CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery
Abstract
:1. Introduction
2. Methodology
2.1. Backbone
2.2. SPCA
2.3. MGA
2.4. HFA
3. Experimental Analysis
3.1. Datasets
3.1.1. Cloud and Cloud Shadow Dataset
3.1.2. CSWV Dataset
3.2. Experiment Details
Optimization
3.3. Ablation Experiment
3.3.1. Ablation for SPCA
3.3.2. Ablation for HFA
3.3.3. Ablation for MGA
3.4. Comparison Test of the Cloud and Cloud Shadow Dataset
3.5. Comparison Test of the CSWV
4. Discussion
4.1. Advantages of the Method
4.2. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images. Int. J. Remote Sens. 2022, 43, 5874–5894. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Ackerman, S.; Strabala, K.; Menzel, P.; Frey, R.; Moeller, C.; Gumley, L. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). Eos. Atbd. Web Site 1997, 103, 32. [Google Scholar]
- Solvsteen, C.; Deering, D.W.; Gudmandsen, P. Correlation based cloud-detection and an examination of the split-window method. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2586, 86–97. [Google Scholar]
- Adrian, F. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction. Remote Sens. 2014, 6, 776–800. [Google Scholar]
- Dumitru, C.O.; Datcu, M. Information Content of Very High Resolution SAR Images: Study of Feature Extraction and Imaging Parameters. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4591–4610. [Google Scholar] [CrossRef]
- Ming, L.; Yan, W.; Wei, Z.; Qiang, Z.; Ming, L.; Liao, G. Dempster–Shafer Fusion of Multiple Sparse Representation and Statistical Property for SAR Target Configuration Recognition. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1106–1110. [Google Scholar]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Amorós, J.; Camps-Valls, G.; Martín, J.; Calpe, J.; Alonso, L.; Guanter, L.; Fortea, J.C.; Moreno, J. Cloud Detection for CHRIS/Proba Hyperspectral Images; SPIE: Bruges, Belgium, 2005; pp. 508–519. [Google Scholar]
- Gomez-Chova, L.; Camps-Valls, G.; Amoros-Lopez, J.; Guanter, L.; Alonso, L.; Calpe, J.; Moreno, J. New Cloud Detection Algorithm for Multispectral and Hyperspectral Images: Application to ENVISAT/MERIS and PROBA/CHRIS Sensors. In Proceedings of the IEEE International Conference on Geoscience & Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Bei, Z.; Ya-Dong, H.; Jin, H. Cloud detection of remote sensing images based on h-svm with multi-feature fusion. J. Atmos. Environ. Opt. 2021, 16, 58. [Google Scholar]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.J. A machine learning-based cloud detection algorithm for the Himawari-8 spectral image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Chen, N.; Li, W.; Gatebe, C.; Tanikawa, T.; Hori, M.; Shimada, R.; Aoki, T.; Stamnes, K. New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ. 2018, 219, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Xia, M.; Qian, M.; Zhang, Y.; Liu, J.; Lin, H. Cloud/shadow segmentation based on multi-level feature enhanced network for remote sensing imagery. Int. J. Remote Sens. 2022, 43, 5940–5960. [Google Scholar] [CrossRef]
- Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput. Geosci. 2021, 157, 104940. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural Comput. Appl. 2022, 34, 6149–6162. [Google Scholar] [CrossRef]
- Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote Sens. 2022, 16, 016513. [Google Scholar] [CrossRef]
