Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. In-Situ Precipitation Data
2.2.2. CHIRPS Precipitation Data
3. Methods
3.1. Point-to-Pixel Method
3.2. Accuracy Statistics
3.3. Categorical Statstics
4. Results and Discussion
4.1. Daily Scale Assessment
4.1.1. Daily Comparison
4.1.2. Daily Detection Skill
4.1.3. Daily Accuracy Skill
4.2. Monthly Scale Assessment
4.2.1. Monthly Comparison
4.2.2. Monthly Accuracy Skill
4.3. Seasonal Scale Assessment
4.4. Annual Scale Assessment
4.5. More Discussions
5. Conclusions
- CHIRPS performance depends heavily on the temporal scale. Longer temporal scales were the most accurate, while the daily scale was observed to be the worst.
- CHIRPS estimates well light events (<5 mm). In more intense events, CHIRPS estimates have higher bias and error magnitude.
- During the hydrological year, CHIRPS estimation is better correlated in wet months than dry months.
- Detection skill was generally poor, with an under-estimation trend in all gauge locations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Zambrano, F.; Wardlow, B.; Tadesse, T.; Lillo-Saavedra, M.; Lagos, O. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmos. Res. 2017, 186, 26–42. [Google Scholar] [CrossRef]
- Nawaz, M.; Iqbal, M.F.; Mahmood, I. Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmos. Res. 2021, 248, 105289. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Al-Awadhi, T.; Sherief, Y.; Harsanyie, E.; El Kenawy, A.M. Space and time variability of meteorological drought in Syria. Acta Geophys. 2020, 68, 1877–1898. [Google Scholar] [CrossRef]
- Homsi, R.; Shiru, M.S.; Shahid, S.; Ismail, T.; Harun, S.B.; Al-Ansari, N.; Chau, K.W.; Yaseen, Z.M. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comput. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ. Change 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Zakhem, B.A.; Kattaa, B. Cumulative drought effect on Figeh karstic spring discharge (Damascus basin, Syria). Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Kattan, Z. Characterization of surface water and groundwater in the Damascus Ghotta basin: Hydrochemical and environmental isotopes approaches. Environ. Geol. 2006, 51, 173–201. [Google Scholar] [CrossRef]
- Gleick, P.H. Water, drought, climate change, and conflict in Syria. Weather. Clim. Soc. 2014, 6, 331–340. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid. Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Levizzani, V.; Cattani, E. Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tang, G.; Gentine, P. PrecipGAN: Merging microwave and infrared data for satellite precipitation estimation using generative adversarial network. Geophys. Res. Lett. 2021, 48, e2020GL092032. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P.; Yarosh, Y.; Janowiak, J.E.; Arkin, P.A. CMORPH: A “morphing” approach for high resolution precipitation product generation. In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2009; pp. 23–37. [Google Scholar]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Narulita, I.; Fajary, F.R.; Mulyono, A.; Kusratmoko, E.; Djuwansah, M.R. Application of Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) satellite data for drought mitigation in Bintan island, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012052. [Google Scholar]
- Perdigón-Morales, J.; Romero-Centeno, R.; Pérez, P.O.; Barrett, B.S. The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database. Int. J. Climatol. 2018, 38, 2174–2186. [Google Scholar] [CrossRef]
- Saeidizand, R.; Sabetghadam, S.; Tarnavsky, E.; Pierleoni, A. Evaluation of CHIRPS rainfall estimates over Iran. Q. J. R. Meteorol. Soc. 2018, 144, 82–291. [Google Scholar] [CrossRef] [Green Version]
- Ghozat, A.; Sharafati, A.; Hosseini, S.A. Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theor. Appl. Climatol. 2021, 143, 211–225. [Google Scholar] [CrossRef]
- Alejo, L.A.; Alejandro, A.S. Validating CHIRPS ability to estimate rainfall amount and detect rainfall occurrences in the Philippines. Theor. Appl. Climatol. 2021, 145, 967–977. [Google Scholar] [CrossRef]
