Understanding the Spatial–Temporal Patterns of Floating Islands Impacting the Major Dams of the White Nile
Abstract
:1. Introduction
2. Major Dams and Floating Islands along the White Nile: Background
3. Data and Methods
3.1. Data
3.1.1. Landsat
3.1.2. Sentinel-2
3.1.3. CHIRPS
3.1.4. TRMM
3.1.5. Altimetry Data
3.2. Methods
3.2.1. Image Pre-Processing
3.2.2. Normalized Difference Vegetation Index
3.2.3. Directional Flow of the Floating Islands
3.2.4. Correlation Analysis
3.2.5. Validation
4. Results
4.1. Annual Dynamics and Factors Infuencing Floating Islands
4.2. Seasonal Dynamics and Factors Influencing Floating Islands
4.2.1. Seasonal Precipitation and Impact on Floating Islands
4.2.2. Seasonal Water Level and Its Impact on the Floating Islands
4.2.3. Wind and Its Impacts on the Floating Islands
4.3. Impact of Floating Islands on Power Production
5. Discussion
5.1. Precipitation’s Impact on the Dynamics of the Floating Islands
5.2. Lake Victoria’s Water Level and Its Impacts on the Dynamics of the Floating Islands
5.3. Seasonal Dynamics and Factors Influencing Floating Islands
5.4. Wind’s Impact on the Dynamics of the Floating Islands
5.5. Impact of Floating Islands on Power Production
5.6. Future Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awange, J. The Nile Waters: Weighed from Space; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kayombo, S.; Jorgensen, S.; Lake Victoria. Experience and Lessons Learned Brief; International Lake Environment Committee, Lake Basin Management Initiative: Kusatsu, Japan, 2006; pp. 431–446. [Google Scholar]
- Awange, J.; Saleem, A.; Sukhadiya, R.; Ouma, Y.; Kexiang, H. Physical dynamics of Lake Victoria over the past 34 years (1984–2018): Is the lake dying? Sci. Total Environ. 2019, 658, 199–218. [Google Scholar] [CrossRef]
- Khaki, M.; Awange, J. The 2019–2020 Rise in Lake Victoria Monitored from Space: Exploiting the State-of-the-Art GRACE-FO and the Newly Released ERA-5 Reanalysis Products. Sensors 2021, 21, 4304. [Google Scholar] [CrossRef] [PubMed]
- Albright, T.; Moorhouse, T.; McNabb, T. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. J. Aquat. Plant Manag. 2004, 42, 73–84. [Google Scholar]
- Lubovich, K. Cooperation and Competition: Managing Transboundary Water Resources in the Lake Victoria Region; Foundation for Environmental Security and Sustainability: Falls Church, Virginia, 2009. [Google Scholar]
- Ministry of Energy and Minerals Development. Uganda’s Sustainable Energy For All (SE4All) Initiative Action Agenda; Ministry of Energy and Minerals Development: Kampala, Uganda, 2015. [Google Scholar]
- Manirakiza, W.; Tumwesigye, E.; Otim, K.; Akurut, M.; Mutikanga, H. Lessons learned from dealing with climatic extreme Events-A case of L. Victoria and the White Nile Cascade. In Proceedings of the E3S Web of Conferences, Binus, Indonesia, 22–23 June 2022; Volume 346, p. 04003. [Google Scholar]
- Nuwagira, U.; Yasin, I. Review of the Past, Current, and the Future Trend of the Climate Change and its Impact in Uganda. East Afr. J. Environ. Nat. Resour. 2022, 5, 115–126. [Google Scholar] [CrossRef]
- Revocatus, T.; Arthur, M.; Adam, M. The Energy and Climate Change Nexus in Uganda: Policy Challenges and Opportunities for Climate Compatible Development. In The Nature, Causes, Effects and Mitigation of Climate Change on the Environment; Stuart, A., Ed.; IntechOpen: London, UK, 2021; pp. 339–343. [Google Scholar] [CrossRef]
- John, C.; Sylas, V.; Paul, J.; Unni, K. Floating islands in a tropical wetland of peninsular India. Wetl. Ecol. Manag. 2009, 17, 641–653. [Google Scholar] [CrossRef]
- Azza, N.; Denny, P.; van de Koppel, J.; Kansiime, F. Floating mats: Their occurrence and influence on shoreline distribution of emergent vegetation. Freshw. Biol. 2006, 51, 1286–1297. [Google Scholar] [CrossRef]
