Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Field Data
2.4. Forest Fuel Models
2.5. Remote Sensing Data
2.5.1. Airborne Laser Scanning Data
2.5.2. ALS Data Processing
2.5.3. Multispectral Images
2.6. Forest Fuel Characteristics
2.6.1. Biomass
2.6.2. Structural Complexity
2.6.3. Fuel Moisture
2.7. Potential Fire Behaviour Index
- Potential Biomass Index (ICB): Fire danger associated with biomass load.
- Potential Structural Complexity Index (ICE): Fire danger associated with vegetation structure.
- Potential Fuel Desiccation Index (ICD): Fire danger associated with fuel moisture.
3. Results
3.1. Fuel Model Map
3.2. Biomass Load of Forest Fuels
3.3. Structural Complexity
3.4. Fuel Desiccation Index (IDM)
3.5. Potential Behaviour Indices
4. Discussion
4.1. Fuel Models and Biomass Load
4.2. Structural Complexity of Forest Fuels
4.3. Fuel Moisture
4.4. Potential Forest Fire Behaviour Index
4.5. Limitations
4.6. Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lasslop, G.; Coppola, A.I.; Voulgarakis, A.; Yue, C.; Veraverbeke, S. Influence of Fire on the Carbon Cycle and Climate. Curr. Clim. Change Rep. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Han, Y.; Jin, Y.; Zhou, W. The method for calculating forest fire behaviour index. Fire Saf. Sci. 1992, 1, 77–82. [Google Scholar]
- Atchley, A.L.; Linn, R.; Jonko, A.; Hoffman, C.; Hyman, J.D.; Pimont, F.; Sieg, C.; Middleton, R.S. Effects of fuel spatial distribution on wildland fire behaviour. Int. J. Wildland Fire 2021, 30, 179–189. [Google Scholar] [CrossRef]
- Gale, M.G.; Cary, G.J.; van Dijk, A.I.J.M.; Yebra, M. Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote. Sens. Environ. 2021, 255, 112282. [Google Scholar] [CrossRef]
- Gonzalez-Olabarria, J.R.; Reynolds, K.M.; Larrañaga, A.; Garcia-Gonzalo, J.; Busquets, E.; Pique, M. Strategic and tactical planning to improve suppression efforts against large forest fires in the Catalonia region of Spain. For. Ecol. Manag. 2018, 432, 612–622. [Google Scholar] [CrossRef]
- Hesseln, H. Wildland Fire Prevention: A Review. Curr. For. Rep. 2018, 4, 178–190. [Google Scholar] [CrossRef]
- Hély, C.; Flannigan, M.; Bergeron, Y.; McRae, D. Role of vegetation and weather on fire behaviour in the Canadian mixedwood boreal forest using two fire behaviour prediction systems. Can. J. For. Res. 2001, 31, 430–441. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Preisler, H.K.; Weise, D.R. Forest Fire Models. Encyclopedia of Environmetrics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Romero Ramirez, F.J.; Navarro-Cerrillo, R.M.; Varo-Martínez, M.Á.; Quero, J.L.; Doerr, S.; Hernández-Clemente, R. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.L. Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 2: Heat Transfer and Interactions. Curr. For. Rep. 2017, 3, 150–171. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; Volume 115, 40p.
- Pastor, E.; Zárate, L.; Planas, E.; Arnaldos, J. Mathematical models and calculation systems for the study of wildland fire behaviour. PECS 2003, 29, 139–153. [Google Scholar] [CrossRef]
- Zylstra, P.; Bradstock, R.A.; Bedward, M.; Penman, T.D.; Doherty, M.D.; Weber, R.O.; Gill, A.M.; Cary, G.J. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: Species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS ONE 2016, 11, e0160715. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Skowronski, N.S.; Gallagher, M.R.; Warner, T.A. Decomposing the interactions between fire severity and canopy fuel structure using multi-temporal, active, and passive remote sensing approaches. Fire 2020, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R., Jr.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riaño, D.; Van Wagtendok, J.; Morsdof, F. Fuel Loads and Fuel Type Mapping. In Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data; World Scientific: London, UK, 2003; pp. 119–142. [Google Scholar]
- Wang, P.; Wang, J.; Chen, Y.; Ni, G. Rapid processing of remote sensing images based on cloud computing. Future Gener. Comput. Syst. 2013, 29, 1963–1968. [Google Scholar] [CrossRef]
- Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of forest fuel load from radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1726–1740. [Google Scholar] [CrossRef]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating Forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- İnan, M.; Bilici, E.; Akay, A.E.; İnan, M.; Bilici, E.; Akay, A.E. Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential. ISPAN 2017, 4W4, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Huesca, M.; Riaño, D.; Ustin, S.L. Spectral mapping methods applied to LiDAR data: Application to fuel type mapping. Int. J. Appl. Earth Obs. Geoinf. 2018, 74, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Marino, E.; Ranz, P.; Tomé, J.L.; Noriega, M.Á.; Esteban, J.; Madrigal, J. Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated methodology for large areas. Remote Sens. Environ. 2016, 187, 267–280. [Google Scholar] [CrossRef]
- Gelabert, P.J.; Montealegre, A.L.; Lamelas, M.T.; Domingo, D. Forest structural diversity characterization in Mediterranean landscapes affected by fires using Airborne Laser Scanning data. GISci. Remote Sens. 2020, 57, 497–509. [Google Scholar] [CrossRef]
- Moinuddin, K.A.M.; Sutherland, D. Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Math. Comput. Simul. 2020, 175, 81–95. [Google Scholar] [CrossRef]
- Listopad, C.M.C.S.; Masters, R.E.; Drake, J.; Weishampel, J.; Branquinho, C. Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecol. Indic. 2015, 57, 268–279. [Google Scholar] [CrossRef]
- Cabezudo, B.; Solanas, F.C.; Pérez Latorre, A.V. Vascular flora of the Sierra de las Nieves National Park and its surroundings (Andalusia, Spain). Phytotaxa 2022, 534, 1–111. [Google Scholar] [CrossRef]
- Red de Información Ambiental de Andalucía. Base Cartográfica SIOSE Andalucía 2016. Ocupación del Suelo; Red de Información Ambiental de Andalucía: Sevilla, Spain; Sistema de Información sobre el Patrimonio Natural de Andalucía, SIPNA Publicación: Sevilla, Spain, 2020. [Google Scholar]
- MITECO. Spanish National Forest Inventory; MITECO: Madrid, Spain, 2022.
- ESRI. 2022. Available online: https://www.esri.com/es-es/home (accessed on 21 January 2020).
- Centro Nacional de Información Geográfica. Segunda Cobertura LiDAR Nacional; CNIG: Madrid, Spain, 2022. [Google Scholar]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; USDA Forest Service, PNW: Washington, DC, USA, 2007; pp. 28–30.
- Isenburg, M. LAStools; Rapidlasso GmbH: Gilching, Germany, 2017. [Google Scholar]
- Ruiz-Peinado, R.; del Rio, M.; Montero, G. New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst. 2011, 20, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Peinado, R.; Montero, G.; del Rio, M. Biomass models to estimate carbon stocks for hardwood tree species. Forest Systems 2012, 21, 42–52. [Google Scholar] [CrossRef]
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa y Fijación de CO2 por los Bosques Españoles; Monografías13; INIA: Madrid, Spain, 2005. [Google Scholar]
- Navarro Cerrillo, R.M.; Blanco Oyonarte, P. Estimation of above-ground biomass in shrubland ecosystems of southern Spain. Investig. Agraria Sist. Y Recur. For. 2006, 15, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Pasalodos-Tato, M.; Ruiz-Peinado, R.; del Río, M.; Montero, G. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur. J. For. Res. 2015, 134, 537–553. [Google Scholar] [CrossRef]
- Ene, L.T.; Næsset, E.; Gobakken, T.; Gregoire, T.G.; Ståhl, G.; Nelson, R. Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach. Remote Sens. Environ. 2012, 123, 579–592. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Domingo, D.; Lamelas, M.T.; García, M.B. Characterization of vegetation structural changes using multi-temporal LiDAR and its relationship with severity in Calcena wildfire. Ecosistemas 2021, 30, 1–10. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martínez-Vega, J.; de La Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Scott, J.H.; Burgan, R.E. Standard Fire Behaviour Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Gen. Tech. Rep. RMRS-GTR-153; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; Volume 153, 72p.
- Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H. Mapping Forest fire risk—A case study in Galicia (Spain). Remote Sens. 2020, 12, 3705. [Google Scholar] [CrossRef]
- Sandberg, D.V.; Ottmar, R.D.; Cushon, G.H. Characterizing fuels in the 21st Century. Int. J. Wildland Fire 2001, 10, 381–387. [Google Scholar] [CrossRef]
- Tecnosylva S.L. WildFire Analyst (2.9); Tecnosylva S.L.: León, Spain, 2014. [Google Scholar]
- Duff, T.; Keane, R.; Penman, T.; Tolhurst, K. Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity. Forests 2017, 8, 351. [Google Scholar] [CrossRef]
- Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Anderson, W.R. Predicting fire behaviour in dry eucalypt forest in southern Australia. For. Ecol. Manag. 2012, 280, 120–131. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Nie, S.; Fan, X.; Chen, H.; Ma, D.; Liu, J.; Zou, J.; Lin, Y.; et al. Estimating Forest aboveground biomass using small-footprint full-waveform airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101922. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Li, G. Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecol. Ind. 2017, 78, 221–228. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Godinho, S. Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. Remote Sens. 2022, 59, 1509–1533. [Google Scholar] [CrossRef]
- Domingo, D.; Alonso, R.; Lamelas, M.T.; Montealegre, A.L.; Rodríguez, F.; de la Riva, J. Temporal transferability of pine forest attributes modeling using low-density airborne laser scanning data. Remote. Sens. 2019, 11, 261. [Google Scholar] [CrossRef] [Green Version]
- Mauro, F.; Hudak, A.T.; Fekety, P.A.; Frank, B.; Temesgen, H.; Bell, D.M.; McCarley, T.R. Regional modelling of forest fuels and structural attributes using airborne laser scanning data in Oregon. Remote Sens. 2021, 13, 261. [Google Scholar] [CrossRef]
- Marino, E.; Montes, F.; Tomé, J.L.; Navarro, J.A.; Hernando, C. Vertical Forest structure analysis for wildfire prevention: Comparing airborne laser scanning data and stereoscopic hemispherical images. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 438–449. [Google Scholar] [CrossRef]
- Domingo, D.; de la Riva, J.; Lamelas, M.T.; García-Martín, A.; Ibarra, P.; Echeverría, M.; Hoffrén, R. Fuel type classification using airborne laser scanning and Sentinel 2 data in Mediterranean forest affected by wildfires. Remote Sens. 2020, 12, 3660. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, O.; Saglam, B.; Bilgili, E. Canopy fuel characteristics and fuel load in young black pine trees. Biotechnol. Biotechnol. Equip. 2007, 21, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Bright, B.C.; Pokswinski, S.M.; Loudermilk, E.L.; O’Brien, J.J.; Hornsby, B.S.; Klauberg, C.; Silva, C.A. Mapping Forest Structure and Composition from Low-Density LiDAR for Informed Forest, Fuel, and Fire Management at Eglin Air Force Base, Florida, USA. Can. J. Remote Sens. 2016, 42, 411–427. [Google Scholar] [CrossRef]
- Qi, Y.; Dennison, P.E.; Spencer, J.; Riaño, D. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecol. 2012, 8, 71–87. [Google Scholar] [CrossRef]
- Quintero, N.; Viedma, O.; Urbieta, I.R.; Moreno, J.M. Assessing landscape fire hazard by multitemporal automatic classification of landsat time series using the Google Earth Engine in West-Central Spain. Forests 2019, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M. Sensitivity of a fire behaviour model to changes in live fuel moisture. In Proceedings of the Sixth Symposium on Fire and Forest Meteorology, Canmore, AB, Canada, 24–27 October 2005. [Google Scholar]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann. For. Sci. 2017, 74, 1. [Google Scholar] [CrossRef] [Green Version]
- Beverly, J.L.; McLoughlin, N.; Chapman, E. A simple metric of landscape fire exposure. Landsc. Ecol. 2021, 36, 785–801. [Google Scholar] [CrossRef]
