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Abstract: Annual Land Use and Land Cover (LULC) maps are needed to identify the interaction
between landscape changes and wildland fires. Objectives: In this work, we determined fire hazard
changes in a representative Mediterranean landscape through the classification of annual LULC
types and fire perimeters, using a dense Landsat Time Series (LTS) during the 1984–2017 period, and
MODIS images. Methods: We implemented a semiautomatic process in the Google Earth Engine
(GEE) platform to generate annual imagery free of clouds, cloud shadows, and gaps. We compared
LandTrendr (LT) and FormaTrend (FT) algorithms that are widely used in LTS analysis to extract
the pixel tendencies and, consequently, assess LULC changes and disturbances such as forest fires.
These algorithms allowed us to generate the following change metrics: type, magnitude, direction,
and duration of change, as well as the prechange spectral values. Results and conclusions: Our
results showed that the FT algorithm was better than the LT algorithm at detecting low-severity
changes caused by fires. Likewise, the use of the change metrics’ type, magnitude, and direction of
change increased the accuracy of the LULC maps by 4% relative to the ones obtained using only
spectral and topographic variables. The most significant hazardous LULC change processes observed
were: deforestation and degradation (mainly by fires), encroachment (i.e., invasion by shrublands)
due to agriculture abandonment and forest fires, and hazardous densification (from open forests
and agroforestry areas). Although the total burned area has decreased significantly since 1985, the
landscape fire hazard has increased since the second half of the twentieth century. Therefore, it is
necessary to implement fire management plans focused on the sustainable use of shrublands and
conifer forests; this is because the stability in these hazardous vegetation types is translated into
increasing fuel loads, and thus an elevated landscape fire hazard.

Keywords: FormaTrend; landsat imagery; land cover changes; LandTrendr; landscape fire hazard;
time series analysis; random forest

1. Introduction

The Earth’s surface is subject to constant change, and it should be assessed for sustainable land
planning [1]. In the Mediterranean basin, fires are a very common disturbance, which have shaped
extant landscapes for millennia [2]. Moreover, human activities and consequent Land Use and Land
Cover (LULC) changes have altered these landscapes, changing vegetation structure and composition,
and hence indirectly modifying fire regimes [3]. Mediterranean vegetation includes highly flammable
plant communities, such as pine forests (i.e., Pinus halepensis, Pinus pinaster) and planted eucalyptus
forests (i.e., Eucalyptus globulus) due to their high content of resin and essential oils. In addition,
shrublands (i.e., Ulex spp.; Cistus spp.) and grasslands are very fire-prone, given their intrinsic
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characteristics related to ease of ignition and high rates of fire spread [4,5]. By contrast, other types of
vegetation, such as broadleaved forests (i.e., Quercus robur, Q. ilex, Q. pyrenaica, Castanea sativa), have
shown lower fire proneness as they are more humid and managed compared to other forest types [6,7].

In relation to this, a higher landscape fire hazard (i.e., higher flammability and fuel continuity) is
expected where LULC changes have promoted an increase in density and continuity of conifers and
shrublands, as a result of afforestation activities or agricultural abandonment. Conversely, other LULC
changes can decrease fire hazard when associated with the removal of biomass (e.g., land clearing or
forest harvesting) [6,8].

In European Mediterranean countries (Portugal, Spain, Italy, Greece, and France), landscape fire
hazard has increased since the second half of the twentieth century due to some LULC changes that
led to an increase in fuel load [9–11]. These changes can contribute to turning fires into a serious
environmental hazard (i.e., uncontrollable and severe large fires), rather than a natural process [2].

However, despite the increase in landscape fire hazard and more severe fire weather conditions
due to climate change [12], the number of fires and total burned area in Mediterranean Europe
have decreased by 59% (12,600 fires) and 66% (302,000 hectares), respectively, for the 1985–2011
period [13]. This negative trend can be explained by the improvement in fire management strategies
and firefighting services that have been implemented in recent decades [14–16]. Still, it is projected that
as a result of climate change, fires could increase, particularly larger fires [17,18]. Because landscape
structure and composition has demonstrated to be one of the most important factors controlling fires
in Mediterranean-type regions [19,20], assessing how changes in spatial patterns of LULC types affect
landscape fire-hazard is important in order to project future changes in fire regime, notably in the
context of global change.

LULC mapping in the context of forest fire management enables the assessment of the spatial
distribution of different vegetation types, which is needed in order to model the hazardousness of
the landscape and the probability of fire [5,6]. To generate LULC maps over large areas or long
periods of time, the use of satellite data is required [21]. Different generations of Landsat-MSS
(Multispectral Scanner System) have been in orbit since 1972, but its low spectral, spatial (80 m
resolution) and radiometric resolutions limit their use in LULC monitoring [22]. However, since
Landsat–TM (Thematic Mapper) was launched in 1982, and the next generation of Landsat (i.e., ETM+

and OLI), a continuous record of freely accessible Earth observations has been available, generating
images with an appropriate spatial detail level (30 m resolution) for landscape monitoring at regional
scales. By contrast, low-resolution images (i.e., spatial resolution > 100 m), such as Moderate Resolution
Imaging Spectroradiometer (MODIS, 250-m resolution), have a high temporal resolution and wide
spatial coverage, making them suitable for large-scale characterizations [23]. In a regional context,
MODIS has been particularly used in fire detection [24], being a reliable source to compare Landsat
products as independent data. In spite of the availability of large Landsat Time Series (LTS), these
images may be affected by clouds, cloud shadows, atmospheric opacity, or ETM+ sensor failures,
causing loss of information. Recently, new methodologies have been widely used to reduce this loss of
information [25–27], allowing the generation of continuous and homogeneous Landsat Time Series
(LTS) with representative images of seasonal variability (or a period of time of interest) [28–30]. LTS
analysis is an important technique for analyzing LULC changes over time [31,32], and has been applied
for LULC mapping [33], fire mapping [34], postfire regeneration dynamics [35], and in other fields
such as urban expansion [36], forest degradation, and deforestation [37].