- Gopal, B.; Zutshi, D.; Duzer, C. Floating islands in India: Control or conserve? Int. J. Ecol. Environ. Sci. 2003, 29, 157–169. [Google Scholar]
- Adams, C.; Boar, R.; Hubble, D.; Gikungu, M.; Harper, D.; Hickley, P.; Tarras-Wahlberg, N. The dynamics and ecology of exotic tropical species in floating plant mats: Lake Naivasha, Kenya. In Lake Naivasha, Kenya; Harper, D., Boar, R., Everard, M., Hickley, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 115–122. [Google Scholar] [CrossRef]
- Kangabam, R.D.; Selvaraj, M.; Govindaraju, M. Spatio-temporal analysis of floating islands and their behavioral changes in Loktak Lake with respect to biodiversity using remote sensing and GIS techniques. Environ. Monit. Assess. 2018, 190, 118. [Google Scholar] [CrossRef] [PubMed]
- Odongkara, K.; Kyangwa, M.; Kulyanyingi, V. Knowledge, Perceptions, Impacts and Roles of Lakeside Communities and Institutions in the Sustainable Control of Water Hyacinth; Fisheries Resources Research Institute: Murchison Bay, Uganda, 2002. [Google Scholar]
- Twongo, T.; Wanda, F. Management of Water Hyacinth, Eichhornia Crassipes, in Lake Victoria Basin. 2004. Available online: http://hdl.handle.net/1834/35195 (accessed on 1 December 2022).
- Nsubuga, F.; Botai, J.; Olwoch, J.; Rautenbach, C.; Kalumba, A.; Tsela, P.; Adeola, A.; Sentongo, A.; Mearns, K. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate. Theor. Appl. Climatol. 2017, 127, 327–337. [Google Scholar] [CrossRef]
- Bareuther, M.; Klinge, M.; Buerkert, A. Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India. Remote Sens. 2020, 12, 3843. [Google Scholar] [CrossRef]
- Htwe, T.N.; Brinkmann, K.; Buerkert, A. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar. Environ. Monit. Assess. 2015, 187, 617. [Google Scholar] [CrossRef] [PubMed]
- Mukarugwiro, J.A.; Newete, S.W.; Adam, E.; Nsanganwimana, F.; Abutaleb, K.; Byrne, M.J. Mapping spatio-temporal variations in water hyacinth (Eichhornia crassipes) coverage on Rwandan water bodies using multispectral imageries. Int. J. Environ. Sci. Technol. 2021, 18, 275–286. [Google Scholar] [CrossRef]
- Mdone, E. Bujagali: How Not to Build a Dam through a Public-Private Partnership. 2013. Available online: https://www.nape.or.ug/news-events/latest-news/116-bujagali-how-not-to-build-a-dam-through-a-public-private-partnership (accessed on 1 December 2022).
- Uganda Electricity Generation Company Ltd. Kiira Power Station. 2021. Available online: https://www.uegcl.com/power-plants/kiira-power-station/ (accessed on 1 December 2022).
- Muhammad Lubogo, M. Knock Knock! It’s the Floating Island at Nalubaale Dam. 2020. Available online: https://www.linkedin.com/pulse/knock-its-floating-island-nalubaale-dam-muhammad-lubogo (accessed on 1 December 2022).
- Nduhura, A. Public Private Partnerships and Competitiveness of the Hydroelectricity Sub-Sector in Uganda: Case of Bujagali and Karuma Dam Projects. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2019. [Google Scholar]
- WorldWater Assessment Programme (WWAP). Water, a Shared Responsibility: The United Nations World Water Development Report 2; United Nations Educational, Scientific and Cultural Organization (UNESCO), UN-Water: New York, NY, USA, 2006. [Google Scholar]
- Wardlaw, R.; Sharif, M.; Kimaite, F. Real-time hydro-power forecasting on the Victoria Nile. Proc. Inst. Civ. Eng. Water Manag. 2005, 158, 45–54. [Google Scholar] [CrossRef]
- Getirana, A.; Jung, H.C.; Van Den Hoek, J.; Ndehedehe, C.E. Hydropower dam operation strongly controls Lake Victoria’s freshwater storage variability. Scie. Total Environ. 2020, 726, 138343. [Google Scholar] [CrossRef] [PubMed]
- Riebeek, H. Lake Victoria’s Falling Waters, Earth Observatory Features. NASA, 2006. Available online: http://earthobservatory.nasa.gov/Study/Victoria/victoria.html (accessed on 1 December 2022).