- Beverly, J.L.; McLoughlin, N. Burn probability simulation and subsequent wildland fire activity in Alberta, Canada—Implications for risk assessment and strategic planning. For. Ecol. Manag. 2019, 451, 117490. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W. Fire as a physical process. In Fire in California’s Ecosystems; Sugihara, N.G., van Wagtendonk, J.W., Fites-Kaufman, J., Shaffer, K.E., Thode, A.E., Eds.; University of California Press: Berkeley, CA, USA, 2006; pp. 38–57. [Google Scholar]
- Agee, J.K.; Skinner, C. Basic principles of forest fuel reduction treatments. Forest Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.L.; Linn, R.R.; Dupont, S. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci. 2011, 68, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, S.; Sfougaris, A.; Christopoulou, O.; Tampekis, S. Integrated wildfire risk assessment of natural and anthropogenic ecosystems based on simulation modeling and remotely sensed data fusion. IJDRR 2022, 78, 103129. [Google Scholar] [CrossRef]
Variable | Units | Mean | Min. | Max. | St. Dev. |
---|---|---|---|---|---|
Density | Trees ha−1 | 321.45 | 18.83 | 2241.35 | 368.88 |
Basal area | m2 ha−1 | 8.28 | 0.01 | 73.07 | 11.01 |
Mean dbh | cm | 21.16 | 3.00 | 94.00 | 14.84 |
Fraction cover | % | 47.76 | 0.07 | 100 | 41.58 |
Fuel Model | Surface (ha) | Surface (%) |
---|---|---|
1 | 2666.56 | 9.02% |
2 | 461.37 | 1.56% |
3 | 1515.83 | 5.13% |
4 | 9666.30 | 32.69% |
5 | 3626.07 | 12.26% |
6 | 678.68 | 2.29% |
7 | 2045.09 | 6.92% |
8 | 3898.83 | 13.18% |
9 | 2048.79 | 6.93% |
10 | 1946.13 | 6.58% |
Not combustible | 1020.05 | 3.45% |
Forest Type | Biomass (Mg ha−1) | LHDI | IDM |
---|---|---|---|
Abies pinsapo forests | 53.64 ± 83.62 | 2.14 ± 0.95 | −92.23 ± 193.02 |
Juniperus spp. forests. | 100.57 ± 89.13 | 1.37 ± 0.78 | −180.68 ± 221.74 |
Pinus halepensis forests | 190.43 ± 101.20 | 2.35 ± 0.79 | −107.34 ± 189.52 |
Pinus pinaster forests | 142.56 ± 77.19 | 2.16 ± 0.64 | −62.27 ± 903.86 |
Quercus ilex forests | 169.26 ± 72.69 | 2.07 ± 0.53 | −26.54 ± 101.29 |
Quercus suber forests | 160.10 ± 63.49 | 2.54 ± 0.55 | −52.11 ± 114.22 |
Abies pinsapo–Quercus spp. forests. | 53.77 ± 90.24 | 1.95 ± 0.83 | −52.12 ± 173.02 |
Evergreen mixed forests | 183.01 ± 137.97 | 1.76 ± 0.84 | −195.43 ± 312.19 |
Pinus spp. mixed forests. | 107.44 ± 62.78 | 2.49 ± 0.60 | −67.25 ± 110.43 |
Pinus spp.–Juniperus spp. forests. | 115.35 ± 125.70 | 1.99 ± 0.65 | −86.93 ± 83.83 |
Pinus spp.–evergreen forests | 149.88 ± 140.66 | 2.56 ± 0.52 | −20.31 ± 41.79 |
Pinus spp.–Quercus spp. forests. | 126.42 ± 124.34 | 2.38 ± 0.74 | −106.74 ± 202.72 |
Quercus spp. mixed forests. | 131.87 ± 133.09 | 2.01 ± 1.16 | −91.48 ± 182.52 |
Shrubs | 0.22 ± 2.73 | 1.11 ± 0.82 | −396.71 ± 429.36 |
Non-forests | 0.00 ± 0.00 | 1.22 ± 1.03 | −305.22 ± 3322.76 |
Category | ICB | ICE | ICD | ICP |
---|---|---|---|---|
Very Low | 16,423.47 (55.53) | 8744.86 (29.57) | 8799.01 (29.75) | 9187.33 (31.07) |
Low | 6369.47 (21.54) | 4962.54 (16.78) | 4360.90 (14.75) | 4403.60 (14.89) |
Middle | 3273.60 (11.07) | 4858.32 (16.43) | 2828.55 (9.56) | 4671.34 (15.80) |
High | 1925.94 (6.51) | 6262.84 (21.18) | 1964.89 (6.64) | 4364.81 (14.76) |
Very high | 1581.20 (5.35) | 4745.12 (16.05) | 11,620.33 (32.29) | 6946.59 (23.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo, R.C.; Varo Martínez, M.Á.; Ruiz Gómez, F.; Ariza Salamanca, A.J.; Navarro-Cerrillo, R.M. Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests. Remote Sens. 2023, 15, 2023. https://doi.org/10.3390/rs15082023
Calvo RC, Varo Martínez MÁ, Ruiz Gómez F, Ariza Salamanca AJ, Navarro-Cerrillo RM. Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests. Remote Sensing. 2023; 15(8):2023. https://doi.org/10.3390/rs15082023
Chicago/Turabian StyleCalvo, Roberto Crespo, Mª Ángeles Varo Martínez, Francisco Ruiz Gómez, Antonio Jesús Ariza Salamanca, and Rafael M. Navarro-Cerrillo. 2023. "Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests" Remote Sensing 15, no. 8: 2023. https://doi.org/10.3390/rs15082023
APA StyleCalvo, R. C., Varo Martínez, M. Á., Ruiz Gómez, F., Ariza Salamanca, A. J., & Navarro-Cerrillo, R. M. (2023). Improvements of Fire Fuels Attributes Maps by Integrating Field Inventories, Low Density ALS, and Satellite Data in Complex Mediterranean Forests. Remote Sensing, 15(8), 2023. https://doi.org/10.3390/rs15082023