Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Landsat Imagery
2.1.2. Urban Boundary Data
2.2. Data
2.2.1. Population Data
2.2.2. OSM Data
2.3. Methods
2.3.1. Extraction of Urban Green Space
2.3.2. NDVI Based Residential Exposure to Green Space Assessment
2.3.3. Inequality in Residential Exposure to Green Space
3. Results
3.1. Urban Green Space Map
3.1.1. Accuracy Assessment
3.1.2. Spatial-Temporal Pattern of Urban Green Space in Beijing
3.2. Residential Exposure to Green Space at Different Scales
3.2.1. City Scale
3.2.2. Block Scale
3.2.3. Exploration of Influencing Factors
3.3. The Inequality of Residential Exposure to Green Space
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abastante, F.; Lami, I.M.; Gaballo, M. Pursuing the SDG11 Targets: The Role of the Sustainability Protocols. Sustainability 2021, 13, 3858. [Google Scholar] [CrossRef]
- Akuraju, V.; Pradhan, P.; Haase, D.; Kropp, J.P.; Rybski, D. Relating SDG11 Indicators and Urban Scaling—An Exploratory Study. Sustain. Cities Soc. 2020, 52, 101853. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; Cai, J.; Chen, B. Dynamic Assessments of Population Exposure to Urban Greenspace Using Multi-Source Big Data. Sci. Total Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to Urban Green Space and Environmental Inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Žlender, V.; Thompson, C.W. Accessibility and Use of Peri-Urban Green Space for Inner-City Dwellers: A Comparative Study. Landsc. Urban Plan. 2017, 165, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Chen, B.; Kwan, M.-P. How Does Urban Expansion Impact People’s Exposure to Green Environments? A Comparative Study of 290 Chinese Cities. J. Clean. Prod. 2020, 246, 119018. [Google Scholar] [CrossRef]
- An, H.; Cai, H.; Xu, X.; Qiao, Z.; Han, D. Impacts of Urban Green Space on Land Surface Temperature from Urban Block Perspectives. Remote Sens. 2022, 14, 4580. [Google Scholar] [CrossRef]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Heidt, V.; Neef, M. Benefits of Urban Green Space for Improving Urban Climate. In Ecology, Planning, and Management of Urban Forests; Springer: Berlin/Heidelberg, Germany, 2008; pp. 84–96. [Google Scholar]
- Murtinová, V.; Gallay, I.; Olah, B. Mitigating Effect of Urban Green Spaces on Surface Urban Heat Island during Summer Period on an Example of a Medium Size Town of Zvolen, Slovakia. Remote Sens. 2022, 14, 4492. [Google Scholar] [CrossRef]
- Sandström, U.; Angelstam, P.; Mikusiński, G. Ecological Diversity of Birds in Relation to the Structure of Urban Green Space. Landsc. Urban Plan. 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial Effects of Landscape Patterns of Urban Patches with Different Vegetation Fractions on Urban Thermal Environment. Remote Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Ekkel, E.D.; de Vries, S. Nearby Green Space and Human Health: Evaluating Accessibility Metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Kothencz, G.; Kolcsár, R.; Cabrera-Barona, P.; Szilassi, P. Urban Green Space Perception and Its Contribution to Well-Being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef] [Green Version]
- Nutsford, D.; Pearson, A.L.; Kingham, S. An Ecological Study Investigating the Association between Access to Urban Green Space and Mental Health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Health Outcomes of Urban Green Space in China: Evidence from Beijing. Sustain. Cities Soc. 2021, 65, 102604. [Google Scholar] [CrossRef]
- Shen, C.; Li, M.; Li, F.; Chen, J.; Lu, Y. Study on Urban Green Space Extraction from QUICKBIRD Imagery Based on Decision Tree; IEEE: Piscataway Township, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Sulma, S.; Yulianto, F.; Nugroho, J.T.; Sofan, P. A Support Vector Machine Object Based Image Analysis Approach on Urban Green Space Extraction Using Pleiades-1A Imagery. Model. Earth Syst. Environ. 2016, 2, 54. [Google Scholar]
- Vigneshwaran, S.; Vasantha Kumar, S. Comparison of Classification Methods for Urban Green Space Extraction Using Very High Resolution Worldview-3 Imagery. Geocarto Int. 2021, 36, 1429–1442. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces in China Using Landsat Images Based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Fang, C.; Mu, X.; Li, G.; Xu, G. Urban Green Space Quality in China: Quality Measurement, Spatial Heterogeneity Pattern and Influencing Factor. Urban For. Urban Green. 2021, 66, 127381. [Google Scholar] [CrossRef]
