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Abstract: Precipitation is the main component of global water cycle. At present, satellite quantitative
precipitation estimates (QPEs) are widely applied in the scientific community. However, the
evaluations of satellite QPEs have some limitations in terms of the deficiency in observation,
evaluation methodology, the selection of time windows for evaluation and short periods for
evaluation. The objective of this work is to make some improvements by evaluating the spatio-
temporal pattern of the long-terms Climate Hazard Group InfraRed Precipitation Satellite’s
(CHIRPS’s) QPEs over mainland China. In this study, we compared the daily precipitation estimates
from CHIRPS with 2480 rain gauges across China and gridded observation using several statistical
metrics in the long-term period of 1981–2014. The results show that there is significant difference
between point evaluation and grid evaluation for CHIRPS. CHIRPS has better performance for a large
amount of precipitation than it does for arid and semi-arid land. The change in good performance
zones has strong relationship with monsoon’s movement. Therefore, CHIRPS performs better in river
basins of southern China and exhibits poor performance in river basins in northwestern and northern
China. Moreover, CHIRPS exhibits better in warm season than in Winter, owing to its limited ability
to detect snowfall. Nevertheless, CHIRPS is moderately sensitive to the precipitation from typhoon
weather systems. The limitations for CHIRPS result from the Tropical Rainfall Measuring Mission
(TRMM) 3B42 estimates’ accuracy and valid spatial coverage.
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1. Introduction

Precipitation is the main component of the global water cycle. The information of precipitation’s
spatio-temporal pattern is a fundamental and crucial parameter for water resources management,
natural hazards prevention, and insurance [1–4]. At present, the observation of precipitation are based
on ground rain gauges, weather radar and satellite retrievals. The ground rain gauges and weather
radar usually distributed near human settlements. However, the regions in which the ecological
environment is vulnerable (e.g., Central Asia, Northern Africa and Tibetan Plateau) are monitored
by the sparsely distributed weather observation networks [5,6]. Therefore, the satellite retrieval
precipitation estimates could solve the scarcity of traditional precipitation observation in widespread
remotely ungauged regions.
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In 1997, the Tropical Rainfall Measuring Mission (TRMM) became the first professional
precipitation detection program. Subsequently, a series of TRMM satellite precipitation retrieval
algorithms have made kinds of quantitative precipitation estimates (QPEs), such as TRMM
Multi-satellite Precipitation Analysis (TMPA) [7], Climate Prediction Center morphing technique
(CMORPH) [8], Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) [9], and Global Satellite Mapping of Precipitation (GsMaP) [10]. In China,
China Meteorological Administration (CMA) has undertaken several operational real-time precipitation
production, such as blended CMORPH precipitation [11], precipitation based on Fengyun–2
geostationary satellite (http://data.cma.cn/data/online.html?t=6), and East Asian multi-satellite
integrated precipitation (EMSIP) [12]. In 2014, the Global Precipitation Measurement (GPM) mission
began to replace TRMM program and became the next-generation global precipitation observation
system [13].

These satellite’s QPE mentioned above have been evaluated on multiple spatial and temporal
scales in mainland China. The comparison among TRMM, GsMaP and CMORPH QPEs shows that
CMORPH has better performance than GsMaP and PERSIANN over China, yet GSMaP_Gauge QPE
produces better fractional coverage than TRMM, CMORPH and PERSIANN [14]. The GPM exhibits
poor performance in Winter and low accuracy in northwestern China [15]. In northwestern China,
CMORPH and PERSIANN have low ability of detecting the precipitation than TRMM series [16]. In the
Tibet Plateau, TRMM 3B42 and CMORPH perform better than the TRMM 3B42RT and PERSIANN
products [17]. Moreover, the TRMM 3B42 product performs better in daily precipitation probability
distributions than CMORPH [18]. In the Yangtze River Basin, TRMM 3B42 V7 is basically superior to
CMORPH and PERSIANN [19,20]. TRMM 3B42 V7 is also better than TRMM 3B42RT in Yellow River
Basin, which is on the northern side of Yangtze River Basin [21]. Although the TRMM 3B42 V7 product
has better performance than other satellite’s QPE, the evaluation results are quite distinguishable from
different hydrological basins. Therefore, it is necessary to comprehensively evaluate the QPE products
in different hydrological basins across China for scientific research and operational practice.

The scientific community has expended significant effort to downscale TRMM QPEs on finer
spatial scales [22,23]. With the development of satellite sensors and precipitation retrieval algorithms,
these scale problems should be solved. The Climate Hazards Group Infrared Precipitation Satellite
(CHIRPS) is a new land-only climatic database for precipitation [24], which has excelled as compared
with other QPEs in terms of long-terms series and high spatial resolution (Table 1). It merges three types
of information, global climatology, satellite estimates and in situ observations. In addition, its temporal
coverage is 1981-present and spatial resolution is higher, up to 0.05◦. To date, CHIRPS precipitation
production has been evaluated in Brazil [25], Cyprus [26], Nepal [27], Italy [28], Mozambique [29],
and Vietnam’s Mekong River Basin [30]. The results show that CHIRPS can consistency with ground
gauges. However, the CHIRPS’ reliability has not been ever analyzed in detail in the complex terrains
of China.

Table 1. Main satellite quantitative precipitation estimates (QPEs).

QPEs Temporal
Coverage

Temporal and
Spatial Resolution Websites

TRMM 3B42 1998-present 0.25◦/3 h https://pmm.nasa.gov/data-access/downloads/TRMM
CMORPH 1998-present 0.07◦/30 min ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/RAW/8km-30min/

PERSIANN-CRT 1983-present 0.25◦/1 d ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CDR/daily/
GsMaP 2000-present 0.10◦/30 min ftp://hokusai.eorc.jaxa.jp/reanalysis/v6/

GPM IMERGE 2014-present 0.10◦/30 min https://pmm.nasa.gov/data-access/downloads/gpm

CHIRPS 1981-present 0.05◦/1 d ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_
daily/netcdf/p05/