- Mukwanason, D.E.; Kajubi, E.; Mwase, C.; Akurut, M.; Kayondo, M.; Mutikanga, H.E. Assessment of reservoir response to flood conditions to optimise hydropower operations–Isimba HPP Uganda. In Proceedings of the E3S Web of Conferences, Binus, Indonesia, 22–23 June 2022; Volume 346, p. 03016. [Google Scholar]
- Awange, J. Lake Victoria Monitored from Space; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Donnelly, C.; Eng, P. Canadian dam association canadienne des barrages the design and construction of the Owen Falls embankments. In Proceedings of the Canadian Dam Association Annual Conference, Winnipeg, MB, Canada, 27 September–2 October 2008. [Google Scholar] [CrossRef]
- Kull, D. Connections Between Recent Water Level Drops in Lake Victoria, Dam Operations and Drought. 2006. Available online: http://hdl.handle.net/1834/7032 (accessed on 1 December 2022).
- World Bank Group. Ending Poverty and Sharing Prosperity; Global Monitoring Report; World Bank Group: Washington, DC, USA, 2013. [Google Scholar]
- Nanteza, J. Construction of the Visitors Centre at the Isimba Hydropower Plant. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2022. [Google Scholar]
- Olanya, D. Dams, water and accountability in Uganda. In Land and Hydropolitics in the Nile River Basin; Routledge: London, UK, 2016; pp. 166–181. [Google Scholar]
- Ministry of Agriculture, Animal Industry and Fisheries. More Floating Islands Sighted by Surveillance on Lake Victoria and under Control. 2020. Available online: https://www.agriculture.go.ug/2020/04/21/more-floating-islands-sighted-by-surveillance-on-lake-victoria-and-under-control/ (accessed on 1 December 2022).
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Moran, E.F. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Hagan, D.; Bhatti, A.; Lou, D. Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan. Remote Sens. 2019, 11, 628. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.L.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Liu, Z.; Ostrenga, D.; Teng, W.; Kempler, S. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications. Bull. Am. Meteorol. Soc. 2012, 93, 1317–1325. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Puissant, A.; Catry, T.; Cresson, R.; Dessay, N.; Demagistri, L.; Gadal, S.; Le Bris, A.; Ose, K.; Pillot, B. Products and services of the urban THEIA Scientific Expertise Centre. In Proceedings of the Proceedings of the ESA Living Planet Symposium 2022, Bonn, Germany, 23–27 May 2022. [Google Scholar]
- Nicholson, S.; Klotter, D. Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa. Remote Sens. 2021, 13, 3609. [Google Scholar] [CrossRef]
- Chavez, P. Image-Based Atmospheric Corrections-Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Hashim, H.; Abd, L.Z.; Adnan, N.A. Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sc. 2019, 42, 237–240. [Google Scholar] [CrossRef]
- Nguyen, H.; Hardy, G.; Le, T.; Nguyen, H.; Nguyen, H.; Nguyen, T.; Dell, B. Mangrove Forest Landcover Changes in Coastal Vietnam: A Case Study from 1973 to 2020 in Thanh Hoa and Nghe An Provinces. Forests 2021, 12, 637. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Liang, L.; Yao, W. Spatial-Temporal Variation Characteristics of Multiple Meteorological Variables and Vegetation over the Loess Plateau Region. Appl. Sci. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Saleem, A.; Awange, J. Coastline shift analysis in data deficient regions: Exploiting the high spatio-temporal resolution Sentinel-2 products. Catena 2019, 179, 6–19. [Google Scholar] [CrossRef]
- Salvianti, F.; Pinzani, P.; Verderio, P.; Ciniselli, C.; Massi, D.; De Giorgi, V.; Grazzini, M.; Pazzagli, M.; Orlando, C. Multiparametric Analysis of Cell-Free DNA in Melanoma Patients. PLoS ONE 2012, 7, e49843. [Google Scholar] [CrossRef] [PubMed]
- Alatorre, L.; Beguería, S. Identification of eroded areas using remote sensing in a badlands landscape on marls in the central Spanish Pyrenees. CATENA 2009, 76, 182–190. [Google Scholar] [CrossRef]
- Beguería, S. Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management. Nat. Hazards 2006, 37, 315–329. [Google Scholar] [CrossRef]
- Pradhan, B.; Seeni, M.; Kalantar, B. Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility Maps. In Laser Scanning Applications in Landslide Assessment; Pradhan, B., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 193–232. [Google Scholar]
- Hurst, H.; Edwin, S.; Charles, G.; El-Kammash, M.M.; Nile River. Encyclopedia Britannica. 2022. Available online: https://www.britannica.com/place/Nile-River (accessed on 1 December 2022).
