Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Barada Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4853 KiB  
Article
Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria
by Firas Alsilibe, Katalin Bene, Ghada Bilal, Khaled Alghafli and Xiaogang Shi
Remote Sens. 2023, 15(7), 1778; https://doi.org/10.3390/rs15071778 - 27 Mar 2023
Cited by 14 | Viewed by 4385
Abstract
The lack of sufficient precipitation data has been a common problem for water resource planning in many arid and semi-arid regions with sparse and limited weather monitoring networks. Satellite-based precipitation products are often used in these regions to improve data availability. This research [...] Read more.
The lack of sufficient precipitation data has been a common problem for water resource planning in many arid and semi-arid regions with sparse and limited weather monitoring networks. Satellite-based precipitation products are often used in these regions to improve data availability. This research presents the first validation study in Syria for Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) estimates using in-situ precipitation data. The validation was performed using accuracy and categorical statistics in the semi-arid Barada Basin, Syria, between 2000 and 2020. Multiple temporal scales (daily, pentad, monthly, seasonally, and annual) were utilized to investigate the accuracy of CHIRPS estimates. The CHIRPS results indicated advantages and disadvantages. The main promising result was achieved at the seasonal scale. Implementing CHIRPS for seasonal drought was proven to be suitable for the Barada Basin. Low bias (PBwinter = 2.1%, PBwet season = 12.7%), high correlation (rwet season = 0.79), and small error (ME = 4.25 mm/winter) support the implementation of CHIRPS in winter and wet seasons for seasonal drought monitoring. However, it was observed that CHIRPS exhibited poor performance (inland pentads) in reproducing precipitation amounts at finer temporal scales (pentad and daily). Underestimation of precipitation event amounts was evident in all accuracy statistics results, and the magnitude of error was higher with more intense events. CHIRPS results better corresponded in wet months than dry months. Additionally, the results showed that CHIRPS had poor detection skill in drylands; on average, only 20% of all in-situ precipitation events were correctly detected by CHIRPS with no effect of topography found on detection skill performance. This research could be valuable for decision-makers in dryland regions (as well as the Barada Basin) for water resource planning and drought early warning systems using CHIRPS. Full article
Show Figures

Figure 1

19 pages, 6823 KiB  
Article
Groundwater Modeling as an Alternative Approach to Limited Data in the Northeastern Part of Mt. Hermon (Syria), to Develop a Preliminary Water Budget
by Nazeer M. Asmael, Alain Dupuy, Frédéric Huneau, Salim Hamid and Philippe Le Coustumer
Water 2015, 7(7), 3978-3996; https://doi.org/10.3390/w7073978 - 21 Jul 2015
Cited by 11 | Viewed by 12140
Abstract
In developing countries such as Syria, the lack of hydrological data affects groundwater resource assessment. Groundwater models provide the means to fill the gaps in the available data in order to improve the understanding of groundwater systems. The study area can be considered [...] Read more.
In developing countries such as Syria, the lack of hydrological data affects groundwater resource assessment. Groundwater models provide the means to fill the gaps in the available data in order to improve the understanding of groundwater systems. The study area can be considered as the main recharge area of the eastern side of Barada and Awaj basin in the eastern part of Mt. Hermon. The withdrawal for agricultural and domestic purposes removes a considerable amount of water. The steady-state three-dimensional (3D) groundwater model (FEFLOW which is an advanced finite element groundwater flow and transport modeling tool), was used to quantify groundwater budget components by using all available data of hydrological year 2009–2010. The results obtained may be considered as an essential tool for groundwater management options in the study area. The calibrated model demonstrates a good agreement between the observed and simulated hydraulic head. The result of the sensitivity analysis shows that the model is highly sensitive to hydraulic conductivity changes and sensitive to a lesser extent to water recharge amount. Regarding the upper aquifer horizon, the water budget under steady-state condition indicates that the lateral groundwater inflow from the Jurassic aquifer into this horizon is the most important recharge component. The major discharge component from this aquifer horizon occurs at its eastern boundary toward the outside of the model domain. The model was able to produce a satisfying estimation of the preliminary water budget of the upper aquifer horizon which indicates a positive imbalance of 4.6 Mm3·y−1. Full article
Show Figures

Graphical abstract

Back to TopTop