In this context, LTS allows the characterization of three types of changes on the Earth’s surface [38]:
(i) “Seasonal” changes, related to intra- and interannual cyclical changes, generated by the interactions
between temperature and precipitation that affect the phenology of plants and therefore the spectral
response in the images; (ii) “Gradual” changes that are subtle changes of regeneration or disturbance
produced by the variability of management practices or climate; (iii) “Abrupt” changes, such as those
caused by disturbances from deforestation, urbanization, floods, or fires. Several algorithms have
recently been introduced to analyze and detect changes in LTS through the generation of change
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metrics. The change metrics can establish patterns of type, direction, duration, and magnitude among
other characteristics (e.g., year of change, post- and prechange spectral values). These change metrics
identify the vegetation dynamics that occur prior to the date of image classification; therefore, their
inclusion in the LTS classification has been shown to increase the accuracy of LULC maps [33,39].
The most widely used algorithms to analyze LTS are BFAST (Breaks for Additive Season and Trend
project) [38], LandTrendr (Landsat-based Detection of Trends in Disturbance and Recovery) [40], DBEST
(Detecting Breakpoints and Estimating Segments in Trend) [41], and FormaTrend (Forest Monitoring
for Action) [42]. These algorithms perform a pixel spectral trajectory fit by simplifying it into a series
of individual trend segments separated from each other by abrupt and gradual changes. The BFAST
algorithm focuses mainly on seasonal change components. By contrast, the LandTrendr, DBEST, and
FormaTrend algorithms detect abrupt and gradual changes in annual time series.

In this study, we determined changes in fire hazard in a large Mediterranean area of west-central
Spain. This analysis was done through the classification of annual LULC types (vegetation types,
agriculture, artificial uses, among others) and fire perimeters, by analyzing LTS changes during the
1984–2017 period. To increase the mapping accuracy, we tested the change metrics produced by
LandTrendr (LT) and FormaTrend (FT) algorithms, which can be applied using the Google Earth Engine
(GEE) platform. This platform allows the processing and analysis of large volumes of spatial data [43].
In our study, we applied a semiautomated routine for LTS analysis and LULC map generation to
compare data produced in a standardized way. Thus, this technique allows reducing the errors caused
by visual or standard supervised land cover classifications [23]. To our knowledge, this is the first
study on a Mediterranean landscape which analyzes LULC change processes in a systematic manner
using a semiautomatic routine. The significance of our study lies in the use of powerful tools for
change analysis in dense LTS, that enhances the understanding of the long-term dynamics of ecological
processes such as LULC changes or fire effects, which are important components of global change.

2. Materials and Methods

2.1. Study Area

The study area is located in west-central Spain. It partially covers approximately 3,000,000 hectares
(ha) in the Central Iberian Range provinces of Salamanca, Ávila, Segovia, Cáceres, Toledo, and Madrid,
WGS 84 (EPSG: 4326) coordinates 41◦21′0” N, 6◦12′6” W and 39◦45′0” N, 4◦61′4” W (Figure 1). This
landscape is representative of Mediterranean conditions, given its vegetation composition, climate
conditions, extensive land use changes, and fire history. The northern and southern zones of the
study area are dominated by grasslands and irrigated and rainfed crops. The area is characterized
by the mountainous landscapes of Sierra de Gredos, and the gentler mountains in the south-east,
both flanked by relatively flat areas. In the central part, there are different protected natural areas
that are characterized by mountainous landscapes with natural vegetation mixed with agroforestry
zones: open oak forests with pastures/grassland called “dehesas” and agricultural lands. The climate
is Mediterranean, with colder and wetter climates up in the mountainous areas, and warmer and drier
climates in the low-lands. Soils in the mountainous areas are shallow, with high stoniness and coarse
texture (cambisol, regosol, and lithosol), whereas in the low-lands, they are deep and fine textured
(luvisol and fluvisol) [44]. Due to human use, mature forest cover in the region corresponds to a
mosaic of broadleaved oak forests (e.g., Quercus suber and Quercus ilex), including deciduous oaks
(e.g., Quercus pyrenaica), chestnut plantations (e.g., Castanea sativa), and conifers (e.g., Pinus pinaster,
P. sylvestris). From the second half of the twentieth century, the presence of conifers was encouraged,
so that, according to the Spanish Forest Map, the dominant landscape is constituted by a mosaic of
artificial plantations of Pinus nigra, P. pinaster, and P. sylvestris, and, to a lesser extent, native vegetation
of broadleaved forests. Riparian species such as Salix spp., Alnus glutinosa, Populus nigra, and Prunus
lusitanica grow on the banks of watercourses. At the high elevation in the sierra, legume-brooms
(Cytisus purgans) dominate, intermingled with prostrate juniper shrubs (Juniperus comunis). Shrublands
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dominated by heather (Erica spp.) and rockrose (Cistus spp.) are present in abandoned and altered
areas at lower elevations.
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Figure 1. Location of the study area in west-central Spain. The digital terrain model has a spatial
resolution of 30 meters and was obtained from the Shuttle Radar Topography Mission (SRTM). The
areas with the highest elevation are shown in red, while the areas with the lowest elevation are shown
in green.

2.2. Data

2.2.1. Landsat Images

The study area is covered by a single Landsat scene (path-row: 202-032, Worldwide Referencing
System: WRS-2), available in the GEE (Google Earth Engine) catalogue [43]. All selected images
were corrected for radiometric, geometric, and terrain distortions with the Level-1 Surface Reflectance
Terrain-Corrected (LT1) processing level. The sensors Landsat Thematic Mapper (TM) and Landsat
Enhanced Thematic Mapper Plus (ETM+) have been corrected using the LEDAPS system algorithm,
and the sensor Landsat OLI/TIRS with the LaSRC system algorithm. These algorithms convert digital
numbers into surface reflectance using radiative transfer models to assure the intercalibration and
comparability of results across TM, ETM+, and OLI/TIRS sensors, making them suitable for time
series analysis [45–47]. Earlier images acquired by MSS sensor were not taken into account to ensure
homogeneity in spatial, spectral, and radiometric resolutions between all images in the LTS. In addition,
clouds, cloud shadows, haze, and water were detected and masked by the CFMASK algorithm to
avoid false detections of change. We evaluated 165 images (33 year × five images/yr) acquired in late
summer (between 20 July and 30 September) from 1984 to 2017, in order to use imagery from the same
time of the year, so that the vegetation conditions were similar, and to better characterize discrete
disturbance events, such as forest fires which occur mostly in summer [29]. The selection criteria of the
images were image quality equal to or greater than 7 (on a scale from 1 to 9), and cloud cover less than
70%. For images captured after May 2003, we preferred the Landsat 5 TM and 8 OLI/TIRS sensors over
the 7 ETM+ sensor, in order to avoid the data gaps caused by the Scan Line Corrector (SLC) failure
(for a more in-depth explanation see [48]). On GEE, the values of the missing pixels are classified as
‘NA’ values [49]. For our study, we used equivalent surface reflectance bands between TM, ETM+, and
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OLI/TIRS sensors: Red, Near Infrared (NIR), and Short Wave Infrareds (SWIR-1 and SWIR-2) at the
original 30 m spatial resolution. The Red and NIR bands are useful to discriminate vegetation slopes
and biomass content, while SWIR-1 and SWIR-2 typically have the highest response to burning among
the reflective spectral regions [50].