- Song, L.; Xia, M.; Weng, L.; Lin, H.; Qian, M.; Chen, B. Axial Cross Attention Meets CNN: Bibranch Fusion Network for Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 32–43. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Weng, L.; Lin, H. Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image. Sustainability 2023, 15, 3034. [Google Scholar] [CrossRef]
- Hu, K.; Weng, C.; Zhang, Y.; Jin, J.; Xia, Q. An Overview of Underwater Vision Enhancement: From Traditional Methods to Recent Deep Learning. J. Mar. Sci. Eng. 2022, 10, 241. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Qian, M.; Chen, B. Dual-Branch Network for Cloud and Cloud Shadow Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5410012. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2016, arXiv:1612.01105. [Google Scholar]
- Chen, B.; Xia, M.; Huang, J. MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover. Remote Sens. 2021, 13, 731. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, D.; Xia, M. CDUNet: Cloud Detection UNet for Remote Sensing Imagery. Remote Sens. 2021, 13, 4533. [Google Scholar] [CrossRef]
- Zhang, E.; Hu, K.; Xia, M.; Weng, L.; Lin, H. Multilevel feature context semantic fusion network for cloud and cloud shadow segmentation. J. Appl. Remote Sens. 2022, 16, 046503. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, K.; Ding, Y.; Jin, J.; Weng, L.; Xia, M. Skeleton Motion Recognition Based on Multi-Scale Deep Spatio-Temporal Features. Appl. Sci. 2022, 12, 1028. [Google Scholar] [CrossRef]
- Hu, K.; Li, M.; Xia, M.; Lin, H. Multi-Scale Feature Aggregation Network for Water Area Segmentation. Remote Sens. 2022, 14, 206. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, M.; Lu, M.; Pan, L.; Liu, J. Parameter Identification in Power Transmission Systems Based on Graph Convolution Network. IEEE Trans. Power Deliv. 2022, 37, 3155–3163. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the ICLR, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4003–4012. [Google Scholar]
- Hu, K.; Zhang, E.; Xia, M.; Weng, L.; Lin, H. MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 1055. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- McClelland, J.L.; Rumelhart, D.E.; PDP Research Group. Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1986; Volume 2. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Gao, Z.; Xie, J.; Wang, Q.; Li, P. Global Second-Order Pooling Convolutional Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. arXiv 2020, arXiv:2012.11879. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-local Networks Meet Squeeze–Excitation Networks and Beyond. arXiv 2019, arXiv:1904.11492. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. arXiv 2017, arXiv:1711.07971. [Google Scholar]
- Zhang, G.; Gao, X.; Yang, Y.; Wang, M.; Ran, S. Controllably Deep Supervision and Multi-Scale Feature Fusion Network for Cloud and Snow Detection Based on Medium-and High-Resolution Imagery Dataset. Remote Sens. 2021, 13, 4805. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Li, G.; Yun, I.; Kim, J.; Kim, J. DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation. arXiv 2019, arXiv:1907.11357. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. arXiv 2019, arXiv:1902.09212. [Google Scholar]