- CWE. 183MW Isimba HPP Basic Design Report-Hydrology and Hydraulic Energy; China International Water & Electricity Corporation (CWE): Kampala, Uganda, 2014. [Google Scholar]
- Vanderkelen, I.; van Lipzig, N.; Thiery, W. Modelling the water balance of Lake Victoria (East Africa)—Part 1: An Observational analysis. Hydrol. Earth Syst. Sci. 2018, 22, 5509–5525. [Google Scholar] [CrossRef]
- Eskom Uganda Limited. Floating Island at Nalubaale Power Station. 2020. Available online: https://www.eskom.co.ug/sites/default/files/2020-07/Press%20Statement%20-16th%20April%202020.%20Rev.pdf (accessed on 12 September 2020).
- Johnson, N. How many ENSO flavours can we distinguish? J. Clim. 2013, 26, 4816–4827. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Zinke, J.; Harrison, L. Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole. Clim. Dyn. 2017, 48, 2529–2540. [Google Scholar] [CrossRef]
- Morgan, B.; Awange, J.L.; Saleem, A.; Kexiang, H. Understanding vegetation variability and their “hotspots” within Lake Victoria Basin (LVB: 2003–2018). Appl. Geogr. 2020, 122, 102238. [Google Scholar] [CrossRef]
- Setimela, P.; Gasura, E.; Thierfelder, C.; Zaman-Allah, M.; Cairns, J.; Boddupalli, P. When the going gets tough: Performance of stress tolerant maize during the 2015/16 (El Niño) and 2016/17 (La Niña) season in southern Africa. Agric. Ecosyst. Environ. 2018, 268, 79–89. [Google Scholar] [CrossRef]
- Ntale, H.; Gan, T. East African rainfall anomaly patterns in association with El Nino/Southern Oscillation. J. Hydrol. Eng. 2004, 9, 257–268. [Google Scholar] [CrossRef]
- Van der Zaag, P.; Van Dam, A.; Meganck, R. Looking in the Mirror: How Societies Learn from Their Dependence on Large Lakes; Stockholm World Water Week: Stockholm, Sweden, 2006. [Google Scholar]
- Nicholson, S. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Roegner, A.; Sitoki, L.; Weirich, C.; Corman, J.; Owage, D.; Umami, M.; Odada, E.; Miruka, J.; Ogari, Z.; Smith, W.; et al. Harmful Algal Blooms Threaten the Health of Peri-Urban Fisher Communities: A Case Study in Kisumu Bay, Lake Victoria, Kenya. Expo. Health 2020, 12, 835–848. [Google Scholar] [CrossRef]
- Onyutha, C.; Tabari, H.; Rutkowska, A.; Nyeko-Ogiramoi, P.; Willems, P. Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. J.-Hydro-Environ. Res. 2016, 12, 31–45. [Google Scholar] [CrossRef]
- Awange, J.; Aluoch, J.; Ogalo, L.; Omulo, M.; Omondi, P. Frequency and severity of drought in the Lake Victoria region (Kenya) and its effects on food security. Clim. Res. 2007, 33, 135–142. [Google Scholar] [CrossRef]
- Bugenyi, F.; Magumba, K. The present physicochemical ecology of Lake Victoria, Uganda. In The Limnology, Climatology and Paleoclimatology of the East African Lakes; Routledge: London, UK, 2019; pp. 141–154. [Google Scholar]
- You, W.; Yu, D.; Xie, D.; Yu, L.; Xiong, W.; Han, C. Responses of the invasive aquatic plant water hyacinth to altered nutrient levels under experimental warming in China. Aquat. Bot. 2014, 119, 51–56. [Google Scholar] [CrossRef]
- Wilson, J.; Holst, N.; Rees, M. Determinants and patterns of population growth in water hyacinth. Aquat. Bot. 2005, 81, 51–67. [Google Scholar] [CrossRef]
- Thamaga, K.; Dube, T. Understanding seasonal dynamics of invasive water hyacinth (Eichhornia crassipes) in the Greater Letaba river system using Sentinel-2 satellite data. GIScience Remote Sens. 2019, 56, 1355–1377. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Winton, R.S.; Calamita, E.; Niggemann, F.; Botter, M.; Wehrli, B.; Ghazoul, J. Living with floating vegetation invasions. Ambio 2021, 50, 125–137. [Google Scholar] [CrossRef]