2.2.2. Auxiliary Data: Vegetation Maps, Digital Terrain Model, Orthophotography

We used the national LULC and forest maps available from the 1980s to the present in order to
perform the sampling and validation process of our LULC classification. The national LULC map
represents the main areas of crops, other uses, and unproductive lands of Spain. This map, at 1:50,000
scale, was developed for the period 1980–1990 by the Ministry of Agriculture, Fisheries and Food [51].
The Spanish Forest Map is the cartographic basis for the national forest inventory, which collects
data on the distribution of Spanish forests; it is updated every ten years [52]. In this work, we used
the forest maps for the periods: 1986–1998 (at scale 1:200.000), 1997–2006 (at scale 1:50.000), and
2007–2017 (at scale 1:25.000). We reclassified the LULC and forest maps’ legends to the standard
legend of the CORINE land cover project [53], following previous studies [9,54]: croplands (irrigated
and nonirrigated) and woody crops, agroforestry zones (open oak forests with pastures/grassland
called “dehesas”), burned areas (areas affected by recent fires for the same year of classification or
the previous ones, provided that fire scars remained identifiable), pastures (natural and artificial
herbaceous vegetation), shrublands, open forests (shrub or herbaceous vegetation with dispersed trees,
these covering < 30%), dense forests (separating broadleaved, coniferous, and mixed forests, with >

30% tree cover), and bare areas (areas without vegetation such as urban, industrial, snow-covered, etc.).
Moreover, we used orthophotos produced by the Spanish plan for aerial orthophotography

(PNOA) [55], with resolutions of 25 to 50 cm, taken between 2004 and 2017, for the visual validation
of training and validation points used in LULC classification. Finally, taking into account that
topography influences spatial patterns, composition, and flammability of vegetation [56], we used
information related to elevation and slope in the LULC classification. The Digital Elevation Model
(DEM) was obtained from the Shuttle Radar Topography Mission (SRTM) at a resolution of 1-sec arc,
i.e., 30 meters [57], which is available from the GEE archive. From this DEM we calculated the slopes
in degrees using ArcGIS 10.2.1. (Environmental Systems Research Institute, Inc., Redlands, CA, USA).

2.2.3. Collection 6 MODIS Burned Area Product (MCD64A1)

To assess the performance of the LandTrendr (LT) and FormaTrend (FT) algorithms in detecting
fire disturbance, we compared them with the Collection 6 MODIS Burned Area product (MCD64A1),
which is a monthly global grid containing information on the burned areas and quality per pixel,
ranging from 1 November 2000 to the present, available in the GEE data catalogue. The algorithm uses
a burn sensitive vegetation index derived from the MODIS short wave infrared band. The algorithm
identifies the Julian date of burn for the 500 m grid cells within each individual MODIS tile [24]. We
filtered all fire perimeters detected between 20 July and 30 September from 2001 to 2017 in order to
ensure that fire detection dates were equivalent between Landsat and MODIS. Moreover, we compared
fire perimeters derived from MODIS between 2001–2009 with those detected in a previous study using
pre- and postfire Landsat TM and ETM+ images, and validated using the National Forest Fire statistics
(see Viedma and del Campo, 2016 [58] for further details).

2.3. Methods

We applied a methodological process distributed into five phases (Figure 2). The first phase
was related to image processing and generation of spectral indices. The second phase included
LULC change analysis in LTS. The sampling process was implemented in phase 3. The annual LULC
classification and validation were performed in phase 4 and, finally, the fifth phase assessed the changes
in landscape fire hazard over time.
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2.3.1. Phase 1: Approach for Image Processing and Generation of Spectral Indices

In the first phase, we generated annual cloud-free Landsat composites through the application of
a pixel-based approach described by [28] in the GEE platform. This methodology takes the sequence
of pixel observations for each band and calculates a summary statistic of these observations called
“medoid” [28,59]. To remove clouds, cloud shadows, and haze, we filtered the values in bits of these
artefacts using “BitwiseAnd” and “neq” GEE functions, and then we reduced the unmasked pixels in
the image collection using “Reducer.Median”. In addition, we applied “buildSRcollection”, which builds
annual cloud and cloud shadow masked composites automatically [60].

Then, we calculated spectral transformations in order to enhance the discrimination of changes in
the land surface [61]. In this study, we calculated three spectral transformations: (i) the Normalized
Difference Vegetation Index (NDVI), which contrasts the difference in reflectivity between the Red
and the Near Infrared (NIR): [NDVI = (NIR−RED)/(NIR + RED)], to evidence changes in the
strength and density of green vegetation [62]. (ii) The Normalized Burn Ratio, which contrasts
the difference in reflectance between the NIR and the SWIR-2 (Short Wave Infrared): [NBR =

(NIR− SWIR− 2)/(NIR + SWIR− 2)] to identify burned areas, tree mortality, fuel consumption, and
ash coverage [63]. Finally, (iii) the orthogonal Tasseled Cap Transformation (TCT), which reduced
spectral data into three components: brightness (TCB), greenness (TCG) and wetness (TCW), to
improve the discrimination of the LULC characteristics [64].
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2.3.2. Phase 2: Change Analysis in LTS

We analyzed changes in LTS through the characterization of the spectral trajectory by pixel. In
this analysis, time was the independent variable and the values of certain spectral transformations
were the dependent variable. The decomposition model that iteratively adjusted to a linear trend [38]
was (Equation (1)):

Yt = Tt + St + et (1)

where Yt was the spectral information observed over time t, Tt the trend component, St the seasonal
component, and et the error in the data. We assumed that Tt was linear with cut points T1,..,Tm [38]
(Equation (2)):

Tt = α j + β jt (2)

The intercept αj and the slope βj were used to calculate the magnitude and direction of abrupt
and gradual changes [38]. The magnitude and direction, also called change metrics, were derived from
the difference between T and T-1 in the temporal segmentation of spectral trends for each pixel. In
regression, negative slopes indicate disturbance and positive, regeneration (Equation (3)):

magnitude = (α j−1 − α j) +
(
β j−1 − β j

)
t (3)

In this context, we applied two spectral-temporal segmentation algorithms available in GEE
which are useful to detect changes in LTS: (i) the FormaTrend (FT) algorithm (described in [42]),
and (ii) the LandTrendr (LT) algorithm (described in detail in [40,60]). Based on sensitivity analysis
(see Appendix A, Figure A1), we selected the NBR index as a dependent variable in both FT and
LT algorithms, because this index showed a greater capacity to detect low magnitude disturbances
compared to NDVI, as confirmed by several studies [40,65].