In previous studies, it has been found that high-resolution QPEs, with a spatial resolution higher
than 0.10◦, has been evaluated on a regional scale with a 0.25◦ gridded observation [14,15,31,32].
The evaluation method can capture the climatological pattern of QPEs ignoring the regional

http://data.cma.cn/data/online.html?t=6
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ftp://hokusai.eorc.jaxa.jp/reanalysis/v6/
https://pmm.nasa.gov/data-access/downloads/gpm
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/netcdf/p05/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/netcdf/p05/
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precipitation’s spatial characteristics, which cannot validate high-resolution QPEs objectively. In western
China or Central Asia, a mass of grids in 0.25◦ gridded observation covers no more than one station,
when compared to three to ten stations in eastern China. This means that the gridded evaluation has
great uncertainties and errors. Therefore, the point validation using high density of rain gauge networks
in these area is relatively reasonable [33–36] for regional QPE evaluation, especially for high-resolution
QPEs. Second, the categorical statistical indices are commonly used in quantitative validation with
different rainfall intensity (e.g., light rain (<1 mm/day) and moderate rain (10 mm/day < precipitation
≤ 24.9 mm/day)) in some studies [17,32]. When precipitation is close to bin boundary, as both of
0.9 and 1.1 mm/day are close to 1 mm/day, the precipitation is binned into two classes. However,
these precipitation intensities are almost the same even ignoring the observed errors (e.g., those of
the rain gauge instrument and those from wind effects). Therefore, this binning method results in
evaluations with significant uncertainties. Thus, the traditional statistical metrics, e.g., bias, integrated
with categorical statistical indices would give insight into both categorical information and bias on
precipitation. Third, the previous evaluations usually chose time windows on inter-annual and seasonal
scales for their reliability on climatological patterns. Hence, these evaluations are not reliable for
extreme precipitation events (e.g., floods, typhoons, and snowstorms), which limits the application for
real-time operation. Finally, the previous evaluations have been done in short periods (usually less
than 10 yrs) [33,37], which would be effected by different satellite sensors [15,38] and different satellite
precipitation retrieval algorithms [39,40]. Hence, these evaluations lack robustness and stability.

The objective of this work is to evaluate the spatio-temporal pattern of CHIRPS QPEs over
mainland China and to find the potential hydro-meteorological applications. In this study, high-density
rain gauges network, which contains 2480 rain gauges across mainland China, and the component
bias method are employed to evaluate the long-term CHIRPS QPEs during 1981–2014. In addition,
the typical precipitation cases in Summer and Winter are analyzed to test the capture ability of
the rain-bearing system’s evolution. This study gives insight into some practical improvements to
evaluation of high-resolution satellite QPEs. It is a challenge to perfectly solve the problems mentioned
regarding the deficiency in precipitation observation, evaluation methodology, and the selection of
time windows for evaluation. This study attempts to give more information on the evaluation of
high-resolution satellite’s QPE. The rest of this paper is organized as follows: In Section 2, we introduce
the datasets and the evaluation methods. Section 3 contains the analysis of CHIRPS precipitation
statistics and typical cases. Section 4 is the discussion about CHIRPS’ error sources and evaluation
limitation. In Section 5, we present the key conclusions of the paper.

2. Methodology and Datasets

2.1. Study Area

Figure 1 shows the topography of mainland China. Referring to previous studies on hydrologic
research in China [41,42], this study uses the hydrologic model SWAT toolbox, Qgis software,
and GTOPO30 DEM dataset (https://lta.cr.usgs.gov/GTOPO30) to automatically separate China’s
mainland into ten sub-regions. These sub-regions are shown in Figure 1 and are as follows: (I) Songhua
River Basin (SHJ), (II) Liaohe River Basin (LH), (III) river basins in northwest China (XB), (IV) Haihe
River Basin (HAH), (V) Yellow River Basin (YR), (VI) Yangtze River Basin (YZR), (VII) Huaihe River
Basin (HUH), (VIII) River Basins in Southeast China (DN), (IX) river basins in southwest China (XN),
and (X) Pearl River Basin (PR). Region XB, contains several famous rivers: the Tarim River, which is
the largest inland river in China; the Heihe River, located in the Hexi corridor in northwest China;
the Ili River, an international river shared by Kazakhstan and China. Region XN is the origin of the
Mekong River that crosses the Indochina Peninsula, which is also an international river that is flowing
through other countries in Southeast Asia and China.

Generally, the rainy season in mainland China is affected by East Asian Summer Monsoon.
The rainy season begins with the monsoon’s arrival and ends upon the monsoon’s withdrawal [43].

https://lta.cr.usgs.gov/GTOPO30
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During the rainy season, the typhoons coming from Pacific Ocean usually bring an amount of
precipitation to coastal regions. In Winter, the precipitation in northern China is controlled by
mid-latitude westerlies, which bring ocean moisture [44]. Therefore, in this study, we choose typhoons
and a snowstorm that was induced by westerlies for typical case evaluation.
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Figure 1. High-density rain gauge observation network (black dots) and main hydrological basins
in China(blue outline). Base map is the topography of mainland China (Map Registration No. GS
(2016)2885). The lower-right subplot displays the South China Sea. The 10 sub regions used in this
study are as follows: (a) Songhua River Basin (SHJ), (b) Liaohe River Basin (LH), (c) river basins in
northwest China (XB), (d) Haihe River Basin (HAH), (e) Yellow River Basin (YR), (f) Yangtze River
Basin (YZR), (g) Huaihe River Basin (HUH), (h) River Basins in Southeast China (DN), (i) river basins
in southwest China (XN), and (j) Pearl River Basin (PR).

2.2. Observation and Satellite Retrieval Precipitation Production

Daily rain gauge data were obtained from China Meteorological Administration (CMA),
downloaded from http://data.cma.cn. This dataset concludes 2480 rain gauge stations from 1979
to 2014. Excluding the stations that have more than 1 yr. of missing data and does not be covered
by CHIRPS, there are 2378 stations left that are consistent with the temporal coverage of CHIRPS.
In addition to the point observation, this study collects several gridded precipitation products
(e.g., APHRODITE [45], CN05.1 [46], and ITPCAS [47]). According to previous studies, APHRODITE
shows smaller precipitation intensity and higher precipitation frequency [48]. ITPCAS uses the
open dataset under WMO data sharing framework, which has the same stations as APHRODITE
and CHIRPS. Although ITPCAS’s spatial resolution is higher, up to 0.10◦, the same rain gauge
data will cause higher autocorrelation and will make the evaluation results less objective. In China,
meteorological observation follows the WMO standards, in which observation time is Coordinated
Universal Time (UTC). The ground precipitation is accumulated from 00:00 UTC (08:00 Beijing Time)
of the previous day to 00:00 UTC (08:00 Beijing Time) on the current day. The daily precipitation’s
statistical time window is inconsistent with the most of the Global Historical Climatology Network
(GHCN) and Global Surface Summary of the Day (GSOD) datasets, which CHIRPS uses.

http://data.cma.cn
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The CN05.1 dataset was interpolated by more than 2400 stations in China, combined with the
spatial pattern of climatological precipitation and DEM data. The rain gauge stations in CN05.1
included the data used in APHRODITE and ITPCAS. Therefore, the CN05.1’s precipitation is chosen
for grid evaluation.