- Stessens, P.; Khan, A.Z.; Huysmans, M.; Canters, F. Analysing Urban Green Space Accessibility and Quality: A GIS-Based Model as Spatial Decision Support for Urban Ecosystem Services in Brussels. Ecosyst. Serv. 2017, 28, 328–340. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Van Meter, E.; Lawson, A.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment. Spat. Spatio-Temporal Epidemiol. 2011, 2, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-H.; Chen, N. A GIS-Based Spatial Statistical Approach to Modeling Job Accessibility by Transportation Mode: Case Study of Columbus, Ohio. J. Transp. Geogr. 2015, 45, 1–11. [Google Scholar] [CrossRef]
- Handy, S.L.; Niemeier, D.A. Measuring Accessibility: An Exploration of Issues and Alternatives. Environ. Plan. A 1997, 29, 1175–1194. [Google Scholar] [CrossRef]
- Richardson, E.; Pearce, J.; Mitchell, R.; Day, P.; Kingham, S. The Association between Green Space and Cause-Specific Mortality in Urban New Zealand: An Ecological Analysis of Green Space Utility. BMC Public Health 2010, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Chen, B.; Ho, H.C.; Kwan, M.-P.; Liu, D.; Wang, F.; Wang, J.; Cai, J.; Li, X.; Xu, Y. Observed Inequality in Urban Greenspace Exposure in China. Environ. Int. 2021, 156, 106778. [Google Scholar] [CrossRef]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The Relationship of Physical Activity and Overweight to Objectively Measured Green Space Accessibility and Use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef] [Green Version]
- Dai, D. Racial/Ethnic and Socioeconomic Disparities in Urban Green Space Accessibility: Where to Intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Hillsdon, M.; Panter, J.; Foster, C.; Jones, A. The Relationship between Access and Quality of Urban Green Space with Population Physical Activity. Public Health 2006, 120, 1127–1132. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Kan, Z. Analysis of Urban Green Space Accessibility and Distribution Inequity in the City of Chicago. Urban For. Urban Green. 2021, 59, 127029. [Google Scholar] [CrossRef]
- Shi, L.; Halik, Ü.; Abliz, A.; Mamat, Z.; Welp, M. Urban Green Space Accessibility and Distribution Equity in an Arid Oasis City: Urumqi, China. Forests 2020, 11, 690. [Google Scholar] [CrossRef]
- Wu, H.; Liu, L.; Yu, Y.; Peng, Z. Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method. Sustainability 2018, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Xu, L.; Yue, W.; Chen, J. Accessibility of Public Urban Green Space in an Urban Periphery: The Case of Shanghai. Landsc. Urban Plan. 2017, 165, 177–192. [Google Scholar] [CrossRef]
- Chen, B.; Tu, Y.; Wu, S.; Song, Y.; Jin, Y.; Webster, C.; Xu, B.; Gong, P. Beyond Green Environments: Multi-Scale Difference in Human Exposure to Greenspace in China. Environ. Int. 2022, 166, 107348. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Song, Y.; Webster, C.; Xu, B.; Gong, P. Contrasting Inequality in Human Exposure to Greenspace between Cities of Global North and Global South. Nat. Commun. 2022, 13, 4636. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, F.; Zhou, W.; Li, Q.; Huang, J.; Zhu, X. Accessibility Assessment of Urban Green Space: A Quantitative Perspective; IEEE: Piscataway Township, NJ, USA, 2008; Volume 2, p. 1314. [Google Scholar]
- Yang, Z.; Fang, C.; Li, G.; Mu, X. Integrating Multiple Semantics Data to Assess the Dynamic Change of Urban Green Space in Beijing, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102479. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual Maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J. Mapping Global Urban Boundaries from the Global Artificial Impervious Area (GAIA) Data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Schiavina, M.; Freire, S.; MacManus, K. GHS-POP R2022A–GHS Population Grid Multitemporal (1975–1990–2000–2015): European Commission, Joint Research Centre (JRC) [Dataset]. 2022. Available online: https://data.jrc.ec.europa.eu/dataset/d6d86a90-4351-4508-99c1-cb074b022c4a (accessed on 5 January 2023).
