolution of Nighttime Light Pollution: Analysis Based on WOS Database and Remote Sensing Data. Remote Sensing. 2023; 15(9):2305. https://doi.org/10.3390/rs15092305
Chicago/Turabian StyleHuang, Chenhao, Yang Ye, Yanhua Jin, and Bangli Liang. 2023. "Research Progress, Hotspots, and Evolution of Nighttime Light Pollution: Analysis Based on WOS Database and Remote Sensing Data" Remote Sensing 15, no. 9: 2305. https://doi.org/10.3390/rs15092305
APA StyleHuang, C., Ye, Y., Jin, Y., & Liang, B. (2023). Research Progress, Hotspots, and Evolution of Nighttime Light Pollution: Analysis Based on WOS Database and Remote Sensing Data. Remote Sensing, 15(9), 2305. https://doi.org/10.3390/rs15092305