- Janssens, N.; Schreyers, L.; Biermann, L.; van der Ploeg, M.; Bui, T.K.L.; van Emmerik, T. Rivers running green: Water hyacinth invasion monitored from space. Environ. Res. Lett. 2022, 17, 044069. [Google Scholar] [CrossRef]
- Oguttu, H.; Bugenyi, F.; Leuenberger, H.; Wolf, M.; Bachofen, R. Pollution menacing Lake Victoria: Quantification of point sources around Jinja Town, Uganda. Water SA 2008, 34, 89–98. [Google Scholar] [CrossRef]
- Naigaga, I.; Kaiser, H.; Muller, W.J.; Ojok, L.; Mbabazi, D.; Magezi, G.; Muhumuza, E. Fish as bioindicators in aquatic environmental pollution assessment: A case study in Lake Victoria wetlands, Uganda. Phys. Chem. Earth 2011, 36, 918–928. [Google Scholar] [CrossRef]
- Awange, J.; Ong’ang’a, O. Lake Victoria: Ecology, Resources, Environment; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ruiz, T.; López, E.; Granado, G.; Pérez, E.; Morán-López, R.; Guzman, J. The Water Hyacinth, Eichhornia crassipes: An invasive plant in the Guadiana River Basin (Spain). Aquat. Invasions 2008, 3, 42–53. [Google Scholar]
- Waltham, N.; Fixler, S. Aerial Herbicide Spray to Control Invasive Water Hyacinth (Eichhornia crassipes): Water Quality Concerns Fronting Fish Occupying a Tropical Floodplain Wetland. Trop. Conserv. Sci. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Dersseh, M.; Tilahun, S.; Worqlul, A.; Moges, M.; Abebe, W.; Mhiret, D.; Melesse, A. Spatial and Temporal Dynamics of Water Hyacinth and Its Linkage with Lake-Level Fluctuation: Lake Tana, a Sub-Humid Region of the Ethiopian Highlands. Water 2020, 12, 1435. [Google Scholar] [CrossRef]
- Duong Thi, T.; Do Minh, D. Riverbank Stability Assessment under River Water Level Changes and Hydraulic Erosion. Water 2019, 11, 2598. [Google Scholar] [CrossRef]
- Samadi, A.; Davoudi, M.; Amiri-Tokaldany, E. Experimental Study of Cantilever Failure in the Upper Part of Cohesive Riverbanks. Res. J. Environ. Sci. 2011, 5, 444–460. [Google Scholar] [CrossRef]
- Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M.; Darby, S. Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphology 2013, 184, 1–19. [Google Scholar] [CrossRef]
- Lai, Y.G.; Thomas, R.E.; Ozeren, Y.; Simon, A.; Greimann, B.P.; Wu, K. Modeling of multilayer cohesive bank erosion with a coupled bank stability and mobile-bed model. Geomorphology 2015, 243, 116–129. [Google Scholar] [CrossRef]
- Yu, M.H.; Wei, H.Y.; Wu, S.B. Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force. Int. J. Sediment Res. 2015, 30, 81–89. [Google Scholar] [CrossRef]
- Patsinghasanee, S.; Kimura, I.; Shmizu, Y. Experimental and numerical study on overhanging failure of river bank. J. Jpn. Soc. Civ. Eng. Ser. (Hydraulic Eng.) 2015, 71, I127–I132. [Google Scholar] [CrossRef]
- Patsinghasanee, S.; Kimura, I.; Shmizu, Y.; Nabi, M.; Chub-uppakarn, T. Coupled studies of fluvial erosion and cantilever failure for cohesive riverbanks: Case studies in the experimental flumes and U-Tapao River. J.-Hydro-Environ. Res. 2017, 16, 13–26. [Google Scholar] [CrossRef]
- Awange, J.; Sharifi, M.; Ogonda, G.; Wickert, J.; Grafarend, E.; Omulo, M. The Falling Lake Victoria Water Level: GRACE, TRIMM and CHAMP Satellite Analysis of the Lake Basin. Water Resour. Manag. 2008, 22, 775–796. [Google Scholar] [CrossRef]
- Kulyanyingi, V. Economic Losses/Gains Attributed to the Water Hyacinth. 2002. Available online: http://hdl.handle.net/1834/32957 (accessed on 1 December 2022).