- Yin, J.; Fu, P.; Cheshmehzangi, A.; Li, Z.; Dong, J. Investigating the Changes in Urban Green-Space Patterns with Urban Land-Use Changes: A Case Study in Hangzhou, China. Remote Sens. 2022, 14, 5410. [Google Scholar] [CrossRef]
- Zong, L.; He, S.; Lian, J.; Bie, Q.; Wang, X.; Dong, J.; Xie, Y. Detailed Mapping of Urban Land Use Based on Multi-Source Data: A Case Study of Lanzhou. Remote Sens. 2020, 12, 1987. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Ekholm, O.; Schipperijn, J.; Toftager, M.; Kamper-Jørgensen, F.; Randrup, T.B. Health Promoting Outdoor Environments-Associations between Green Space, and Health, Health-Related Quality of Life and Stress Based on a Danish National Representative Survey. Scand. J. Public Health 2010, 38, 411–417. [Google Scholar] [CrossRef]
- Sturm, R.; Cohen, D. Proximity to Urban Parks and Mental Health. J. Ment. Health Policy Econ. 2014, 17, 19. [Google Scholar]
- Palma, J.G.; Stiglitz, J.E. Do Nations Just Get the Inequality They Deserve? The “Palma Ratio” Re-Examined. In Inequality and Growth: Patterns and Policy; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–97. [Google Scholar]
- Ke, X.; Huang, D.; Zhou, T.; Men, H. Contribution of Non-Park Green Space to the Equity of Urban Green Space Accessibility. Ecol. Indic. 2023, 146, 109855. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Ma, X. Evaluation of the Accessible Urban Public Green Space at the Community-Scale with the Consideration of Temporal Accessibility and Quality. Ecol. Indic. 2021, 131, 108231. [Google Scholar] [CrossRef]
- Rao, Y.; Zhong, Y.; He, Q.; Dai, J. Assessing the Equity of Accessibility to Urban Green Space: A Study of 254 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 4855. [Google Scholar] [CrossRef]
- Wen, C.; Albert, C.; Von Haaren, C. Equality in Access to Urban Green Spaces: A Case Study in Hannover, Germany, with a Focus on the Elderly Population. Urban For. Urban Green. 2020, 55, 126820. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the Dynamic of Greenspace in the Urbanized Area of Beijing Based on High Resolution Satellite Images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Knobel, P.; Maneja, R.; Bartoll, X.; Alonso, L.; Bauwelinck, M.; Valentin, A.; Zijlema, W.; Borrell, C.; Nieuwenhuijsen, M.; Dadvand, P. Quality of Urban Green Spaces Influences Residents’ Use of These Spaces, Physical Activity, and Overweight/Obesity. Environ. Pollut. 2021, 271, 116393. [Google Scholar] [CrossRef]
- Hu, S.; Song, W.; Li, C.; Lu, J. A Multi-Mode Gaussian-Based Two-Step Floating Catchment Area Method for Measuring Accessibility of Urban Parks. Cities 2020, 105, 102815. [Google Scholar] [CrossRef]
- Pinto, L.V.; Ferreira, C.S.S.; Inácio, M.; Pereira, P. Urban Green Spaces Accessibility in Two European Cities: Vilnius (Lithuania) and Coimbra (Portugal). Geogr. Sustain. 2022, 3, 74–84. [Google Scholar] [CrossRef]