- Yuan, Y.; Chen, X.; Wang, J. Object-Contextual Representations for Semantic Segmentation. arXiv 2019, arXiv:1909.11065. [Google Scholar]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Xia, M.; Qu, Y.; Lin, H. PANDA: Parallel asymmetric network with double attention for cloud and its shadow detection. J. Appl. Remote Sens. 2021, 15, 046512. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network. arXiv 2018, arXiv:1811.11431. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmentation. In Proceedings of the International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. arXiv 2021, arXiv:2102.12122. [Google Scholar]
- Hong, Y.; Pan, H.; Sun, W.; Member, S.; Jia, Y. Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. arXiv 2021, arXiv:2101.06085. [Google Scholar]
- Zhang, F.; Chen, Y.; Li, Z.; Hong, Z.; Ding, E. ACFNet: Attentional Class Feature Network for Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
Kernel Size | Group Size | MIoU |
---|---|---|
3,5,7,9 | 4,8,16,16 | 94.13% |
3,5,7,9 | 1,2,4,8 | 94.32% |
3,5,7,9 | 16,16,16,16 | 94.33% |
3,5,7,9 | 2,4,8,16 | 94.43% |
Method | MoiU on Cloud and Cloud Shadow (%) | MoiU on CSWV (%) |
---|---|---|
ResNet-18 | 92.98 | 83.18 |
ResNet18 + SPCA | 93.62 | 84.63 |
ResNet18 + SPCA + HFA | 93.86 | 85.43 |
ResNet18 + SPCA + HFA | 93.92 | 86.25 |
ResNet18 + SPCA + HFA + MGA | 94.18 | 87.04 |
ResNet18 + SPCA + HFA + MGA | 94.43 | 87.52 |
Class Pixel Accuracy | Overall Results | |||||
---|---|---|---|---|---|---|
Method | Land (%) | Cloud (%) | Shadow (%) | PA (%) | MPA (%) | MIoU (%) |
SegNet | 95.35 | 94.53 | 91.31 | 94.54 | 93.73 | 87.52 |
UNet | 96.44 | 96.05 | 93.57 | 95.90 | 95.35 | 90.39 |
DeepLabV3plus | 96.78 | 96.31 | 92.47 | 95.98 | 95.18 | 90.65 |
HRNet | 97.12 | 95.99 | 92.97 | 96.21 | 95.36 | 91.15 |
OCRNet | 97.33 | 95.89 | 92.71 | 96.27 | 95.31 | 91.20 |
ENet | 97.37 | 96.18 | 93.13 | 96.42 | 95.56 | 91.60 |
ShuffleNetV2 | 97.10 | 96.78 | 94.12 | 96.56 | 96.00 | 91.89 |
Dual_branch_Network | 97.71 | 96.68 | 94.00 | 96.88 | 96.13 | 92.66 |
CSAMNet | 97.72 | 96.85 | 94.99 | 97.10 | 96.52 | 93.12 |
PADANet | 98.10 | 96.59 | 94.11 | 97.10 | 96.26 | 93.14 |
PSPNet | 97.86 | 97.07 | 94.61 | 97.65 | 96.51 | 93.29 |
DABNet | 98.00 | 97.23 | 94.67 | 97.30 | 96.63 | 93.58 |
CRSNet | 97.93 | 96.87 | 95.44 | 97.30 | 96.75 | 93.59 |
CRSNet | 98.25 | 97.59 | 95.45 | 97.66 | 97.10 | 94.43 |
Method | PA (%) | MPA (%) | MIoU (%) |
---|---|---|---|
ENet | 91.25 | 89.40 | 82.17 |
PADANet | 91.33 | 89.62 | 82.20 |
ESPNetV2 [54] | 91.66 | 89.93 | 82.74 |
CCNet [55] | 91.79 | 90.14 | 83.10 |
HRNet | 91.90 | 90.70 | 83.19 |
PVT [56] | 91.85 | 90.44 | 83.35 |
DDRNet [57] | 91.75 | 90.13 | 83.36 |
PSPNet | 91.95 | 90.45 | 83.53 |
BiseNetV2 | 91.98 | 90.27 | 83.81 |
ACFNet [58] | 92.30 | 90.75 | 84.44 |
OCRNet | 92.60 | 91.14 | 84.81 |
SegNet | 92.81 | 91.61 | 85.12 |
DFN [59] | 93.22 | 92.10 | 86.22 |
DeeplabV3plus | 93.52 | 92.17 | 86.72 |
CRSNet | 93.66 | 92.38 | 86.95 |
CRSNet | 94.01 | 93.46 | 87.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Weng, L.; Ding, L.; Xia, M.; Lin, H. CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery. Remote Sens. 2023, 15, 1664. https://doi.org/10.3390/rs15061664
Zhang C, Weng L, Ding L, Xia M, Lin H. CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery. Remote Sensing. 2023; 15(6):1664. https://doi.org/10.3390/rs15061664
Chicago/Turabian StyleZhang, Chao, Liguo Weng, Li Ding, Min Xia, and Haifeng Lin. 2023. "CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery" Remote Sensing 15, no. 6: 1664. https://doi.org/10.3390/rs15061664
APA StyleZhang, C., Weng, L., Ding, L., Xia, M., & Lin, H. (2023). CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery. Remote Sensing, 15(6), 1664. https://doi.org/10.3390/rs15061664