The FT algorithm performs an Ordinary Least Squares (OLS) linear regression on NBR values
versus time to identify areas with changes. Abrupt changes were estimated from linear regression in
the full-time series, and gradual changes were computed as the windowed minimum over the time
series. The result of FT is a three-band image including: type of change (gradual o abrupt) (type),
magnitude given in % (mag), and direction of change (dir). Conversely the LT algorithm adjusts the
pixel trend by simplifying the spectral trajectory in straight-line segments. This algorithm generates
four change metrics: year of change (year), mag, duration of change given in number of years (dur),
and the spectral value before the change (pre_change). LT requires a set of control parameters to ensure
the quality of change detection. To determine the optimal configuration of these parameters, we tested
different combinations through the app change mapper [66] (see Appendix A, Table A1). Finally, to
assess the performance of the FT and LT algorithms in detecting fire disturbances, we compared them
with the fires detected by the fire MODIS collection (MCD64A1). For that, we calculated, as a ratio, the
surface and the number of fires detected by MODIS, in relation to the surface and the number of fires
detected by the LT and FT algorithms.

2.3.3. Phase 3: Sampling Process

In this phase, stratified random sampling was conducted only in stable areas (i.e., with no LULC
change) to keep the same set of training and validation points in the classification of the entire LTS.
This strategy allowed us to increase the efficiency of the sampling process and ensure the spectral
characterization of each of the LULC types over time. We performed the identification of the stable
areas through the intersection between the areas without change on the vegetation maps and with the
stable areas (pixels whose slope in the temporal trajectory was equal to zero) identified by the FT and
LT algorithms. Due to the low temporal dynamics of most LULC types, it was possible to keep the
same training and validation points for all years of study, except for irrigated crops and fires, for which
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we performed the sampling year by year because they showed a high spectral variability over time.
The minimum sample size was calculated according to Equation (4) [67]:

n =
(
z2 p q

)
∗

(
e2
)−1

(4)

where z = 1.96 is the abscissa of the normal curve for a given probability level, p = 85% is the percentage
of estimated hits, q = 15% is the percentage of estimated errors, and e = 5% is the allowed level of error.

Of the 100% of the points generated per year (n = 2900), 60% were used as training points and
40% as validation points. The nonirrigated croplands (approximately 622,000 ha, 21% of the study
area) and shrublands (approximately 594,000 ha, 20.6%) were the classes with the highest proportion
of area; therefore, the sample size for these classes was larger. By contrast, the size of the mixed forest
(approximately 11,000 ha, < 1%) and open wood (approximately 60,000 ha, 2%) classes were smaller;
consequently, the sample size was smaller.

In order to reduce spectral variation within the same LULC class and increase the separability
between different classes, a spectral separability analysis and a filtering process over the stable sampled
points was performed. Scatter or spectral dispersion diagrams between band pairs and the Jeffries
Matusita (JM) distance were applied to estimate the heterogeneity of each class and to statistically
evaluate the separability between all possible class pairs, respectively [68]. JM values range from
0 to 1414. A JM value of 1414 suggests excellent class separation. A value above 1300 provides good
separation, while below 1100 there is low separability. In addition, we used two filters over the stable
sampled points to improve the spectral characterization of the LULC classes: (i) selecting only the
points with a probability of belonging to each class greater than 70% by means of a K-means cluster
analysis of the initial image of the time series (1984) (not shown); and (ii) eliminating the points that
did not adequately represent the spectral properties of each LULC type by analyzing the spectral
separability between classes and visual verification of each LULC class using the PNOA orthophotos.
Because nonirrigated croplands showed different spectral responses according to the phenology, we
improved the sampling process by dividing the class into three subclasses and merged them into a
single thematic category after classification.

2.3.4. Phase 4: Annual LULC Maps Classification and Validation

In this phase, we assessed the potential for inclusion of change metrics in the multitemporal
LTS classification. In this context, we performed a supervised classification of each annual Landsat
composite using three different classification methods. Method 1 had as independent variables the
original spectral information (Red, NIR, and SWIR), spectral transformations (NDVI, NBR, and TCT),
elevation, and slope. In Methods 2 and 3, besides the variables used in Method 1, we also included
the change metrics generated by the FT and LT algorithms, respectively. All the classifications were
performed using the Random Forest (RF) algorithm [69], due to its robustness and its ability to produce
high-quality outcomes with less training time, compared to other classifiers [70]. In GEE, the use
of RF requires adjusting the number of trees (k) used in the classification. Although the number of
decision trees (k value) used in LULC classification is generally 500, we used a k value of 100 to avoid
memory allocation problems in GEE, as using a number of trees greater than 100 has limited influence
on the accuracy of classification [71]. Then, we applied a spatial filter on the LULC maps using
GEE’s “connectedPixelCount” function to avoid “salt and pepper” effects. Finally, we implemented an
accuracy assessment to validate the LULC maps, using an error matrix. In this regard, we compared
the vegetation maps (national LULC map and Spanish Forest Map) with our LULC maps, using the
validation points generated in Phase 3. The statistical analysis of the error matrix was carried out using
the overall measure of the map’s reliability and the user’s and producer’s reliability [72].
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2.3.5. Phase 5: Landscape Fire Hazard Characterization

We detected LULC changes by comparing LULC maps every five years: 1984–1989; 1989–1994;
1994–1999; 1999–2004; 2004–2009; 2009–2014; and 2014–2017. To characterize the hazardousness of the
landscape, we reclassified the original LULC types into two classes based on previous studies [7–9,73,74]:
(i) Hazardous LULC types: pastures, shrublands, open forests, coniferous, and mixed forests; and
(ii) nonhazardous LULC types: bare areas, croplands, agroforestry areas, and broadleaved forests.
Moreover, to estimate if LULC changes led to a greater or lesser landscape fire hazard, we classified
LULC changes for each five-year period into the following change processes: (i) nonhazardous LULC
changes: artificialization, agriculture intensification, nonhazardous forest conversion, nonhazardous
densification, nonhazardous afforestation, and nonhazardous stability; and (ii) hazardous LULC
changes: deforestation, burning degradation, degradation, hazardous forest conversion, encroachment
by regeneration and by agriculture abandonment, hazardous densification, hazardous afforestation,
and hazardous stability (for a more in-depth explanation see Appendix B, Table A2).