- Schindler, M.; Le Texier, M.; Caruso, G. How Far Do People Travel to Use Urban Green Space? A Comparison of Three European Cities. Appl. Geogr. 2022, 141, 102673. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.; Lu, Y. Who Has Access to Urban Vegetation? A Spatial Analysis of Distributional Green Equity in 10 US Cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
Year | GCR | Ring 2 | Ring 2_3 | Ring 3_4 | Ring 4_5 | ||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | ||
1990 | 0.353 | 7.1 | 11.3 | 15.3 | 15.9 | 45.7 | 31.8 | 125.7 | 51.7 |
1995 | 0.345 | 8.6 | 13.7 | 20.2 | 21.0 | 42.2 | 29.3 | 134.9 | 46.2 |
2000 | 0.312 | 10.4 | 16.6 | 19.3 | 20.0 | 30.3 | 21.1 | 137.8 | 41.9 |
2005 | 0.295 | 8.9 | 14.2 | 18.0 | 18.7 | 29.2 | 20.3 | 141.0 | 38.6 |
2010 | 0.325 | 10.6 | 16.9 | 20.9 | 21.7 | 35.8 | 24.9 | 149.7 | 40.9 |
2015 | 0.331 | 10.4 | 16.6 | 22.8 | 23.7 | 39.6 | 27.5 | 148.2 | 40.5 |
2020 | 0.348 | 12.6 | 20.1 | 25.1 | 26.1 | 41.9 | 29.1 | 153.4 | 42.0 |
Year | High | Percent (%) | Population _High | Low | Percent (%) | Population _Low | Total _Block | Total _Population |
---|---|---|---|---|---|---|---|---|
1990 | 196 | 18.0 | 805,481 | 739 | 68.0 | 3,248,869 | 1086 | 4,602,075 |
1995 | 296 | 26.8 | 1,544,493 | 669 | 60.7 | 3,434,704 | 1103 | 5,603,949 |
2000 | 139 | 12.4 | 894,805 | 845 | 75.2 | 5,068,238 | 1123 | 6,704,684 |
2005 | 142 | 12.5 | 887,286 | 861 | 76.0 | 5,959,260 | 1133 | 8,130,211 |
2010 | 122 | 10.8 | 939,829 | 857 | 75.6 | 7,273,041 | 1133 | 9,726,315 |
2015 | 272 | 24.0 | 2,516,773 | 651 | 57.5 | 5,895,015 | 1133 | 10,271,718 |
2020 | 274 | 24.2 | 2,810,004 | 590 | 52.1 | 5,608,351 | 1133 | 10,727,545 |
Year | Population | GE | GE_green | r |
---|---|---|---|---|
1990 | 4,602,075 | 0.216 | 0.264 | −0.293 |
1995 | 5,603,949 | 0.276 | 0.334 | −0.272 |
2000 | 6,704,684 | 0.226 | 0.300 | −0.328 |
2005 | 8,130,211 | 0.226 | 0.310 | −0.354 |
2010 | 9,726,315 | 0.227 | 0.295 | −0.330 |
2015 | 10,271,718 | 0.297 | 0.358 | −0.271 |
2020 | 10,727,545 | 0.325 | 0.391 | −0.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Li, G.; Huang, Y. Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing. Remote Sens. 2023, 15, 1549. https://doi.org/10.3390/rs15061549
Cao Y, Li G, Huang Y. Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing. Remote Sensing. 2023; 15(6):1549. https://doi.org/10.3390/rs15061549
Chicago/Turabian StyleCao, Yue, Guangdong Li, and Yaohui Huang. 2023. "Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing" Remote Sensing 15, no. 6: 1549. https://doi.org/10.3390/rs15061549
APA StyleCao, Y., Li, G., & Huang, Y. (2023). Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing. Remote Sensing, 15(6), 1549. https://doi.org/10.3390/rs15061549