CHIRPS used in this study can be downloaded from the University of California, Santa Barbara
(USA) website (ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/).
The CHIRPS is produced in several steps. First, in each pentad of 1998–2012, the IR brightness
temperature, which cloud top temperature is lower than 235 K, and TRMM 3B42 precipitation is
modeled by local regression. Second, in each pentad of 1981–2012, the precipitation anomalies is
calculated by IR-retrieved precipitation (IRP) and its long-term means. Third, the anomalies are
multiplied with the Climate Hazards Precipitation Climatology (CHPClim) in each pentad. Finally,
this adjusted IR-retrieved precipitation is blended with surface gauges to produce the final product,
CHIRPS. In some cases, CFSR Reanalysis data is filled data gaps that are missing IRP values due
to incomplete satellite coverage. CHIRPS has a horizontal resolution of 0.05◦ (5.4 km) and spatial
coverage (50◦S–50◦N, 180◦W–180◦E) [24]. Thus, this study chooses the daily CHIRPS QPE from 1981 to
2014 for reliability assessment, and clips the quasi-global spatial coverage into China mainland domain.

2.3. Methodology for Evaluation

2.3.1. Statistical Metrics

The first and most basic statistical metric considered in this study is the PBias [Equation (1)],
which is defined as:

PBias =

N
∑

i=1
SPEi −

N
∑

i=1
GNDi

N
∑

i=1
GNDi

(1)

where SPE and GND denote rainfall amounts from CHIRPS and rain gauges, respectively. In China,
rain gauge range resolution in the CMA and Ministry of Water Resources is 0.1 and 0.5 mm,
respectively. In this study, we use 0.5 mm/day as criterion to distinguish rainy days and non-rainy
days. PBias is calculated when the daily SPE and daily GND are greater than 0.5 mm/day in 1981–2014.
PBias represents a summary statistic bias over the entire dataset. Other statistical metrics helps us to
gain additional insight into the performance accuracy of CHIRPS QPEs, as follows:

ME =
1
N

N

∑
i=1

(SPEi − GNDi) (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(SPEi − GNDi)
2 (3)

r =
Cov(SPE − GND)

σSPE · σGND
(4)

The mean error (ME) between CHIRPS and rain gauges data [Equation (2)] is used to assess the
difference between CHIRPS and rain gauges. The root-mean-square error (RMSE) between CHIRPS
and rain gauges data [Equation (3)] is used to assess the random error in the CHIRPS product.
The Pearson correlation coefficient (r) is used to measure the linear correlation between CHIRPS and
rain gauge data [Equation (4)].

2.3.2. Evaluation Indices

According to previous work [49], PBias can be decomposed into three parts: Hit PBias (HP),
Missed PBias (MP), and False Alarm PBias (FP). Hit PBias shows the difference between CHIRPS

ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/
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precipitation and the ground rain gauge precipitation, when they both detect daily precipitation of
over 0.5 mm/day [Equation (5)]. Missed PBias refers to the precipitation detected in the gauge data
that is undetected by CHIRPS [Equation (6)]. False Alarm PBias denotes the total amount of falsely
detected precipitation by CHIRPS [Equation (7)]. The formulas are

Hit_PBias =

N
∑

i=1
SPEi −

N
∑

i=1
GNDi

N
∑

i=1
GND∗

i

, (SPE ≥ 0.5.and.GND ≥ 0.5) (5)

Missed_PBias =

N
∑

i=1
SPEi −

N
∑

i=1
GNDi

N
∑

i=1
GND∗

i

, (SPE ≤ 0.5.and.GND > 0.5) (6)

False_PBias =

N
∑

i=1
SPEi −

N
∑

i=1
GNDi

N
∑

i=1
GND∗

i

, (SPE > 0.5.and.GND ≤ 0.5) (7)

where SPE is CHIRPS’ QPE, and GND is in situ observation. PBias = 0, indicates an unbiased estimation
whereas PBias < 0 and PBias > 0 indicate underestimation and overestimation, respectively. The False
Alarm PBias (FP) varies from 0 ≤ FP ≤ 1. The indices mean that CHIRPS has precipitation but
observation does not. The best score of FP is zero. The Hit PBias (HP) varies from −1 ≤ HP ≤ 1.
The best score is zero. The Missed PBias (MP) varies from −1 ≤ MP ≤ 0. The indices mean that
CHIRPS has no precipitation but observation does. The best score of MP is zero.

3. Results

3.1. Evaluation of Gridded Observation (CN05.1) with In Situ Point Observation

Figure 2 shows the monthly r between the CN05.1 precipitation and the rain gauges. It shows
the number of rain gauge stations in eastern China is higher than those in western China, and the r
for all of mainland China experiences significant seasonal change. In the first three months of a year
(January–February–March), the r in eastern China is greater than 0.90, as is the r in northwestern China.
However, the r in the central China varies in the range 0.40–0.80. The r in coastal areas of southern
China begins to decrease from above 0.90 to 0.80–0.90 in April. In May, most regions in southern China
exhibit r values of 0.80–0.90. The r in regions of northern China also decreased to 0.80–0.90 in June.
In July, the r in northeast and central China decreased. In August, the r in south China decreased to
0.70–0.80. However, the r in south and northeastern China rebounds and increases to values above 0.90.
In November and December, the r in central and western China decreased to 0.60, the same spatial
pattern repeats in January. Generally, the r’s spatio-temporal change is related to the Eastern Asian
Monsoon’s evolution in the course of a year.

Upon the onset of the rainy season, southern China receives a significant amount of precipitation.
The precipitation data interpolated from the gridded observation in a 0.25◦ grid are usually less
than that recorded by rain gauges at the same location. Thus, the ME increased and the r decreased.
In western China west of 105◦E, it is assumed that the gridded precipitation in the mountainous region
is extrapolated by DEM using rain gauges in plain regions. Hence, the precipitation value interpolated
from the gridded observation in a 0.25◦ grid are usually smaller than those that were recorded by the
rain gauge at the same location. This hypothesis could explain the lower r in western China.
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observation during 1981–2014. Subplots (a–l) denote the r’s evolution from January and December.