3. Results

3.1. Landsat Images Composites

In 64.7% of the years considered it was possible to create the image composites using pixels
acquired within the target year and months (July–August–September). However, in 17.6% of cases,
we used pixels acquired one year before or after the target year to cover small areas that remained
without data. Specifically, the years 2004 and 2012 had areas without data, due to the failures of the
Landsat 7 sensor. In addition, in approximately 17% of the years evaluated, it was not necessary to
make a composite image, since there was a single image with 0% cloud cover captured within the
target time window. Approximately 55% of the pixels in the time series were acquired in August, 39%
in September, and 5% in July. Figure 3 shows an example of the image composite generated for the
year 2003.
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3.2. Change Analysis

From the temporal segmentation performed using the LT and FT algorithms, we identified: (i)
stable areas where the spectral response of the pixel did not change during the entire LTS; therefore,
we assigned a single LULC class during the entire period (Figure 4a), (ii) recovery areas with positive
slope (Figure 4b), and (iii) disturbed areas with negative slope, which were indicated as breakpoints or
abrupt changes in the spectral trajectory of the pixel (Figure 4c,d) [75].Forests 2019, 10, x FOR PEER REVIEW 10 of 30 
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Figure 4. Graph depictions of the spectral trends observed at pixel level using the Normalized Burn
Index (NBR) scaled by 1000 from 1984 to 2017. (a) Stable areas over time; (b) recovery areas; (c)
disturbed areas with a high magnitude of change; and (d) disturbed areas with a low magnitude
of change.

The spatial pattern of disturbance and recovery, using the FT algorithm, was rendered as a
gradient according to the change magnitude, showing smooth and abrupt changes from the initial year
up to any year of the series. For the year 2003, which was a year with a high number of large fires in
our study area, the resulting map showed that in the north, disturbance and recovery events were
associated with agricultural activities; in the central zone, the changes were predominantly abrupt
and short-term, mostly caused by fires, while stable zones were distributed throughout the study area,
occurring mainly in bare areas, grasslands, and shrublands (Figure 5).

The simple relationship between the fires detected by MODIS and the fires detected by LT and FT
indicates that the FT algorithm detected 95% of MODIS fires, while the LT algorithm detected 83% of
them. In terms of area ratio, FT was able to detect 64.9% of the fire areas, whereas LT only 34.46%,
which indicated that LT had a lower ability to identify low-severity burned areas. It is important to
note that LT and FT can detect burned areas below the MODIS size detectability threshold, however,
if the spectral signal of change is light, neither LT nor FT will be able to detect it. Moreover, when
MODIS detects any burn pixel located on the edge of the fire or on a non-burning island within the
fire, it can overestimate the burn area with respect to Landsat because of its large pixel size (500 m
versus 30 m). Accordingly, the area detected by MODIS was always slightly larger than the burned
area detected by the LT and FT algorithms, resulting in commission errors in the MCD64A1 burned
area maps (Figure 6).
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Figure 5. Spatial patterns of disturbance and recovery by Forma Trend (FT) for the year 2003. The areas
without change (stability) appear in yellow, areas of recovery in green, and areas of disturbance in red.
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Figure 6. Performance of both algorithms (LandTrend [LT] and FormaTrend [FT]) in detecting
disturbances caused by fires, compared to the burned areas detected by the MCD64A MODIS product.
The left column shows two large fires in the Landsat image composition RGB 543: (a) fire in the year
2003 and (b) fire in the year 2009. The central column shows the LT detection: (c) in 2003 and (d) in 2009.
Finally, the right column shows the FT detection (e) in 2003 and (f) in 2009. In red tones are the largest
negative magnitudes, followed by orange, yellow, up to green tones, which indicate disturbances with
low magnitudes. The visible burned grid cells are the fire areas detected by MODIS.
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3.3. Training and Validation Points

The spectral separability analysis performed using the Jeffries Matusita (JM) distance (Appendix C,
Table A3), and the spectral dispersion diagrams between pairs of bands (Appendix C, Figure A2),
indicated that despite the accurate sampling of LULC classes, open woods and mixed forests had
similar spectral signatures to conifer and broadleaved forests as well as to woody crops (JM distance
values between 900 and 1100). Additionally, the spectral response of pastures showed a low separability
with shrublands, agroforestry areas, and nonirrigated croplands.

3.4. Annual LULC Maps

The overall accuracy of LULC maps using the three classification methods was rather high for the
entire time series (Table 1). Method 1 (spectral information + vegetation indices + elevation + slope)
showed the lowest accuracy (81.11%). Method 2 (variables of Method 1 + change metrics generated by
FT) increased the accuracy of the classification to 85.07%. However, Method 3 (variables of Method 1 +

change metrics generated by LT), slightly decreased the classification accuracy of Method 2 to 84.23%
(see Appendix D, Figure A3 to view the LULC map for 2003).

Table 1. Overall accuracy of the Landsat Time Series (LTS) classification using different methods.

General Accuracy of the Classification (%)

Method 1: Spectral Information + Vegetation Indices + Elevation + Slope 81.11 ± 0.043

Method 2: Variables of Method 1 + Change Metrics generated by FormaTrend 85.07 ± 0.012

Method 3: Variables of Method 1 + Change metrics generated by LandTrendr 84.23 ± 0.014

To assess the relative importance of each explanatory variable, we carried out RF classifications
with single variables (not shown). From these models, we observed that none of the variables alone
explained more than 60% of the spectral variability of the LULC types. According to this, we included,
step by step, only the variables which were able to increase the accuracy of the classification. Regarding
the additive accuracy, we found that Red and NIR were the variables which gave greater accuracy
to the classification (34% and 23% respectively), followed by SWIR-1 (10%), and slope (5%) (Table 2).
Furthermore, the variables elevation, change magnitude (mag), change direction (dir) and change type
(type) were included in the group of good predictors because they increased the accuracy of the LULC
maps by 4%. Variables with a lower impact on the classification, but that also increased accuracy were:
NBR, brightness, greenness, and wetness. By contrast, the NDVI, change year (year) and prechange
spectral value showed a slightly negative effect on the accuracy of the classification (Table 2).

Table 2. Overall accuracy of the classification for different methods.

Number of
Bands/Indices/Change

Metrics
Band/ Index/Change Metrics Set Overall

Accuracy

1 Red 0.34

2 Red, NIR 0.57

3 Red, NIR, SWIR 0.67

4 Red, NIR, SWIR-1, SWIR-2 0.69

7 Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW 0.71

8 Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR 0.73

9 Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR, NDVI 0.72

10 Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR, NDVI, Slope 0.77

11 Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR, NDVI, slope, elevation 0.81
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Table 2. Cont.

