Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Source
2.3. LST Downscaling
2.4. LCZ and Its Contribution Degree Effect
2.5. Thermal Environment Network Construction
2.5.1. Identification of Urban Cold Island Patches
2.5.2. Spatial Network Identification for Thermal Environments
2.5.3. Corridor Importance Rating
3. Results
3.1. LST Downscaling Features
3.1.1. LST Downscaling Accuracy Verification
3.1.2. LST10m Spatial Distribution Characteristics
3.2. LCZ Characteristics and Their Contributed Effect on LST
3.2.1. LCZ Classification Accuracy Verification
3.2.2. Characteristics of LCZ Spatial Distribution and Its Relationship with LST
3.2.3. Contribution Effect of LCZ on LST
3.3. Analysis of Urban Thermal Environment Networks and Key Corridors
3.3.1. MSPA-Based Cold Island Plaques Identification
3.3.2. Thermal Environment Green Corridor and Its Grade Analysis
3.3.3. Green Corridor Analysis and Restoration
4. Discussion
4.1. Relationship between LCZ and LST in Arid Zones and Their Cooling Measures
4.2. Protection and Optimization of Green Space in the Metropolitan Area
4.3. Limitations and Prospects for the Future
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, S.; Ziaul, S.K. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kasimu, A.; Liang, H.; Wei, B.; Aizizi, Y. Spatial and Temporal Variation of Land Surface Temperature and Its Spatially Heterogeneous Response in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains, Northwest China. Int. J. Environ. Res. Public Health 2022, 19, 13067. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M. Urban Heat Island: Causes, Effects and Mitigation Measures—A Review. Int. J. Environ. Monit. Anal. 2015, 3, 67–73. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.L.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies. Draft; 2008. Available online: https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 10 November 2022).
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban Heat Island Studies with emphasis on urban pavements: A review. Sust. Cities Soc. 2020, 63, 102476. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; De La Riva, J. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Jamali, A.A.; Kalkhajeh, R.G.; Randhir, T.O.; He, S. Modeling relationship between land surface temperature anomaly and environmental factors using GEE and Giovanni. J. Environ. Manag. 2022, 302, 113970. [Google Scholar] [CrossRef] [PubMed]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef] [Green Version]
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Pu, R.; Bonafoni, S. Reducing Scaling Effect on Downscaled Land Surface Temperature Maps in Heterogenous Urban Environments. Remote Sens. 2021, 13, 5044. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Y.; Li, M.; Yang, K.; Liu, Q.; Li, X. A taylor expansion algorithm for spatial downscaling of MODIS land surface temperature. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5002717. [Google Scholar] [CrossRef]
- Zawadzka, J.; Corstanje, R.; Harris, J.; Truckell, I. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int. J. Digit. Earth 2020, 13, 899–914. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Essa, W.; van der Kwast, J.; Verbeiren, B.; Batelaan, O. Downscaling of thermal images over urban areas using the land surface temperature–impervious percentage relationship. Int. J. Appl. Earth Observat. Geoinform. 2013, 23, 95–108. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimy, H.; Azadbakht, M. Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Comput. Geosci. 2019, 124, 93–102. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Li, W.; Ni, L.; Li, Z.-L.; Duan, S.-B.; Wu, H. Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature. IEEE J. Sel. Topic. Appl. Earth Observat. Remote Sens. 2019, 12, 2299–2307. [Google Scholar] [CrossRef]
- Richard, Y.; Emery, J.; Dudek, J.; Pergaud, J.; Chateau-Smith, C.; Zito, S.; Rega, M.; Vairet, T.; Castel, T.; Thévenin, T. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban Clim. 2018, 26, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Mushore, T.D.; Mutanga, O.; Odindi, J. Determining the Influence of Long Term Urban Growth on Surface Urban Heat Islands Using Local Climate Zones and Intensity Analysis Techniques. Remote Sens. 2022, 14, 2060. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, S.; Yan, Y.; Niu, Y.; Yang, F.; Xie, C. Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Sci. Total Environ. 2020, 710, 136336. [Google Scholar] [CrossRef]
- Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Hankey, S.; Mills, G.; Zhang, W.; Lu, T.; Bechtel, B. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Sci. Data 2020, 7, 264. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M. WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Lu, L.; Yin, C.; Feng, Y. An analysis of oasis stability in arid areas: A case study in the northern slope areas of the Tianshan Mountains. J. Arid Land 2009, 1, 49–56. [Google Scholar]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, H.Y.; Sun, S.B.; Xu, X.Y.; Huang, T.T.; Zhu, J.N. Green space cooling effect an contribution to mitigate heat island of surrounding communities in Beijing Metropolitan Area. Front. Public Health 2022, 10, 870403. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhang, J.; Yang, G. How to build a heat network to alleviate surface heat island effect? Sust. Cities Soc. 2021, 74, 103135. [Google Scholar] [CrossRef]
- Peng, J.; Cheng, X.; Hu, Y.; Corcoran, J. A landscape connectivity approach to mitigating the urban heat island effect. Landsc. Ecol. 2022, 37, 1707–1719. [Google Scholar] [CrossRef]
- Loménie, N.; Racoceanu, D. Point set morphological filtering and semantic spatial configuration modeling: Application to microscopic image and bio-structure analysis. Pattern Recognit. 2012, 45, 2894–2911. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Wright, T.M.; Cardille, J.; Pearsall, H.; Ogneva-Himmelberger, Y.; Riemann, R.; Riitters, K.; Partington, K. Forest fragmentation in Massachusetts, USA: A town-level assessment using Morphological spatial pattern analysis and affinity propagation. GISci. Remote Sens. 2016, 53, 506–519. [Google Scholar] [CrossRef]
- Kang, J.; Li, C.; Li, M.; Zhang, T.; Zhang, B. Identifying priority areas for conservation in the lower Yellow River basin from an ecological network perspective. Ecosyst. Health Sust. 2022, 8, 2105751. [Google Scholar] [CrossRef]
- Zhao, Y.; Kasimu, A.; Liang, H.; Reheman, R. Construction and restoration of landscape ecological network in urumqi city based on landscape ecological risk assessment. Sustainability 2022, 14, 8154. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Sussman, H.S.; Dai, A.; Roundy, P.E. The controlling factors of urban heat in Bengaluru, India. Urban Clim. 2021, 38, 100881. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Sekertekin, A. Validation of physical radiative transfer equation-based land surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ measurements. J. Atmos. Sol. Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Reomte Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.C.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sust. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of local climate zones using ASTER and Landsat data for high-density cities. IEEE J. Sel. Topic. Appl. Earth Observat. Remote Sens. 2017, 10, 3397–3405. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zhang, Z.; Hu, T.; Xing, J.; He, Z.; Liu, X. Geographical Detection of Urban Thermal Environment Based on the Local Climate Zones: A Case Study in Wuhan, China. Remote Sens. 2022, 14, 1067. [Google Scholar] [CrossRef]
- Ayanlade, A.; Aigbiremolen, M.I.; Oladosu, O.R. Variations in urban land surface temperature intensity over four cities in different ecological zones. Sci. Rep. 2021, 11, 20537. [Google Scholar] [CrossRef]
- Carlier, J.; Moran, J. Landscape typology and ecological connectivity assessment to inform Greenway design. Sci. Total Environ. 2019, 651, 3241–3252. [Google Scholar] [CrossRef]
- Leonard, P.B.; Duffy, E.B.; Baldwin, R.F.; McRae, B.H.; Shah, V.B.; Mohapatra, T.K. gflow: Software for modelling circuit theory-based connectivity at any scale. Method. Ecol. Evol. 2017, 8, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Bonafoni, S.; Anniballe, R.; Gioli, B.; Toscano, P. Downscaling Landsat land surface temperature over the urban area of Florence. Eur. J. Remote Sens. 2016, 49, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Ho, J.; Lau, K.; Ng, E. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. 2018, 24, 419–448. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.W.; Zhang, X.L.; Zhao, Y.Y.; Wei, B.H. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Chang. 2016, 143, 1–9. [Google Scholar] [CrossRef]
- Jin, L.; Pan, X.; Liu, L.; Liu, L.; Liu, J.; Gao, Y. Block-based local climate zone approach to urban climate maps using the UDC model. Build. Environ. 2020, 186, 107334. [Google Scholar] [CrossRef]
- Liang, H.; Kasimu, A.; Ma, H.; Zhao, Y.; Zhang, X.; Wei, B. Exploring the Variations and Influencing Factors of Land Surface Temperature in the Urban Agglomeration on the Northern Slope of the Tianshan Mountains. Sustainability 2022, 14, 10663. [Google Scholar] [CrossRef]
Variables | Acronym | Formulation |
---|---|---|
Normalized difference Vegetation index | NDVI | |
Normalized difference Built-up index | NDBI | |
Normalized difference Water index | NDWI |
LST Level | Acronym | Classification Range |
---|---|---|
Extremely low temperature | ELT | T < μ − 1.5 std |
Low temperature | LT | μ − 1.5 std ≤ T < μ − 0.5 std |
Medium temperature | MT | μ − 0.5 std ≤ T < μ + 0.5 std |
