Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model
Abstract
:1. Introduction
2. Data and Methods
2.1. NN Emulator
2.2. Numerical Experiments
2.3. Previous Studies on Different Resolutions
3. Results and Discussion
3.1. Real-Case Simulations
3.2. Ideal-Case Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roh, S.; Song, H.-J. Evaluation of neural network emulations for radiation parameterization in cloud resolving model. Geophys. Res. Lett. 2020, 47, e2020GL089444. [Google Scholar] [CrossRef]
- Song, H.-J.; Roh, S. Improved weather forecasting using neural network emulation for radiation parameterization. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002609. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A neural network approach for a fast and accurate computation of a longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Liu, Y.; Caballero, R.; Monteiro, J.M. RadNet 1.0: Exploring deep learning architectures for longwave radiative transfer. Geosci. Model Dev. 2020, 13, 4399–4412. [Google Scholar] [CrossRef]
- Ukkonen, P.; Pincus, R.; Hogan, R.J.; Nielsen, K.P.; Kaas, E. Accelerating radiation computations for dynamical models with targeted machine learning and code optimization. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002226. [Google Scholar] [CrossRef]
- Lagerquist, R.; Turner, D.; Ebert-Uphoff, I.; Stewart, J.; Hagerty, V. Using deep learning to emulate and accelerate a radiative transfer model. J. Atmos. Ocean. Technol. 2021, 38, 1673–1696. [Google Scholar] [CrossRef]
- Veerman, M.A.; Pincus, R.; Stoffer, R.; van Leeuwen, C.M.; Podareanu, D.; van Heerwaarden, C.C. Predicting atmospheric optical properties for radiative transfer computations using neural networks. Philos. Trans. R. Soc. A 2021, 379, 20200095. [Google Scholar] [CrossRef]
- Meyer, D.; Hogan, R.J.; Dueben, P.D.; Mason, S.L. Machine learning emulation of 3D cloud radiative effects. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002550. [Google Scholar] [CrossRef]
- Ukkonen, P. Exploring pathways to more accurate machine learning emulation of atmospheric radiative transfer. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002875. [Google Scholar] [CrossRef]
- Belochitski, A.; Binev, P.; DeVore, R.; Fox-Rabinovitz, M.; Krasnopolsky, V.; Lamby, P. Tree approximation of the long wave radiation parameterization in the NCAR CAM global climate model. J. Comput. Appl. Math. 2011, 236, 447–460. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Chalikov, D.V. New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. Mon. Weather Rev. 2005, 133, 1370–1383. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Belochitski, A.A. Decadal climate simulations using accurate and fast neural network emulation of full, longwave and shortwave radiation. Mon. Weather Rev. 2008, 136, 3683–3695. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Tolman, H.L.; Belochitski, A.A. Neural network approach for robust and fast calculation of physical processes in numerical environmental models: Compound parameterization with a quality control of larger errors. Neural Netw. 2008, 21, 535–543. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Hou, Y.T.; Lord, S.J.; Belochitski, A.A. Accurate and fast neural network emulations of model radiation for the NCEP coupled Climate Forecast System: Climate simulations and seasonal predictions. Mon. Weather Rev. 2010, 138, 1822–1842. [Google Scholar] [CrossRef]
- Krasnopolsky, V.M.; Belochitski, A.A.; Hou, Y.T.; Lord, S.J.; Yang, F. Accurate and Fast Neural Network Emulations of Long and Short Wave Radiation for the NCEP Global Forecast System Model. NCEP/NWS, NOAA, Office Note 471. 2012. Available online: https://www.emc.ncep.noaa.gov/officenotes/newernotes/on471.pdf (accessed on 1 May 2012).