Number of
Bands/Indices/Change

Metrics
Band/ Index/Change Metrics Set Overall

Accuracy

14 FT variables: Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR, NDVI, slope,
elevation, type, mag, dir. 0.85

17 LT variables: Red, NIR, SWIR-1, SWIR-2, TCB, TCG, TCW, NBR, NDVI, slope,
elevation, type, mag, dir, dur, year, prechange 0.84

In general, omission errors were lower than commission errors in all the years. Open wood, mixed
forests, and pastures were the LULC types that showed the most omission and commission errors
in the classifications using Methods 2 and 3. However, Method 2 (Figure 7a) had less omission and
commission errors in all LULC classes compared to Method 3 (Figure 7b). Based on these results, we
selected Method 2 (i.e., variables of method 1 + change metrics generated by FT) to produce the annual
LULC maps, to characterize the dynamics of change over the last 34 years, and to assess changes in
landscape fire hazard.
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3.5. Landscape Fire Hazard Characterization

In absolute terms, the landscape was rather stable, since the areas that did not change occupied
approximately 80% of the total surface, increasing over time (varying from 74% in the period 1984–1989
to 82% in 2014–2017). In this context, nonhazardous stable LULC classes occupied 45–49% of the total
area, and hazardous ones covered 28–33% during the study period. Nevertheless, more than 20% of
the territory experiencing changes was a considerable value.

Regarding LULC changes experienced during the 34 years of study, more area was affected
by processes that increased landscape fire hazard (1,803,917 ha) than by those that decreased it
(1,136,676 ha). The most important nonhazardous LULC change was agrarian intensification, while
artificialization and nonhazardous densification were less abundant (Figure 8). On the other hand, the
most important hazardous LULC changes during the entire period were deforestation, agriculture
abandonment, hazardous densification, hazardous afforestation, and degradation. The processes that
increased the hazardousness of the landscape were spatially aggregated at the eastern and western
edges of our study area, where conifers and shrublands predominate. To the contrary, the processes
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that decreased landscape hazard were concentrated mainly in the center and north of the study area
(Figure 9, see Appendix E, Figure A4 for the entire series of maps).Forests 2019, 10, x FOR PEER REVIEW 14 of 30 
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The rate of change of the hazardous and nonhazardous LULC processes decreased over time.
Among nonhazardous changes, agrarian intensification was the only process that showed a significant
trend, with a rate of change which varied from 8% in the first five-year period (1984–1989) to 5.4% in
the last five-year period (2014–2017). Similarly, several LULC hazardous rates of change were reduced:
deforestation rates went from 4.6% to 3.3%, and encroachment by agricultural abandonment from 4%
to 2.6%. The remaining hazardous processes (i.e., hazardous densification, hazardous afforestation,
and degradation) had very low rates of change (< 2.5%) over time (Figure 10).
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Figure 10. Rates of change between the first and last five-year periods for the processes derived from
LULC changes.

The area affected by fires decreased over time. The most affected years by fires were 1985 (with
approximately 20,166 ha burned), followed by 1986 (19,215 ha) and 1990 (7,218 ha) (Figure 11). During
the periods 1989–1994, 1994–1999, 1999–2004, and 2009–2014, the LULC type most affected by fire was
shrublands (70%, 90%, 69%, and 59% in each period, respectively), while during the periods 1984–1989,
2004–2009, and 2014–2017, the LULC type with the greatest area burned was coniferous forest (69%,
43%, and 70% respectively). In general, these two LULC types were the most affected by fires in all the
years under study (Figure 12).Forests 2019, 10, x FOR PEER REVIEW 16 of 30 
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4. Discussion

4.1. Methodological Issues

In order to maximize classification accuracy, input images must have minimal contamination
from clouds, haze, or shadows, as these are an important obstacle to studying the ground surface [76].
In this study, we used a simple and robust statistics-based composites method (“medoid”) that does
not need to set parameters and could be automated for application into very large data collections and
time series. In spite of the potential offered by the “medoid” technique, the resulting image collection
presented areas without information. This situation underlines the need to complement the analysis
with other sensors with similar spectral and spatial characteristics (e.g., Sentinel 2 available from
2015) [29].

Regarding the change analysis, we demonstrate the utility of LT and FT algorithms to detect
LULC changes in our study area. However, as with automated algorithms, there are some limitations
in their application. For example, FT, in contrast to LT, does not have the ability to generate metrics
that are very useful when studying the postdisturbance regeneration, such as year, duration of change,
and the spectral values before the change. The LT algorithm, although generating these metrics in
some years of the time series, can present misidentified change events (omission errors) [77–79] and
false detections (commission errors) [39]. Therefore, studies interested in obtaining the most accurate
time segmentation have performed the LTS analysis using methodologies that allow greater control
by the user, either through human interpretation [27], or by using algorithms such as TimeSync [80].
Our results indicate that LT had a lower ability to detect low severity burned areas, compared to the
FT algorithm. These results may be mainly caused by the effect of residual interannual noise (e.g.,
phenology, sun-angle, and residual atmospheric effects), and because LT is a complex system with many
control parameters, and therefore is very sensitive to inaccurate calibration. Thus, it is recommended to
perform a true sensitivity analysis or parameter optimization more exhaustive than the one performed
in this study, to determine how changing those parameters and the spectral transformations used in
the detection of changes affects final outcomes. These results have to be taken with caution because we
compared the LT and FT results with the MCD64A1 burned area product derived from the MODIS
satellite, which has lower resolution than Landsat. Thus, the minimum size of a land cover change
detectable with Landsat data is much smaller than that detectable with MODIS. In this respect, a more
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precise approach would be a validation method using independent data taken from sensors with the
same or higher resolution than that available from Landsat.

Moreover, to improve the spectral separability of complex LULC types and to perform a
consistent spectral characterization over time, we collected space-time reference samples reducing
the spectral-temporal variability [81]. For this purpose, a stratified random sampling only on the
stable areas throughout the time series, allowed us to keep fixed most of the training and validation
points during all the years, increasing the efficiency of the sampling process. In addition, we included
“auxiliary data” related to the topography (elevation and slope) improving our classification, mainly
because the spatial patterns of vegetation in Sierra de Gredos is highly influenced by topography [56].
Apart from topography, it is possible to include additional auxiliary data to increase the accuracy
of LULC mapping or even to classify them as fuel complexes, such as LiDAR (Light Detection and
Ranging), hyperspectral, and environmental data, such as bioclimatic regions (precipitation and
temperature) [82]. This type of information has led to a significant increase in the overall LULC
classification accuracy relative to the pure spectral information input [83,84]. However, the LiDAR
data are often limited to the last years of the time series; therefore, only auxiliary data that are both
available and consistent over time should be included. Moreover, processing LiDAR data over large
areas is rather impractical due to the high data volume.