- Aksu, H.; Akgül, M.A. Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theor. Appl. Climatol. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Luo, X.; Zhang, Y.; Ji, X.; Li, X. Performance evaluation of the CHIRPS precipitation dataset and its utility in drought monitoring over Yunnan Province, China. Geomat. Nat. Hazards Risk 2019, 10, 2145–2162. [Google Scholar] [CrossRef] [Green Version]
- Nashwan, M.S.; Shahid, S.; Dewan, A.; Ismail, T.; Alias, N. Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation. Atmos. Res. 2020, 236, 104809. [Google Scholar] [CrossRef]
- Wolfart, R. Hydrogeology of the Damascus basin (southwest-Syria). Int. Assoc. Sci. Hydrol. 1964, 64, 402–413. [Google Scholar]
- Masterman, E.W.G. Damascus, the oldest city in the world. Biblical World 1989, 12, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Abrantes, F.; Congedi, L.; Dulac, F.; Gacic, M.; Gomis, D.; Goodess, C.; Hoff, H.; Kutiel, H.; Luterbacher, J.; et al. Introduction: Mediterranean climate—Background information. In The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Amsterdam, The Netherlands, 2012; pp. xxxv–xc. [Google Scholar]
- Bolle, H.J. Climate, climate variability, and impacts in the Mediterranean area: An overview. Mediterr. Clim. 2003, 5–86. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zou, Y.; Zhang, G.; Linderman, M. A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. Int. J. Climatol. 2015, 35, 2898–2907. [Google Scholar] [CrossRef]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Helmi, A.M.; Abdelhamed, M.S. Evaluation of CMORPH, PERSIANN-CDR, CHIRPS V2. 0, TMPA 3B42 V7, and GPM IMERG V6 Satellite Precipitation Datasets in Arabian Arid Regions. Water 2022, 15, 92. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2019; p. 100. [Google Scholar]
- Prat, O.P.; Barros, A.P. Assessing satellite-based precipitation estimates in the Southern Appalachian mountains using rain gauges and TRMM PR. Adv. Geosci. 2010, 25, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Ide, T. Climate war in the Middle East? Drought, the Syrian civil war and the state of climate-conflict research. Curr. Clim. Change Rep. 2018, 4, 347–354. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, Y.; Ren, X.; Yao, Y.; Hao, Z.; Cai, W. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Nat. Hazards 2018, 92, 155–172. [Google Scholar] [CrossRef]
- Nicholson, S.E. Dryland Climatology; Florida State University: Tallahassee, FL, USA, 2011. [Google Scholar]
- Geleta, C.D.; Deressa, T.A. Evaluation of climate hazards group infrared precipitation station (CHIRPS) satellite-based rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia. Eng. Rep. 2021, 6, 12338. [Google Scholar] [CrossRef]
- Hsu, J.; Huang, W.R.; Liu, P.Y.; Li, X. Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sens. 2021, 13, 254. [Google Scholar] [CrossRef]
- Upadhyay, S.; Silwal, P.; Prajapati, R.; Talchabhadel, R.; Shrestha, S.; Duwal, S.; Lakhe, H. Evaluating magnitude agreement and occurrence consistency of CHIRPS product with ground-based observations over medium-sized river basins in Nepal. Hydrology 2022, 9, 146. [Google Scholar] [CrossRef]
- Middleton, N.J.; Sternberg, T. Climate hazards in drylands: A review. Earth-Sci. Rev. 2013, 126, 48–57. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Song, Y.; Duan, Z.; Mo, K.; Wang, Z.; Chen, Q. Performance of multiple satellite precipitation estimates over a typical arid mountainous area of China: Spatiotemporal patterns and extremes. J. Hydrometeorol. 2020, 21, 533–550. [Google Scholar] [CrossRef]
- Duan, Y.; Barros, A.P. Understanding how low-level clouds and fog modify the diurnal cycle of orographic precipitation using in situ and satellite observations. Remote Sens. 2017, 9, 920. [Google Scholar] [CrossRef] [Green Version]