High temperature | HT | μ + 0.5 std ≤ T < μ + 1.5 std |
Extremely high temperature | EHT | T > μ + 1.5 std |
Variables | Acronym | Formulation |
---|---|---|
Bare soil index | SI | |
Index-based built-up index | IBI | |
Modified normalized difference Water index | MNDWI |
MSPA Class | Meanings |
---|---|
Core | The core is the largest and continuous area of cold island plaques. |
Bridge | The role of the bridge is to connect two separate cold island plaques. |
Islet | Islets are scattered and independent cold island plaques that are generally small in size. |
Loop | Loop functions similarly to bridge but connects different parts of the cold island core. |
Edge | Edge is the outer boundary between the cold island and the hot island plaques’ contact. |
Perforation | Perforation is the inner boundary between the cold island and the hot island plaques’ contact. |
Branch | The branch is the cold island plaques associated with the edge of the cold island, bridge, and one end of the loop. |
Background | Background is the area other than the cold island plaques. |
Station | Station Name | Altitude (m) | Lat N | Lot W | LSTsta | LST30m | LST10m | LSTsta—ΔLST30m | LSTsta—ΔLST10m | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 51365 | Caijiahu | 440.5 | 44.12 | 87.32 | 28.1 | 29.3 | 30.1 | −1.2 | −2 |
2 | 51368 | Changji | 515.7 | 44.07 | 87.19 | 27.3 | 28.0 | 28.6 | −0.7 | −1.3 |
3 | 51369 | Miquan | 600.3 | 43.58 | 87.39 | 30.8 | 33.5 | 31.9 | −2.7 | −1.1 |
4 | 51463 | Urumqi | 935.0 | 43.47 | 87.39 | 28.8 | 35.4 | 34.7 | −6.6 | −5.9 |
Bias (mean error) | 2.8 | 2.6 | ||||||||
RMSE | 3.63 | 3.23 |
LCZ Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | A | B | C | D | E | F | G | Row Pixels | User Acc (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 80 |
2 | 0 | 9 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 15 | 60 |
3 | 0 | 0 | 36 | 1 | 4 | 0 | 2 | 0 | 2 | 4 | 0 | 4 | 20 | 4 | 4 | 3 | 0 | 84 | 43 |
4 | 0 | 0 | 0 | 14 | 4 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 4 | 0 | 3 | 0 | 0 | 30 | 47 |
5 | 0 | 2 | 2 | 0 | 74 | 0 | 1 | 0 | 1 | 2 | 1 | 3 | 6 | 6 | 4 | 3 | 0 | 105 | 70 |
6 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 6 | 67 |
7 | 0 | 0 | 0 | 0 | 1 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 25 | 92 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 8 | 75 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 00 |
10 | 0 | 1 | 0 | 2 | 5 | 0 | 0 | 0 | 0 | 75 | 0 | 1 | 11 | 1 | 3 | 3 | 1 | 103 | 73 |
A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 3 | 0 | 0 | 0 | 16 | 81 |
B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 1 | 0 | 0 | 0 | 41 | 98 |
C | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 140 | 0 | 1 | 0 | 0 | 146 | 96 |
D | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 5 | 10 | 0 | 225 | 0 | 0 | 0 | 245 | 92 |
E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 00 |
F | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 155 | 0 | 158 | 98 |
G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 00 |
Column pixels | 4 | 13 | 39 | 20 | 96 | 4 | 28 | 6 | 6 | 84 | 19 | 62 | 186 | 241 | 19 | 164 | 9 | 1000 | Kappa:0.804 |
Producer acc (%) | 00 | 62 | 92 | 70 | 77 | 00 | 82 | 00 | 33 | 89 | 68 | 65 | 75 | 93 | 16 | 95 | 89 | OA: 0.831 |
MSPA Class | Area (km2) | Total Area of the Cold Island Patches (%) | Total Study Area (%) |
---|---|---|---|
Core | 630.38 | 57.49 | 18.39 |
Bridge | 98.20 | 8.96 | 2.86 |
Islet | 23.76 | 2.17 | 0.69 |
Loop | 76.24 | 6.95 | 2.22 |
Edge | 58.88 | 5.37 | 1.72 |
Perforation | 164.72 | 15.02 | 4.81 |
Branch | 44.31 | 4.041 | 1.29 |
LCZ Class | Resistance Value | LCZ Class | Resistance Value |
---|---|---|---|
LCZ1 | 15 | LCZ10 | 5 |
LCZ2 | 10 | LCZA | 30 |
LCZ3 | 10 | LCZB | 25 |
LCZ4 | 30 | LCZC | 5 |
LCZ5 | 10 | LCZD | 100 |
LCZ6 | 15 | LCZE | 15 |
LCZ7 | 10 | LCZF | 1 |
LCZ8 | 15 | LCZG | 50 |
LCZ9 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Kasimu, A.; Liang, H.; Wei, B.; Aizizi, Y.; Zhao, Y.; Reheman, R. Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones. Remote Sens. 2023, 15, 1129. https://doi.org/10.3390/rs15041129
Zhang X, Kasimu A, Liang H, Wei B, Aizizi Y, Zhao Y, Reheman R. Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones. Remote Sensing. 2023; 15(4):1129. https://doi.org/10.3390/rs15041129
Chicago/Turabian StyleZhang, Xueling, Alimujiang Kasimu, Hongwu Liang, Bohao Wei, Yimuranzi Aizizi, Yongyu Zhao, and Rukeya Reheman. 2023. "Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones" Remote Sensing 15, no. 4: 1129. https://doi.org/10.3390/rs15041129
APA StyleZhang, X., Kasimu, A., Liang, H., Wei, B., Aizizi, Y., Zhao, Y., & Reheman, R. (2023). Construction of Urban Thermal Environment Network Based on Land Surface Temperature Downscaling and Local Climate Zones. Remote Sensing, 15(4), 1129. https://doi.org/10.3390/rs15041129