- Yan, S.; Song, W.; Guo, J. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems—A review. Crit. Rev. Biotechnol. 2017, 37, 218–228. [Google Scholar] [CrossRef]
- Twongo, T.; Bugenyi, F. Current Status of the Water Hyacinth Problem in Uganda. 1998. Available online: http://hdl.handle.net/1834/34479 (accessed on 1 December 2022).
- Nyawacha, S.; Meta, V.; Osio, A. Spatial temporal mapping of spread of water hyacinth in Winum Gulf, Lake Victoria. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 341–346. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef] [PubMed]
- Kebede, Y.S.; Endalamaw, N.T.; Sinshaw, B.G.; Atinkut, H.B. Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia. Environ. Chall. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
Description | Nalubaale PS | Kiira PS | Bujagali HPP | Isimba HPP | Karuma HPP |
---|---|---|---|---|---|
Project completion | 1968 | 2003 | 2012 | 2019 | End of 2022 |
Dam type | Concrete | Composite | Composite | Composite | Concrete |
Plant discharge (m/s) | 1140 | 1260 | 1375 | 1375 | 1224 |
Spillway (m/s) | 1272 | 1740 | 4500 | 5230 | 4800 |
Height (m) | 30 | 32 | 30 | 26.5 | 14 |
Length (m) | 726 | 380 | 850 | 1599 | 314 |
Power Capacity (MW) | 180 | 200 | 250 | 183.2 | 600 |
Max flood level (m.a.s.l) | 1135 | 1135 | 1112 | 1055 | 1030 |
Description | Sensor | Spatial Resolution | Temporal Resolution | Purpose |
---|---|---|---|---|
Imagery | Landsat | 30 | 16 days | Spatial–temporal changes of floating islands |
Sentinel-2 | 10 | 5 days | Validation of Landsat products | |
Precipitation | TRMM | 0.25 | Monthly | Rainfall statistics |
CHIRPS | Monthly | Rainfall statistics | ||
THEIA | Monthly | Lake Victoria’s water level statistics |
Long Rain | Short Rain | |||
---|---|---|---|---|
Dam | Lag0 | Lag1 | Lag0 | Lag1 |
Nalubaale | 0.5 | 0.1 | 0.5 | |
Kiira | 0.7 | 0.3 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ondari, O.; Awange, J.; Song, Y.; Kasedde, A. Understanding the Spatial–Temporal Patterns of Floating Islands Impacting the Major Dams of the White Nile. Remote Sens. 2023, 15, 2304. https://doi.org/10.3390/rs15092304
Ondari O, Awange J, Song Y, Kasedde A. Understanding the Spatial–Temporal Patterns of Floating Islands Impacting the Major Dams of the White Nile. Remote Sensing. 2023; 15(9):2304. https://doi.org/10.3390/rs15092304
Chicago/Turabian StyleOndari, Omweno, Joseph Awange, Yongze Song, and Allan Kasedde. 2023. "Understanding the Spatial–Temporal Patterns of Floating Islands Impacting the Major Dams of the White Nile" Remote Sensing 15, no. 9: 2304. https://doi.org/10.3390/rs15092304
APA StyleOndari, O., Awange, J., Song, Y., & Kasedde, A. (2023). Understanding the Spatial–Temporal Patterns of Floating Islands Impacting the Major Dams of the White Nile. Remote Sensing, 15(9), 2304. https://doi.org/10.3390/rs15092304