- Speirs, P.; Gabella, M.; Berne, A. A comparison between the GPM dual-frequency precipitation radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J. Hydrometeorol. 2017, 18, 1247–1269. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Kirstetter, P.E.; Hong, Y.; Gourley, J.J.; Schwaller, M.; Petersen, W.; Zhang, J. Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeorol. 2013, 14, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Arulraj, M.; Barros, A.P. Improving quantitative precipitation estimates in mountainous regions by modelling low-level seeder-feeder interactions constrained by Global Precipitation Measurement Dual-frequency Precipitation Radar measurements. Remote Sens. Environ. 2019, 231, 111213. [Google Scholar] [CrossRef]
Rain Gauge | Latitude | Longitude | Elevations | M.A.P * | Missing | ES ** | Climate | Location |
---|---|---|---|---|---|---|---|---|
DA *** | 33°24″ | 36°30″ | 616 | 160 | 17% | 3409 | Hot steppe | Inland |
Douma | 33°24″ | 36°24″ | 655 | 167 | 18% | 3377 | Hot steppe | Inland |
Barzh | 33°33″ | 36°18″ | 842 | 170 | 17% | 3429 | Hot steppe | Inland |
Qasioun | 33°32″ | 36°17″ | 1050 | 277 | 17% | 3430 | Hot steppe | Inland |
Aqraba | 33°26″ | 36°22″ | 659 | 143 | 17% | 3417 | Hot steppe | Inland |
Al Hijaz | 33°30″ | 36°17″ | 700 | 156 | 17% | 3409 | Hot steppe | Inland |
Al Mazzeh | 33°30″ | 36°14″ | 745 | 200 | 18% | 3367 | Hot steppe | Inland |
Al Zabadani | 33°41″ | 36°06″ | 1150 | 540 | 7% | 6529 | Cold steppe | Highland |
Bloudan | 33°44″ | 36°08″ | 1550 | 205 | 7% | 6541 | Cold steppe | Highland |
Serghaya | 33°48″ | 36°09″ | 1450 | 586 | 2% | 6835 | Cold steppe | Highland |
Huraira | 33°36″ | 36°11″ | 1600 | 490 | 6% | 6498 | Cold steppe | Highland |
Madaya | 33°41″ | 36°08″ | 1300 | 510 | 8% | 6467 | Cold steppe | Highland |
Statistical Metric | Equation | Optimal Value |
---|---|---|
Pearson correlation coefficient | 1 | |
Mean Error | 0 | |
Mean Absolute Error | 0 | |
Root-Mean-Square Error | 0 | |
Percent Bias | 0 |
Skill | Categoric Statistic | Formula |
---|---|---|
Overall Accuracy | Percent Correct (PC) | |
Discrimination | Probability of Detection (POD) | |
Reliability | False Alarm Ratio (FAR) | |
Accuracy | Threat score (TS) | |
Bias | Frequency Bias (FB) |
Rain Gauge | POD | FAR | BIAS | TS | PC | Sample Count | Climate | Location |
---|---|---|---|---|---|---|---|---|
DA * | 0.25 | 0.72 | 0.9 | 0.15 | 0.86 | 3409 | Hot steppe | Inland |
Douma | 0.27 | 0.75 | 1.12 | 0.15 | 0.87 | 3377 | Hot steppe | Inland |
Barzh | 0.24 | 0.73 | 0.93 | 0.14 | 0.86 | 3429 | Hot steppe | Inland |
Qasioun | 0.24 | 0.7 | 0.83 | 0.15 | 0.86 | 3430 | Hot steppe | Inland |
Aqraba | 0.24 | 0.76 | 1.03 | 0.13 | 0.87 | 3417 | Hot steppe | Inland |
Al Hijaz | 0.25 | 0.72 | 0.9 | 0.15 | 0.86 | 3409 | Hot steppe | Inland |
Al Mazzeh | 0.24 | 0.73 | 0.92 | 0.14 | 0.87 | 3367 | Hot steppe | Inland |
Al Zabadani | 0.16 | 0.71 | 0.59 | 0.11 | 0.8 | 6529 | Cold steppe | Highland |
Bloudan | 0.17 | 0.72 | 0.6 | 0.11 | 0.81 | 6541 | Cold steppe | Highland |
Serghaya | 0.16 | 0.7 | 0.55 | 0.11 | 0.85 | 6835 | Cold steppe | Highland |
Huraira | 0.16 | 0.72 | 0.6 | 0.11 | 0.81 | 6498 | Cold steppe | Highland |
Madaya | 0.16 | 0.72 | 0.59 | 0.11 | 0.81 | 6467 | Cold steppe | Highland |
Event Category | Classification | Inland% | Inland Sample | Highland% | Highland Sample |
---|---|---|---|---|---|
<5 mm | Small | 67% | 1458 | 51.5% | 2530 |
5–15 | Light | 24% | 516 | 30% | 1425 |
15–30 | Medium | 6% | 137 | 13% | 635 |
30–50 | Medium strong | 2.5% | 53 | 5% | 266 |
50–70 | Strong | 0.3% | 7 | 0.4% | 50 |
>70 mm | Heavy | 0.2% | 3 | 0.1% | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsilibe, F.; Bene, K.; Bilal, G.; Alghafli, K.; Shi, X. Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sens. 2023, 15, 1778. https://doi.org/10.3390/rs15071778
Alsilibe F, Bene K, Bilal G, Alghafli K, Shi X. Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sensing. 2023; 15(7):1778. https://doi.org/10.3390/rs15071778
Chicago/Turabian StyleAlsilibe, Firas, Katalin Bene, Ghada Bilal, Khaled Alghafli, and Xiaogang Shi. 2023. "Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria" Remote Sensing 15, no. 7: 1778. https://doi.org/10.3390/rs15071778
APA StyleAlsilibe, F., Bene, K., Bilal, G., Alghafli, K., & Shi, X. (2023). Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sensing, 15(7), 1778. https://doi.org/10.3390/rs15071778