In the LULC classification and validation phase, we demonstrate that information about the type
of change (disturbance or recovery) and its magnitude and direction, derived from the FT and LT
algorithms, are important variables for predicting the LULC types and that those variables increased
the overall accuracy of our LULC maps by 4%, compared to the classification of single date spectral
variables. This confirms previous works [25,33,40,75] that indicated that the LULC composition at
any point in time is linked to past disturbance and recovery events, so that change is not simply a
contrast between conditions at two times points, but a continuous process that operates at both rapid
(abrupt changes) and slow (gradual changes) rates in the landscape. However, some metrics from the
LT algorithm, such as the time in which the change occurs (year), the duration of the change (dur)
and the spectral value prior to the change (prechange) had a slightly negative effect on the accuracy
of the classification. This was contrary to the results obtained by Franklin et al. 2015 [33] who used
change metrics to increase the accuracy of the LULC maps in a managed forest area in south-eastern
Canada, finding that the change metrics magnitude and duration were important variables for their
LULC classification. Therefore, it is evidenced that the importance of the variables can change with
the type of landscape, being convenient to separately analyze the applicability of each one of the
variables in other study areas. Future research will evaluate the utility of the other change metrics
(e.g., duration, year, and prechange) to study the postdisturbance regeneration rate, depending on the
different LULC types.

4.2. Changes in Landscape Fire Hazard

In absolute terms, approximately 20% of the landscape has changed during the study period. In
terms of nonhazardous changes, we found that the agrarian intensification homogenized the northern
and south-eastern areas of our landscape, with large areas dedicated to intensive agriculture. Regarding
hazardous changes, deforestation, agriculture abandonment, and hazardous densification by conifers
were the most salient changes, which appear to considerably affect fire activity. In our study area, the
most affected LULC types by fires were conifer forests and shrublands, which confirms the results
indicated by Moreno et al. 2011 [6] in the same study area, in which fire showed positive selectivity for
these LULC types. These results also validate the characterization of hazardous change processes in
Mediterranean landscapes by several previous authors [7–9,73,74,85]. Here, the increase of conifer
forests occurred due to both hazardous afforestation and hazardous densification. This increase began
in the second half of the twentieth century, due to the forest management of that time [86]. These
monospecific pine stands from anthropogenic origin have been more sensitive to fires and have favored
large and intense fires [87], whereas broadleaved forests have been able to cope well with current and
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past fire regimes, although a recent trend toward higher fire occurrences has been observed [54]. Shifts
from pine-dominated to oak-dominated stands may play an important role in further reducing overall
landscape fire hazard by offering enhanced firefighting opportunities [7]. For example, in areas where
coniferous forests are known to burn the most, intermingling with mixed or broadleaved forests could
be an effective way to reduce fire spread [5]. Moreover, the densification of open forests and agroforestry
areas, due to the abandonment of traditional forest practices such as grazing, have augmented the
extension of dense conifer or mixed forests. In addition, the proliferation of shrublands as a result of
encroachment, due to both regeneration of burned areas and agriculture abandonment, have increased
the spatial continuity of hazardous vegetation, which might have favored fire spread [5,9,88].

In this sense, although a decrease in fire activity has been observed, this trend does not necessarily
imply that the landscape is less hazardous. On the contrary, the continued abandonment of traditional
agriculture activities implies that there is a currently greater wildfire risk due to the build-up of large
and continuously growing vegetation prone to burn [5,9]. A common practice before agricultural
abandonment in the 1970s was to maintain and improve pastures to avoid encroachment through
proper management of livestock [89]. Livestock played an important role in firefighting that was
interrupted when crop cultivation/plant production was separated from livestock in the second half of
the twentieth century, and most notably in the 1970s, linked to the incentive system of the European
Union agricultural policy [9,86]. This resulted in the proliferation of large fires in the area, as happened
in 1985. Afterwards, the use of fire was regulated and prohibited in times of high risk, and new efficient
firefighting services were implemented [15,54], such that fires have progressively decreased. However,
in a context of increased extreme fire weather conditions due to global warming, the fire regime could
shift to more severe fires. Current firefighting capacity may be overridden when wind, topography,
high fuel load, and fuel continuity facilitate fire propagation [90].

Moreover, although LULC stability was dominant, this did not mean that fire hazardousness had
not increased in the landscape over time [9,91]. Stability through time in terms of land cover does not
necessarily mean stability of other vegetation properties related to flammability, as they may change
with age, or the accumulation of litter in conifer forests [88,92], which increases susceptibility to fire
over time [93]. For burned areas, shrublands that develop after a fire can reach almost continuous
coverage in a few years, as well as accumulate large amounts of highly flammable biomass [94].
Consequently, the evaluation of the interaction between fires and landscape should not be limited only
to the analysis of the spatial occupation of LULC types, since the structure and state of the vegetation
must also be taken into account. Future research will consist of prioritizing representative areas, with
different bioclimatic and vegetation characteristics, to characterize and compare fuel types, using
LULC types and LiDAR data, which could facilitate valuable information regarding vegetation height
and structure.

5. Conclusions

Spectral trajectories and change metrics derived from LandTrendr (LT) and FormaTrend (FT)
algorithms have allowed a robust and consistent spectral characterization of LULC types over time.
In addition, this type of analysis also increased the accuracy of the LULC classification. However,
some of the change metrics have had a slightly negative effect on the classification, suggesting that
the real potential of these metrics is the analysis of postdisturbance dynamics rather than being just
another variable in the classification process. In addition to this, we found that the FT algorithm had
a greater ability than the LT algorithm to identify low-severity fire disturbances. Nevertheless, the
LT algorithm, unlike the FT algorithm, generates change metrics that are very useful when studying
the dynamics of postdisturbance regeneration of vegetation, such as year, duration of change, and
the spectral values before the change. Moreover, the Google Earth Engine (GEE) has proved to be a
powerful free access tool to automate processes for image composition, change metrics generation, and
LULC maps classification, as well as having advanced algorithms and an extensive data catalogue
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which is accessible and easy to use. This is important because it reduces the need to download and
store large amounts of data.