In northern China, ME of CN05.1 in a year is basically in the range 0–0.1 mm/day in contrast to
the periodic transition observed in southern China (Figure 3). The ME in southern China indicates that
the precipitation is underestimated by −0.4 to −0.1 mm/day. In the rainy season (April-September),
the ME in southern China changes by 0.4 to −0.6 mm/day. This means that CN05.1 overestimates
precipitation in southern China. Furthermore, it is found that the ME is randomly scattered over
mainland China, which is basically due to the method of extrapolation. In the YZR’s downstream,
the ME always remains in range −0.2 to −0.1 mm/day. Although 0.25◦ gridded observation is
derived from rain gauges distributed across mainland China, it is in not complete agreement with
the spatio-temporal pattern of rain gauges. When using the gridded observation, caution should be
exercised when conducting evaluations in areas with high ME, especially in southern China.

Generally, CN05.1 has a high r and low ME over the course of a year. In the rainy season
(May–September), the rainfall is underestimated only in southern China. Thus, CN05.1 can be applied
to evaluate CHIRPS.
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3.2. Evaluation of CHIRPS with the Gridded Observation (CN05.1)

3.2.1. Evaluation on Monthly Scale

Generally, the r between CHIRPS and CN05.1 in eastern China is higher than that in western
China, and the r in southern China is also higher than the r in northern China (Figure 4). The regions in
western China exhibit r values in the range 0.10–0.40 while the regions in eastern China exhibit r values
of 0.40–0.60. The r values in the consecutive month exhibit a similar evolution pattern on a seasonal
scale. The change in seasonal cycle can be classified into four groupings as follows: December-February,
March–April, June–July and August–September.
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Figure 4. Correlation coefficient(r) between Climate Hazards Group Infrared Precipitation Satellite
(CHIRPS)’ precipitation and gridded observation during 1981–2014. Subplots (a–l) denote the r’s
evolution from January and December.

In northwestern China (XB), the r exhibits low value zones, which covers the Taklimakan Desert
(85◦E, 38◦N) and Tengger Desert (103◦E, 38◦N). This illustrates that CHIRPS exhibits many false alarms
and missed hits in these regions. Referring to the evaluation of CMORPH and PERSIANN [14], the
same low-r belt zone is in these desert regions. This means that QPEs derived from IR or microwave
sensors perform poorly in less rainy regions, not only CHIRPS QPEs.

In Winter, the ME between CHIRPS and CN05.1 is maintained in the range −0.4 to 0.4 mm/day,
which is generally positive across mainland China (Figure 5). In January, the ME in the middle part of
Pearl River is in the range −0.8 to −0.4 mm/day. In regions of XN, the ME in March and April is below
2 and above 2 mm/day, respectively. In May, when compared to a ME of below 1.8 mm/day in XN,
the regions of DN and PR have a ME greater than 1.8 mm/day. In the following June–July–August,
the ME in DN and PR show an increasing trend. During the entire rainy season, it is noticed that the
southeastern regions of China have strong positive ME, as compared to the significant negative ME
in southwestern China, although the CHIRPS QPE is corrected using rain gauges in China. In the
following September–October–November, the spatial pattern of high ME in DN and PR decreases.
In December, the spatial pattern over all of China is close to that in January. In October-November, the
ME in Hainan Island, the southernmost of mainland China, has negative values.
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3.2.2. Evaluation of CHIRPS in Sub-Regions

Table 2 gives the r and ME in hydrologic basin units. First, the rank of r on seasonal cycle is, in
descending order, Autumn (0.335), Summer (0.325), Spring (0.292) and Winter (0.240). In hydrologic
basins, the relatively high values of r for a year are located at DN (0.410) and PR (0.411). The lowest
value of r is in XB (0.150). In Summer and Winter, the r in HAH, YR, HUH, DN, and PR exhibits a
spatial pattern that indicates that r decreases with increasing latitude. In transition seasons (Spring
and Autumn), this spatial pattern still exists, but with small variability. In northeast China, a similar
spatial variability occurs in SHJ and LH.

The ME is higher in Summer (0.231 mm/day) and Spring (0.071 mm/day) and lower in Autumn
(0.004 mm/day) and Winter (−0.006 mm/day). In hydrologic basins, the ME in LH (0.088 mm/day),
DN (0.370 mm/day), XN (0.193 mm/day) and PR (0.115 mm/day) is greater than that in other regions.
In Autumn, the ME in HUH (−0.111 mm/day), HAH (−0.092 mm/day), DN (0.204 mm/day) and XN
(0.136 mm/day) is much higher than that in other basins. In winter, the ME in SHJ (−0.039 mm/day),
LH (0.051 mm/day), HAH (0.013 mm/day) and PR (−0.104 mm/day) is much higher than that in
other basins.

Overall, DN and PR exhibit superior values to other basins over the course of a year. In terms of
these two basins’ locations, they are in coastal regions and near the tropics. Thus, according to the
limitation of the TRMM precipitation retrieval algorithm analyzed above, it could explain that CHIRPS
exhibits worse performance in regions of northern China, such as XB, LH and SHJ.
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Table 2. Seasonal change of Pearson correlation coefficient (r) and mean error (ME) in 10 hydrological
basins in mainland China.

Basin
Spring Summer Autumn Winter Annual

r ME r ME r ME r ME r ME

SHJ 0.302 −0.044 0.249 0.085 0.332 −0.024 0.226 −0.039 0.277 −0.006
LH 0.320 −0.048 0.288 0.324 0.354 0.024 0.158 0.051 0.280 0.088
XB 0.145 0.018 0.160 −0.138 0.182 −0.040 0.111 0.023 0.150 −0.034
HAH 0.299 −0.068 0.310 0.071 0.304 −0.111 0.166 0.013 0.270 −0.024
YR 0.269 −0.003 0.268 0.051 0.326 −0.014 0.206 −0.018 0.267 0.004
YZR 0.278 0.035 0.336 0.078 0.339 0.011 0.271 −0.034 0.306 0.023
HUH 0.336 0.053 0.382 0.081 0.327 −0.092 0.296 0.057 0.335 0.025
DN 0.352 0.460 0.512 0.802 0.415 0.204 0.362 0.013 0.410 0.370
XN 0.219 0.100 0.272 0.551 0.348 0.136 0.248 −0.017 0.272 0.193
PR 0.400 0.211 0.472 0.407 0.418 −0.055 0.353 −0.104 0.411 0.115

3.3. Evaluation of CHIRPS with In Situ Point Observation

3.3.1. Evaluation on Monthly Scale

Figure 6 shows PBias in CHIRPS QPEs in January and December, LH’s and HAH's PBias is greater
than 50% and PR’s and SHJ’s PBias is less than −20%. In February–March–April, PBias in HAH
decreases to −20% and the midstream of YZR’s PBias decreases from 20% to approximately 10%.
In May–June, PBias in all of the basins fluctuates between −10% and 10%. In July–August–September,
PBias in eastern China shows an increasing trend. In October, PBias in HAH, HUH, the downstream
of YZR, and western XB is below −20%. However, PBias in YZR and XB turns positive in November
with while YR, PR, and HAH exhibit negative values.
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When comparing Figure 5 with Figure 6, the signs of PBias and the ME are theoretically the same,
since the gridded observation is derived from surface rain gauges. In Figure 5, the ME over mainland
China is almost positive over the course of a year, in contrast to the seasonal change of PBias shown
in Figure 6. In transition months (April, October and November), northern China (HAH) exhibits
negative PBias, and becomes normal PBias. In Winter, however, PBias in HAH turns positive PBias.
However, no significant seasonal change is observed in southern China. Therefore, the evaluation
based on point and grid can be significantly distinguished.