- Pal, A.; Mahajan, S.; Norman, M.R. Using deep neural networks as cost-effective surrogate models for Super-Parameterized E3SM radiative transfer. Geophys. Res. Lett. 2019, 46, 6069–6079. [Google Scholar] [CrossRef]
- Belochitski, A.; Krasnopolsky, V. Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art General Circulation Model. Geosci. Model Dev. 2021, 14, 7425–7437. [Google Scholar] [CrossRef]
- Song, H.-J.; Roh, S.; Park, H. Compound parameterization to improve the accuracy of radiation emulator in a numerical weather prediction model. Geophys. Res. Lett. 2021, 48, e2021GL095043. [Google Scholar] [CrossRef]
- Song, H.-J.; Roh, S.; Lee, J.; Nam, G.; Yun, E.; Yoon, J.; Kim, P.S. Benefits of stochastic weight averaging in developing neural network radiation scheme for numerical weather prediction. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002921. [Google Scholar] [CrossRef]
- Song, H.-J.; Kim, P.S. Effects of cloud microphysics on the universal performance of neural network radiation scheme. Geophys. Res. Lett. 2022, 49, e2022GL098601. [Google Scholar] [CrossRef]
- Kim, P.S.; Song, H.-J. Usefulness of automatic hyperparameter optimization in developing radiation emulators in a numerical weather prediction model. Atmosphere 2022, 13, 721. [Google Scholar] [CrossRef]
- Morcrette, J.-J. Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res. 1991, 96, 9121. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Baek, S. A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst. 2017, 9, 1628–1640. [Google Scholar] [CrossRef]
- Hogan, R.J.; Bozzo, A. A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst. 2018, 10, 1990–2008. [Google Scholar] [CrossRef]
- Pincus, R.; Mlawer, E.J.; Delamere, J.S. Balancing accuracy, efficiency, and flexibility in radiation calculations for dynamical models. J. Adv. Model. Earth Syst. 2019, 11, 3087–3089. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-C.; Ha, J.-H.; Ahn, K.D.; Lee, E.H.; Kim, C.H.; Lee, Y.H.; Clayton, A. An overview of KMA’s operational NWP data assimilation system. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV); Park, S.K., Xu, L., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Clark, P.; Roberts, N.; Lean, H.; Ballard, S.P.; Charlton-Perez, C. Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl. 2016, 23, 165–181. [Google Scholar] [CrossRef]
- Pavlik, D.; Söhl, D.; Pluntke, T.; Mykhnovych, A.; Bernhofer, C. Dynamic downscaling of global climate projections for eastern Europe with a horizontal resolution of 7 km. Environ. Earth Sci. 2012, 65, 1475–1482. [Google Scholar] [CrossRef]
- Kumar, P.; Ojha, S.P.; Singh, R.; Kishtawal, C.M.; Pal, P.K. Performance of weather research and forecasting model with variable horizontal resolution. Theor. Appl. Climatol. 2016, 126, 705–713. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Lim, K.S.; Hong, S.-Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Morrison, H.; Milbrandt, J.A. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci. 2015, 72, 287–311. [Google Scholar] [CrossRef]
- Bae, S.Y.; Hong, S.-Y.; Tao, W.-K. Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pac. J. Atmos. Sci. 2019, 55, 233–245. [Google Scholar] [CrossRef]
- Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging weights leads to wider optima and better generalization. arXiv 2018, arXiv:1803.05407. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR Technical Notes; NCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Hong, S. A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Weather Rev. 2017, 145, 583–598. [Google Scholar] [CrossRef]
- Shin, H.H.; Hong, S. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhong, X.; Ma, Z.; Yao, Y.; Xu, L.; Wu, Y.; Wang, Z. WRF–ML v1.0: A bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer. Geosci. Model Dev. 2023, 16, 199–209. [Google Scholar] [CrossRef]
References | Resolution [km] | Speedup [Fold] | LWHR [K day−1] | SWHR [K day−1] |
---|---|---|---|---|
Krasnopolsky et al. (2010) [14] | 300 | 100 | 0.34 | 0.19 |
Krasnopolsky et al. (2010) [14] | 100 | 30 | 0.49 | 0.20 |
Krasnopolsky et al. (2012) [15] | 25 | 40 | 0.52 | 0.26 |
Roh and Song (2020) [1] | 0.25 | 30 | 1.12 | 0.55 |