In relation to the landscape dynamics, we found that the most important change processes during
the study period were agrarian intensification, deforestation, encroachment by abandonment, and
hazardous densification. However, these changes have slowed down, increasing the extension of stable
areas over time. We also observed that the incidence of fires has decreased over time, after peaking in
1985, in spite of an increase of risk factors, including climate change. That means that the recent trend
in fire activity is being largely decoupled from trends in climate and landscape hazard, suggesting that
fire suppression efforts have been effective. The most affected LULC types by fire were mainly conifer
forests and shrublands. In this context, fire management should focus on those vegetation types,
favoring silvopastoral practices and afforestation with fire-resistant and resilient species. Although
LULC maps are an excellent tool to support long-term fire prevention planning, it is important that this
information is complemented with spatially continuous information relative to the vertical structure of
vegetation (e.g., height, biomass, diameter, and crown volume), as these characteristics are important
for fire propagation and behavior. With the vegetation structure data, it will be possible to obtain
a deeper knowledge of the interaction between the landscape and forest fires, complementing the
spectral information of satellite images about the severity of change and regenerative dynamics. All of
this may contribute to the improvement of fire management plans in the study area.
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Appendix A

Sensitivity analysis to select the appropriate spectral index for change analysis in the FT (Forma
Trend) and LT (LandTrendr) algorithms:

We performed a comparative analysis of the NDVI and NBR sensitivity to discriminate prefire,
fire and postfire conditions in several fires that occurred in 2003. In this regard, we observed that the
NDVI and NBR indices allowed us to distinguish effectively between prefire vegetation, burned areas,
and areas under regeneration. However, the NBR values of prefire, fire, and postfire were significantly
different from each other (Figure A1a). By contrast, the variation in the NDVI values (Figure A1b) had
more subtle variations than the NBR values.

To determine the optimal configuration of the LT parameters, we tested different configurations.
In this context, to remove small spectral changes, we examined the impact of filtering using thresholds
of the magnitude-of-change: treeLoss1 and treeLoss20. For this purpose, we calculated the difference
between the response of the NBR predisturbance (Pre-Fire) and the NBR disturbance (year of fire)
for several fires. Based on these values, we visually assessed three different combinations: the first
combination with treeLoss1 = 100 and treeLoss20 = 150, the second combination with treeLoss1 = 110
and treeLoss20 = 200, and the third combination with treeLoss1 = 200 and treeLoss20 = 215. The
first combination was less restrictive in detecting changes and therefore overestimated disturbances
(commission error). On the contrary, the third combination was the most restrictive, thus it omitted
many real disturbances (omission error). For this reason, we selected the second combination of these
two parameters (Table A1), because it was the combination that optimized the balance between false
positives and false negatives. We used a minimum mapping unit of approximately 1.26 ha (14 pixels).
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Table A1. Selected parameters to perform time spectral segmentation in LT algorithm.

Type Parameters Value

Segmentation

maximum number of segments 6
spikeThreshold 0.9

recovery threshold 0.25
p-value for the fitted trajectory 0.05

Change magnitude filter

tree_loss1 110
tree_loss20 200

pre_val_loss 400
mag_tree_gain 300
pre_val_gain 300

* Note: treeLoss20 is the minimum value of NBR negative variation in 20 years or more to be considered disturbance
and treeLoss1 is the minimum value of NBR negative variation between two years to be considered disturbance. The
full meaning of the parameter can be found in [40].
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Appendix B

Table A2. LULC change processes categorized by their hazardousness to fire.

Type LULC Change From To

Nonhazardous changes

Artificialization All LULC types Bare areas

Agriculture intensification All LULC types

Croplands ( nonirrigated, irrigated or woody
crops)
Agroforestry areas
Pastures

Nonhazardous stability

Croplands (nonirrigated, irrigated or woody crops) Croplands (nonirrigated, irrigated or woody
crops)/Agroforestry areas

Agroforestry areas Agroforestry areas/ Croplands (nonirrigated,
irrigated or woody crops)

Bare areas Bare areas
Broadleaved Forest Broadleaved Forest

Nonhazardous forest conversion Forest (coniferous, mixed and open) Broadleaved Forest

Nonhazardous densification Open Forest Broadleaved Forest

Nonhazardous afforestation
Croplands (nonirrigated, irrigated or woody crops)

Broadleaved ForestPastures
Shrublands
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Table A2. Cont.

Type LULC Change From To

Hazardous changes

Deforestation
Agroforestry areas Shrublands/pastures/burnt areas
Broadleaves Forest Open forests/shrublands/pastures
Forest (coniferous, mixed and open) Open forests/shrublands/pastures

Burning degradation All LULC types Burnt areas

Degradation Shrublands Pastures

Hazardous forest conversion Mixed Forest Coniferous forest

Encroachment Burnt areas/bare areas Pastures, Shrublands

Agriculture abandonment
Croplands (nonirrigated, irrigated or woody crops) Pastures/shrublands
Agroforestry areas Open forests/shrublands/pastures
Pastures Shrublands

Hazardous densification
Open Forest Forest (coniferous and mixed)
Shrublands Open Forest

Hazardous afforestation

Croplands (nonirrigated, irrigated or woody crops)

Forest (coniferous, mixed and open)Agroforestry areas
Pastures
Shrublands

Hazardous stability Forest (coniferous, mixed and open) Forest (coniferous, mixed and open)
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Appendix C

Table A3. The spectral separability analysis using the Jeffries Matusita (JM) distance for the 1985 classification.

Class Nonirrigated
Crops

Irrigated
Crops Burnt Woody

Crops Agroforestry Pastures Broadleaved Coniferous Mixed Shrublands Open
Forest

Bare
Areas

Nonirrigated crops 0.0
Irrigated crops 1407.6 0.0

Burnt 1411.9 1414.1 0.0
Woody Crops 1241.5 1348.9 1409.9 0.0
Agroforestry 1319.2 1403.3 1410.9 1003.9 0.0

Pastures 1211.4 1403.9 1412.9 1056.4 902.7 0.0
Broadleaved 1411.1 1231.1 1413.8 1341.5 1381.6 1397.2 0.0
Coniferous 1413.1 1393.4 1406.4 1390.3 1395.1 1412.0 1301.7 0.0

Mixed 1412.7 1409.1 1409.5 1374.8 1360.3 1406.5 1355.0 1201.9 0.0
Shrublands 1373.0 1400.6 1380.5 1175.2 1050.1 1288.9 1360.6 1288.5 1208.1 0.0
Open forest 1408.7 1360.6 1410.6 1306.7 1332.0 1392.9 1090.9 1096.6 982.4 1178.9 0.0
Bare Areas 1165.7 1408.2 1386.8 1107.9 1265.0 1281.4 1409.4 1403.9 1403.8 1259.8 1394.6 0.0

* Note: JM values range from 0 to 1414. A JM value of 1414 suggests excellent class separation. A value above 1300 provides good separation, while below 1100 there is low separability.
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