Figure 7 illustrates the RMSE of CHIRPS precipitation in mainland China. Generally, the spatial
pattern variability is related to the movement of the East Asian Monsoon. The RMSE of CHIRPS in
northern China is within 2 mm/day in the non-monsoon period. The RMSE is slightly larger in HAH,
the midstream of YZR, and eastern XN. In southern China, the RMSE in PR, DN, and the downstream
of YZR is within 8–12 mm/day from February to April, while the RMSE of CHIRPS in southeastern
China, which includes the regions PR, DN, and the downstream of YZR, is gradually increased, and
it is just the beginning of the Meiyu season (i.e., from May to July). In the period May–June, the
regions of high RMSE expand from the southeastern China to southern China. Meanwhile, it is the
time that the zones of the Meiyu precipitation belt move to the midstream and downstream of YZR.
In July–August, the regions of high RMSE reach the northern China, and retreat to southern China
in September-October. In addition, the Summer wind from the Pacific Ocean becomes weaker when
compared to the stronger Winter wind from land. In November–December, the value in high-RMSE
zones decreases to 8–12 mm/day and the same spatial pattern is maintained in January. The RMSE in
northwest China remains within 2 mm/day.
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3.3.2. Evaluation of Technical Skill Indices

Figure 8 explains the missing PBias (MP) in CHIRPS precipitation. Overall, the MP in northern
China is larger than that in southern China, and the MP in Winter is greater than that in Summer on
a seasonal scale. In Winter (December–February), the MP in southeastern China is within −50% to
−30%, in contrast to a MP greater than 70% in most of northern China. In Spring (March–May), the
MP in southern China increases to −70% to −40%, when compared with a MP in northern China
of −60% to −30%. In Summer (June–July–August), the MP in southern China decreases to −30% to
−10%. In Autumn (September–November), the MP in eastern China increases to 20%.

The midstream of YZR, especially Sichuan Basin (105◦E, 30◦N), exhibits a large MP over the course
of a year, except in Summer. In Sichuan Basin, the precipitation usually occurs at time (local time),
when the surface experiences a strong updraft airflow, creating a convective system that is conducive
to precipitation. It is difficult to obtain these precipitation conditions, so that the TRMM 3B42 QPEs
have a higher misses [50,51]. As a derivative of TRMM, CHIRPS also exhibits poor performance in
Sichuan, even though Sichuan is located at the edge of the tropics.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 28 

 

3.3.2. Evaluation of Technical Skill Indices 

Figure 8 explains the missing PBias (MP) in CHIRPS precipitation. Overall, the MP in northern 
China is larger than that in southern China, and the MP in Winter is greater than that in Summer on 
a seasonal scale. In Winter (December-February), the MP in southeastern China is within −50% to 
−30%, in contrast to a MP greater than 70% in most of northern China. In Spring (March-May), the 
MP in southern China increases to −70% to −40%, when compared with a MP in northern China of 
−60% to −30%. In Summer (June-July-August), the MP in southern China decreases to −30% to −10%. 
In Autumn (September-November), the MP in eastern China increases to 20%. 

The midstream of YZR, especially Sichuan Basin (105°E, 30°N), exhibits a large MP over the 
course of a year, except in Summer. In Sichuan Basin, the precipitation usually occurs at time (local 
time), when the surface experiences a strong updraft airflow, creating a convective system that is 
conducive to precipitation. It is difficult to obtain these precipitation conditions, so that the TRMM 
3B42 QPEs have a higher misses [50,51]. As a derivative of TRMM, CHIRPS also exhibits poor 
performance in Sichuan, even though Sichuan is located at the edge of the tropics.  

 
Figure 8. Spatial patterns of monthly missed bias(MP) in CHIRPS precipitation. Subplots (a–l) denote 
the MP’s evolution from January and December. 

Figure 9 shows the Hit-PBias (HP) for CHIRPS. In November–February, the spatial pattern 
basically retains the same spatial distribution. In addition, the HP in the downstream of YR is higher 
and the HP in YR and PR is in the range −20% to −10%. In February-March, the HP (–40% to −10%) in 
southern China and the HP (10% to 40%) in northern China exhibits the reverse spatial distribution. 
In June, the HP in northern China and southern China is in balance. Thereafter in July-August, the 
HP in northern China turns positive. Meanwhile, the HP in southern China begins to decrease. In 
September-October, the HP in southern China and northern China is over 30%. The HP's variability 
in northwest China is relatively steady and is in the range −20% to 10%. 

Figure 8. Spatial patterns of monthly missed bias(MP) in CHIRPS precipitation. Subplots (a–l) denote
the MP’s evolution from January and December.

Figure 9 shows the Hit-PBias (HP) for CHIRPS. In November–February, the spatial pattern
basically retains the same spatial distribution. In addition, the HP in the downstream of YR is higher
and the HP in YR and PR is in the range −20% to −10%. In February–March, the HP (–40% to −10%)
in southern China and the HP (10% to 40%) in northern China exhibits the reverse spatial distribution.
In June, the HP in northern China and southern China is in balance. Thereafter in July–August,
the HP in northern China turns positive. Meanwhile, the HP in southern China begins to decrease.
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In September–October, the HP in southern China and northern China is over 30%. The HP’s variability
in northwest China is relatively steady and is in the range −20% to 10%.