Roh and Song (2020) [1] | 0.25 | 60 | 1.54 | 1.13 |
Roh and Song (2020) [1] | 0.25 | 100 | 1.60 | 1.15 |
Song and Roh (2021) [2] | 5 | 60 | 0.59 | 0.22 |
Ukkonen (2022) [9] | 80 | 4 | - | 0.16 |
Song et al. (2022) [19] | 5 | 60 | 0.46 | 0.18 |
Zhong et al. (2023) [42] | 5 | 15.71 | 2.035 | 1.172 |
Zhong et al. (2023), Bi-LSTM [42] | 5 | 2.16 | 0.337 | 0.277 |
5 km | 10 km | 25 km | 50 km | 75 km | 100 km | |
---|---|---|---|---|---|---|
LW flux | 9.5888 (−0.0896) | 9.1575 (−0.1974) | 8.1587 (−0.3312) | 7.7853 (−0.4591) | 7.7776 (−0.5351) | 7.9902 (−0.5777) |
-top ↑ | 11.2884 (−0.1130) | 10.6651 (−0.4161) | 9.2559 (−0.8553) | 8.8752 (−1.3604) | 9.2227 (−1.7208) | 9.8026 (−1.9578) |
-bottom ↑ | 3.8179 (−0.0127) | 3.7173 (0.0041) | 3.4111 (0.0326) | 3.3648 (0.1044) | 3.2523 (0.1382) | 3.3526 (0.1812) |
-bottom ↓ | 13.6601 (−0.1430) | 13.0901 (−0.1801) | 11.8089 (−0.1709) | 11.1159 (−0.1214) | 10.8579 (−0.0227) | 10.8154 (0.0436) |
SW flux | 63.1709 (0.5536) | 60.3422 (0.6708) | 52.7777 (0.8328) | 49.0250 (1.1012) | 46.8944 (1.2480) | 47.3956 (1.4263) |
-top ↑ | 79.3886 (−0.2232) | 75.9043 (−0.8143) | 62.3987 (−1.6583) | 61.6078 (−2.9714) | 58.9609 (−3.3387) | 59.6203 (−3.9874) |
-bottom ↑ | 13.6354 (0.1701) | 12.9018 (0.2718) | 11.3199 (0.4041) | 10.4635 (0.6312) | 10.0865 (0.7353) | 10.0846 (0.8843) |
-bottom ↓ | 96.4886 (1.7138) | 92.2204 (2.5550) | 80.6146 (3.7526) | 75.0035 (5.6438) | 71.6357 (6.3475) | 72.4819 (7.3819) |
T2m | 2.2619 (−0.7778) | 2.4536 (−0.9370) | 2.6596 (−0.9582) | 2.7026 (−0.7280) | 2.8249 (−0.6236) | 2.9405 (−0.5037) |
Precipitation | 1.5515 (−0.0703) | 1.5170 (−0.0846) | 1.3788 (−0.1426) | 1.2800 (−0.2136) | 1.1747 (−0.2965) | 1.1479 (−0.3393) |
T2m (Control) | 2.2643 (−0.7791) | 2.4607 (−0.9428) | 2.6808 (−0.9733) | 2.7401 (−0.7726) | 2.8672 (−0.6775) | 2.9895 (−0.5656) |
Precipitation (Control) | 1.5641 (−0.0629) | 1.5123 (−0.0890) | 1.3775 (−0.1444) | 1.2760 (−0.2187) | 1.1776 (−0.2981) | 1.1433 (−0.3435) |
LW Heating Rate | SW Heating Rate | LW Flux | SW Flux | |
---|---|---|---|---|
5 km | 3.59 2.61 (−0.05 −0.11) | 1.65 1.21 (0.30 0.02) | 25.12 20.89 (0.36 0.12) | 193.19 160.76 (12.97 1.84) |
3 km | 4.42 2.96 (0.14 −0.07) | 2.48 1.64 (0.64 0.02) | 36.01 20.35 (10.18 −1.83) | 260.52 154.19 (47.00 −1.81) |
2 km | 4.29 2.98 (0.13 −0.17) | 2.32 1.33 (0.52 0.01) | 26.67 21.92 (0.74 1.10) | 225.13 147.67 (15.56 −2.12) |
1 km | 5.19 3.87 (−0.25 −0.41) | 3.37 1.75 (1.33 −0.13) | 39.41 20.29 (17.71 −0.91) | 291.27 104.46 (99.03 11.92) |
0.5 km | 5.90 4.49 (−0.21 −0.40) | 3.30 1.75 (1.39 −0.06) | 49.14 19.73 (26.86 3.11) | 269.50 101.52 (89.70 2.24) |
0.25 km | 5.29 3.44 (−0.35 0.01) | 2.99 1.43 (1.10 0.00) | 45.06 19.73 (24.96 −3.47) | 245.47 174.04 (61.15 5.32) |
LW Heating Rate | SW Heating Rate | LW Flux | SW Flux | |
---|---|---|---|---|
5 km | 4.39 2.44 (0.02 −0.09) | 2.19 1.28 (0.66 0.01) | 23.62 15.08 (−1.50 −0.27) | 244.51 88.27 (30.11 −2.80) |
3 km | 4.77 2.91 (0.12 −0.11) | 2.29 1.09 (0.77 0.02) | 36.38 15.87 (11.77 −2.35) | 262.38 93.95 (55.03 −1.65) |
2 km | 5.15 2.99 (0.22 −0.16) | 2.52 1.03 (0.63 0.004) | 23.67 18.07 (−0.99 0.59) | 225.38 81.35 (18.20 1.35) |
1 km | 5.33 4.00 (−0.22 −0.44) | 3.33 1.66 (1.33 −0.21) | 34.40 18.30 (11.99 −5.64) | 301.92 66.41 (95.43 20.50) |
0.5 km | 6.00 4.52 (−0.20 −0.37) | 3.38 2.18 (1.38 −0.04) | 49.87 19.64 (26.43 2.40) | 292.46 109.32 (86.37 1.39) |
0.25 km | 5.29 3.44 (−0.35 0.006) | 2.99 1.43 (1.10 0.002) | 45.06 19.73 (24.96 −3.47) | 245.47 174.04 (61.15 5.32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-J.; Roh, S. Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model. Remote Sens. 2023, 15, 2637. https://doi.org/10.3390/rs15102637
Song H-J, Roh S. Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model. Remote Sensing. 2023; 15(10):2637. https://doi.org/10.3390/rs15102637
Chicago/Turabian StyleSong, Hwan-Jin, and Soonyoung Roh. 2023. "Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model" Remote Sensing 15, no. 10: 2637. https://doi.org/10.3390/rs15102637
APA StyleSong, H. -J., & Roh, S. (2023). Impact of Horizontal Resolution on the Robustness of Radiation Emulators in a Numerical Weather Prediction Model. Remote Sensing, 15(10), 2637. https://doi.org/10.3390/rs15102637