In Winter, YR, HAH, LH and SHJ have negative Hit PBias, which means that CHIRPS
underestimates the snowfall in northern China. Meanwhile, YZR and PR have positive HP, indicating
that CHIRPS captures the rainfall events, but greatly overestimates the intensity. Subsequently,
northern China enters the rainy season.
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False-alarm PBias (FP) is displayed in Figure 10. In mainland China, the FP in northern China is
larger when compared to the FP in southern China. In winter time (December–February), the FP is
over 80% in HUH and LH. At the same time, the MP in southern China is within 30%. From March to
June, the difference between the FPs in northern and southern China decreases. In July–August, the FP
in central China increases to 40%. In September–November, the FP in north China significantly arises
up. In contrast, the FP does not change significantly in southern China.

In Winter (December–March), the precipitation in northern China comes mainly in the form of
snowfall, while in southern China it is rainfall. CHIRPS has a poor ability of detecting snowfall, so
that more FPs are found in northern China. In XB, especially Xinjiang, the FP pattern is similar to that
of HAH.
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the FP evolution from January and December.

3.4. Interannual Variation of Statistic Metrics

Figure 11a shows that the r in 1981–2012 over mainland China can be partitioned into two periods:
1981–1997 and 1998–2012. The first period’s r is higher than the second period’s. According to the
CHIRPS product’s procedure, CHIRPS uses CFSR reanalysis dataset as a background field before 1998,
which would make CHIRPS’ data quality severe fluctuate between 1997 and 1998. Thus, the year of
mutation should be 1998, but Figure 11a is shown it is 1997. Generally, HAH presents the lowest r
versus to LH’s highest r. In 1998–2012, r in all of the basins exhibited a downward trend. However, r in
1981–1996 shows no significant trend.

Figure 11b shows the ME fluctuating across 10 basins in mainland China. Overall, the ME is
negative, which indicates that CHIRPS underestimated the precipitation in 1981–2012. In addition, the
trend of negative ME in 10 basins gradually decreases to zero. In 1996, the ME in all the basins mutates
from negative to positive. The year of the mutation in ME is ahead of the r’s. The ME in XN, DN,
and PR is larger than other basins’, which indicates that there is a larger ME in the area with larger
precipitation amount.
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3.5. Evaluation of Precipitation Intensity

In the rainy season, non-rainy season and all periods, CHIRPS overestimates precipitation
intensity of <5 mm/day in all of the basins. Especially in the non-rainy season, CHIRPS overestimation
is more notable than in rainy season and all periods. At the intensity of 20–55 mm/day, CHIRPS
underestimates in all of the hydrological basins. It is illustrated that CHIRPS has limited ability to
capture moderate and heavy precipitation, which limits its ability to detect extreme precipitation.
In Figure 12, both observation and CHIRPS QPE in SHJ (3), LH (6), and XB (9) exhibit severe
fluctuations in intensity of 20–55 mm/day. These basins have a smaller precipitation amount and lower
precipitation frequency as compared to other basins in the non-rainy season. However, these basins’
precipitation bearing system is distinguished from that in rainy season. In addition, the precipitation
phase is snowfall in the non-rainy season when compared to rainfall in the rainy season. In terms of
precipitation intensity, the rainfall intensity of 10–25 mm/day is binned into moderate precipitation,
but the snowfall intensity of >10 mm/day is called heavy snowfall. Thus, it is improper to compare
the precipitation intensity in snowfall and rainfall together.

In the rainy season, the precipitation intensity in all the basins is larger than that in the non-rainy
season. The annual precipitation’s probability-density-function (PDF) pattern is similar to that in the
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rainy season, which shows that CHIRPS can present the characteristics of precipitation in intensity
and frequency over all basins. In previous study, it was found that PERSSIANN-CDR in northern
China underestimates the precipitation in a year [14]. However, CHIRPS underestimates the intensity
of 20–55 mm/day in all basins and overestimates the intensity of <5 mm/day in most basins.
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Figure 13 demonstrates annual mean daily precipitation. CHIRPS QPE is overestimated
compared to in situ observation in precipitation intensity less than 1 mm/day, and is underestimated
when precipitation intensity is more than 1 mm/day. r in all of the river basins is over 0.80 and
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PBias is between −0.13 and −0.0, with min PBias in HAH (−0.050) and max PBias in PR(−0.129).
The precipitation intensity in XB(c) is mainly 0–1 mm/day, and in SHJ(a), LH(b), HAH(d), YR(e),
and XN(h), precipitation intensity is between 1 mm/day and 2 mm/day. The range of precipitation
intensity in HUH(g), YZR(f), PR(i) and DN(j) is 1.5–2.5, 2–4, 3–6, and 4–6 mm/day, respectively.
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3.6. Evaluations with Typical Cases

3.6.1. Snowfall

In winter, snowfall events seldom occur in southern China. Impacted by La Niña events, most
regions in southern China suffered the heavy snowfall event on 10 January 2008 (Beijing time) that
lasted a month. Before the strong snowfall began on 10 January (UTC time), the precipitation belt
in CHIRPS (Figure 14a) covered the midstream and downstream of YZR, which is approximately
8–12 mm/day. Meanwhile, scattered precipitation of 4–8 mm/day appeared in the downstream of
YR. On 11 January (UTC time), the precipitation belt (Figure 14b) shrank and moved to regions in
DN. Figure 14c shows the gridded observation on 11 January, indicating the strong precipitation belt
that passed across the downstream of YR and YZR, which was greater than 14–20 mm/day. In the
midstream of YR, the weak precipitation belt was 4–8 mm/day. When compared with observations,
the CHIRPS precipitation underestimated the daily precipitation intensity and did not estimate the
precipitation belt in the midstream and downstream of YR and YZR during the extreme snowfall event
in 2008. All satellite QPE performances are worse in Winter than in Summer [51], and CHIRPS has
the same performance as other QPEs even in low-latitude regions, yet CHIRPS is derived from the
combination of IR and microwave sensor’s information, as is PERSIANN. Therefore, only convective
precipitation in warmer seasons can be characterized by satellite QPE [52,53]. The GPM with new
sensors and a new retrieval algorithm has the ability to detect the snowfall in Winter, and GPM’s QPEs
in Winter should be comprehensively validated in the future.



Remote Sens. 2018, 10, 362 21 of 28
Remote Sens. 2018, 10, x FOR PEER REVIEW  21 of 28 

 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Spatial comparison of observation and CHIRPS precipitation in the form of snowfall. (a) 
and (b) show CHIRPS daily precipitation on 10 and 11 January 2008, respectively. (c) shows the 0.25° 
gridded precipitation observation on 11 January. (units of mm/day). 

3.6.2. Typhoon Events 

Every year, typhoons will make landfall on mainland China in flood season, and bring a mass 
of precipitation to coastal regions. To verify the accuracy of CHIRPS, in this case study we choose 
two well-known typhoon events in recent years. 

Typhoon Saomei originated in the western Pacific Ocean on August 5, 2006. It made landfall in 
the regions of DN on 8 August. Figure 15a shows the spatial pattern of CHIRPS precipitation on 
August 8. The precipitation in CHIRPS covered the regions of PR and the middle and downstream 
of YZR at higher than 16 mm/day. In the intersection between PR and DN, a precipitation belt 
measuring greater than 20 mm/day was detected. Figure 15e shows the observed precipitation. The 
observed precipitation exhibits a spatial pattern similar to CHIRPS in PR and the downstream of 
YZR. On 9 August (UTC time), the CHIRPS precipitation spatial pattern (Figure 15c) was same to 
observed precipitation’s spatial pattern. 

Typhoon Soala originated in the northwest Pacific Ocean on 28 July 2012, and made landfall on 
Fujian Province(DN), China on 2 August. Figure 15b shows that the CHIRPS precipitation in DN and 
HUH was over 20 mm/day. In the view of the observed precipitation (Figure 15f), the precipitation 
belt in midstream of YZR was over 20 mm/day. Overall, the CHIRPS precipitation detected the 
features of Typhoon Soala’s landing event, but the precipitation zones and intensity differ greatly 
from observed precipitation. 

From the above analysis of the two typhoon events, it is found that CHIRPS has the ability to 
characterize the precipitation induced by typhoons in coastal regions. It is also found that CHIRPS 
fails to characterize the spatial pattern of precipitation in northeastern and northwestern China. On 
one hand, the origin model for the precipitation retrieval algorithm in CHIRPS is the TRMM series, 
which is specialized for convective precipitation detection in tropical or sub-subtropical regions in 
warm seasons. Therefore, this algorithm is not suitable for frontal system precipitation in middle-
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gridded precipitation observation on 11 January. (units of mm/day).

3.6.2. Typhoon Events

Every year, typhoons will make landfall on mainland China in flood season, and bring a mass of
precipitation to coastal regions. To verify the accuracy of CHIRPS, in this case study we choose two
well-known typhoon events in recent years.

Typhoon Saomei originated in the western Pacific Ocean on 5 August 2006. It made landfall
in the regions of DN on 8 August. Figure 15a shows the spatial pattern of CHIRPS precipitation on
8 August. The precipitation in CHIRPS covered the regions of PR and the middle and downstream
of YZR at higher than 16 mm/day. In the intersection between PR and DN, a precipitation belt
measuring greater than 20 mm/day was detected. Figure 15e shows the observed precipitation.
The observed precipitation exhibits a spatial pattern similar to CHIRPS in PR and the downstream
of YZR. On 9 August (UTC time), the CHIRPS precipitation spatial pattern (Figure 15c) was same to
observed precipitation’s spatial pattern.

Typhoon Soala originated in the northwest Pacific Ocean on 28 July 2012, and made landfall on
Fujian Province(DN), China on 2 August. Figure 15b shows that the CHIRPS precipitation in DN and
HUH was over 20 mm/day. In the view of the observed precipitation (Figure 15f), the precipitation
belt in midstream of YZR was over 20 mm/day. Overall, the CHIRPS precipitation detected the
features of Typhoon Soala’s landing event, but the precipitation zones and intensity differ greatly from
observed precipitation.

From the above analysis of the two typhoon events, it is found that CHIRPS has the ability to
characterize the precipitation induced by typhoons in coastal regions. It is also found that CHIRPS fails
to characterize the spatial pattern of precipitation in northeastern and northwestern China. On one
hand, the origin model for the precipitation retrieval algorithm in CHIRPS is the TRMM series, which is
specialized for convective precipitation detection in tropical or sub-subtropical regions in warm seasons.
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Therefore, this algorithm is not suitable for frontal system precipitation in middle-latitude regions
over northern China. On the other hand, both Figure 15a,e illustrate that the Qilian Mountains(100◦E,
37◦N) experienced moderate rainfall on 8 August, but the gridded observation shows more areas
experiencing moderate rain than CHIRPS. This could be explained by the fact that the two datasets
have different resolutions (0.05◦ grid for CHIRPS and 0.25◦ grid for CN05.1). However, the CN05.1
has a great uncertainties due to a few gauges in Qilian Mountains and extrapolating methods. Hence,
it is not wise to use gridded observation directly to evaluation high-resolution QPEs in remote regions
lacking rain gauges’ coverage.
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4. Discussion and Future Work

This study has evaluated the high resolution and long-term QPEs of CHIRPS over China for
forcing datasets application in land surface hydrological models. The limitations and possible sources
of CHIRPS’ errors is shown as following:

First, it is found in this study that PBias (Figure 6), MP (Figure 8) and FP (Figure 10) indicate
CHIRPS in the Sichuan Basin (105◦E, 30◦N) and Northern China Plain (115◦E, 40◦N) exhibits poor
performance compared with adjacent regions in a year, especially in winter. The phenomenon is
probably related to complex orography induced by great elevation differences. The first procedure
making in CHIRPS is to make the raw QPE (CHIRP) using the local regression method in a pentad
with IR’s brightness temperature and TRMM 3B42 QPE. Therefore, it is necessary to consider IR and
microwave based QPE drawbacks. It is found high rainfall rates related cold clouds, in which the
cloud top’s temperature is very low [54].

In a pentad, CHIRP chooses IR brightness temperature and TRMM 3B42 QPE when the cloud top
temperature is less than 235 K. In the Sichuan Basin (XN) and Northern China Plain (HAH), clouds
move from western mountains into plains, a process that makes the cloud height lower and the cloud
top temperature warmer than CHIRP’s threshold, especially in winter time’s frontal bearing system
(PBias in Figure 6a and MP in Figure 8a). Thus, the cloud top temperature is colder estimated with high
precipitation, which results in overestimation. On the contrary, when cloud climbs from lower land
to mountains, the cloud top temperature is higher estimated with lower precipitation, for which the
orographic process underestimates the precipitation in mountainous areas. The PERSIAN-CDR QPEs,
one of the IR based QPEs, reveals this kind of underestimation in complex terrain in China [14] and
eastern Africa [55]. It is the same for microwave radiometer algorithms. The QPEs are estimated by
signals from cloud ice particles’ scatter. In mountainous areas, the warm cloud created by orographic
processes contains little ice particles in cloud. Therefore, the QPEs retrieved by microwave radiometer
algorithms are often underestimated (e.g., the Himalayans [56]). Moreover, the precipitation radar
carried by the TRMM platform has the valid spatial coverage in 38◦N–38◦S. CHIRPS is derivative of
TRMM 3B42 and assumed to have the similar features. In Figure 2, SHJ, LH, XB, HAH and northern
YR exceeded the TRMM valid spatial coverage, which may be the reason why the statistical metrics
are poor in Table 2.

In previous studies, it is noticed that TRMM has better performance in the rainy season than
in non-rainy season on a temporal scale [16,57]. This can explain the CHIRPS derived from TRMM
exhibits poor performance in non-rainy season (r in Figure 4 and ME in Figure 5). In addition,
TRMM 3B42 exhibits relatively poor performance on precipitation intensity (e.g., overestimation of
heavy precipitation in southeastern China and underestimation of light and moderate precipitation
in northwestern China) [58]. The different versions of TRMM present the similar performance in
China with the only significant difference being in the Qinghai-Tibet Plateau [59]. TRMM TMPA
has higher Hit Bias and Missed Bias in humid regions and False Bias in arid regions, especially
in Winter [60]. The raw CHIRP is derived from TRMM, so these deficiencies can be also found in
CHIRPS. The multi dataset blending technique, which uses IR based QPEs, microwave based QPEs,
radar based QPEs and a numerical prediction model’s precipitation as input and blends them in
minimum variance, can significantly enhance the accuracy of blending precipitation, e.g., MSWEP [61]
and CMORPH-CMA (http://www.cma.gov.cn/2011qxfw/2011qsjgx/). In the future, particularly
for creating the climatologically long-terms QPEs, the multi datasets and blending technique was a
promising method in the period before the TRMM era.

Second, CHIRPS QPEs should be comprehensively evaluated in different spatio-temporal scales.
In previous studies, TRMM 3B43, which is the monthly QPE derived from TRMM 3B42 with ground
rain gauges’ calibration, is proved to be prior to daily TRMM 3B42 (e.g., northeastern China [62]).
This is because 3B43 QPE has been calibrated with an abundance of in situ observation or the gridded
datasets derived from these in situ observations. If study regions were covered by these calibrated
stations, the evaluation usually would have better performance and vice versa (e.g., XN and XB). From
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the point of view of spatial scale, previous studies have found that the performance of TRMM 3B42V7
is superior to GPM IMERGE [63], although GPM IMERGE’s horizontal resolution is higher to 0.10◦.
Table 3 is CHIRPS upscaled to 0.25◦ to evaluate with CN05.1. In all 10 river basins, the r in 0.05◦

evaluation is higher in 0.25◦ evaluation, which illustrates that the evaluation at different resolutions
have significant differences. In future, the performance of CHIRPS on horizontal resolution of 0.05◦

and 0.10◦ should be give insight into evaluation of spatial scale uncertainty.

Table 3. Comparison of CHIRPS’ r in resolutions of 0.05◦ and 0.25◦.

Regions DN HAH HUH LH SHJ YR YZR XN PR XB

0.05◦ 0.44 0.34 0.39 0.34 0.33 0.32 0.37 0.37 0.46 0.21
0.25◦ 0.41 0.27 0.34 0.28 0.28 0.27 0.31 0.27 0.41 0.15

Difference 0.03 0.07 0.05 0.06 0.06 0.05 0.06 0.10 0.05 0.06

Third, in complex terrain over China, rain gauges are usually located in the bottom of valleys for
the convenience of traffic and easily maintaining losing of sight of precipitation micro-distribution
(e.g., precipitation spatial distribution on windward and leeward, and the precipitation’s vertical
distribution.). In mountainous areas, gridded datasets, which are extrapolated by traditionally
mathematical methods (e.g., IDW, Krieger and Spline) into grids of 0.25◦ and 0.10◦, usually have
smaller areal precipitation than naturally areal precipitation. Some studies use empirical models
with DEM extrapolation for precipitation (e.g., The PRISM Climate Group’s PRISM [64]). In terms of
the non-linear relationship between precipitation and elevation, there are still great uncertainties in
mountainous areas with scarce rain gauges. Thus, any gridded datasets (e.g., CN05.1 [46], CMAP [11],
APHRO [45], and ITPCAS [47]) present great uncertainties in complex terrain, which make the
evaluation with gridded observation less reliable. There, in western China, the grid evaluation with
CN05.1 has great uncertainty (Figures 4 and 5). In future, it is wise and reliable to evaluate the QPEs
only when a grid cell covers at least one rain gauge on a different scale.

Finally, except for traditionally statistical methods for quantitative evaluation, some studies
use hydrological models [e.g., Coupled routing and excess storage (CREAST) hydrological
model [39,40], Variable infiltration capacity (VIC) semi-distributed hydrological model [17,65] to
evaluate precipitation. This method is suitable for ungauged regions or regions with scarce rain gauges
(e.g., XB and XN). In future, it will be an effective approach using hydrological models to evaluate
CHIRPS in multiple scales.

5. Conclusions

Satellite QPEs are widely applied in hydrological and ecological research. In this study, we
compared the daily precipitation estimates from CHIRPS with the data from 2480 rain gauges located
across China and gridded observation using several statistical metrics in the long terms period
1981–2014, to find the potential hydro-meteorological application. The main conclusions reached are
the following:

1. Limited to the resolution, the gridded observations do not completely agree with the data from
high-density rain gauge networks across mainland, China, especially in complex terrain areas
(e.g., XN). Overall, the gridded observation, CN05.1, has an r value above 0.90 over the course
of a seasonal cycle. However, the evaluation results are quite different when comparing point
evaluation and grid evaluation.

2. The CHIRPS precipitation is mainly based on the statistical model based on IR data and
TRMM 3B42’s precipitation in pentad time. In mainland China, the CHIRPS QPEs have better
performance in DN and PR, in southern China, and poor performance in XB, YR, SHJ, LH, and
HAH. The ME and RSME exhibits significant variation with seasonal change, which are caused by
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the limitations of TRMM, which is suitable only for tropical regions, not middle-latitude regions.
Thus, CHIRPS exhibits good performance in southern China.

3. CHIRPS also exhibits better performance for areas that experience large amounts of precipitation
(e.g., southern China) as compared to areas characterized by arid and semi-arid land (e.g.,
northwest China). In addition, the change in good performance zones change is strongly related
to monsoon movement.

4. Generally, the accuracy of CHIRPS is better in warm seasons than in Winter. It has limited ability
to detect snowfall of any intensity.

5. CHIRPS is moderately sensitive to the precipitation from typhoon weather systems.
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