A Clutter Parameter Estimation Method Based on Origin Moment Derivation
Abstract
:1. Introduction
2. Proposed Method
2.1. The Origin Moment Derivation Method
2.2. Complexity Analysis
2.3. Experiments and Discussion
3. The Extended Application of the Proposed Method
3.1. Log–Normal Distribution
3.2. Weibull Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, M.; Cao, Y.; Wu, Q. A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2011, 9, 307–311. [Google Scholar] [CrossRef]
- Hakim, W.L.; Achmad, A.R.; Eom, J. Land subsidence measurement of Jakarta coastal area using time series interferometry with Sentinel-1 SAR data. J. Coast. Res. 2020, 102, 75–81. [Google Scholar] [CrossRef]
- Kang, M.S.; Baek, J.M. Efficient SAR imaging integrated with autofocus via compressive sensing. IEEE Geosci. Remote Sens. 2022, 19, 4514905. [Google Scholar] [CrossRef]
- Sayama, S.; Sekine, M. Amplitude statistics of ground clutter included town using a millimeter wave radar. IEICE Trans. Commun. 2003, 26, 829–836. [Google Scholar]
- Sayama, S.; Sekine, M. Log–Normal, Log–Weibull and K–distributed sea clutter. IEICE Trans. Commun. 2002, E85–B, 1375–1381. [Google Scholar]
- Ozgun, O.; Kuzuoglu, M. Physics-based modeling of sea clutter phenomenon by a full-wave numerical solver. Wave Motion Vol. 2022, 109, 102872. [Google Scholar] [CrossRef]
- Shao, Z.; Ji, W.; Qian, C.; Yang, Y. Ship detection for SAR images with sea clutter models estimation. In Proceedings of the 2021 2nd China International SAR Symposium, Shanghai, China, 3–5 November 2021; pp. 1–4. [Google Scholar]
- Greco, M.; Bordoni, F.; Gini, F. X–band sea–clutter nonstationarity: Influence of long waves. IEEE J. Ocean. Eng. 2004, 29, 269–283. [Google Scholar] [CrossRef]
- Chan, H.C. Radar sea—Clutter at low grazing angles. Radar Signal Process. IEEE Proc. 1990, 137, 102–112. [Google Scholar] [CrossRef]
- Walker, D. Doppler modelling of radar sea clutter. IEEE Proc.—Radar Sonar Navig. 2001, 148, 73–80. [Google Scholar] [CrossRef]
- Watts, S. Radar detection prediction in K–distributed sea clutter and thermal noise. Aerosp. Electron. Syst. 1987, 23, 40–45. [Google Scholar] [CrossRef]
- Lauritzen, S.; Uhler, C.; Zwiernik, P. Maximum likelihood estimation in Gaussian models under total positivity. Ann. Stat. 2019, 47, 1835–1863. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Liao, K.; Shen, X. Secondary radar signal processing based on deep residual separable neural network. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems, Shenyang, China, 28–30 July 2020; pp. 12–16. [Google Scholar]
- Abraham, D.A.; Lyons, A.P. Novel physical interpretations of K–distributed reverberation. Ocean. Eng. IEEE J. 2002, 27, 800–813. [Google Scholar] [CrossRef]
- Iskander, D.R.; Zoubir, A.M. Estimation of the parameters of the K-distribution using higher order and fractional moments. IEEE Transcations Aerosp. Electron. Syst. 1999, 35, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Z.; Xu, C.X. Trust region dogleg path algorithms for unconstrained minimization. Ann. Oper. Res. 1999, 87, 407–418. [Google Scholar] [CrossRef]
- Bellavia, S.; Macconi, M.; Pieraccini, S. Constrained Dogleg methods for nonlinear systems with simple bounds. Kluwer Acad. Publ. 2012, 53, 771–794. [Google Scholar] [CrossRef] [Green Version]
- Marier, L., Jr. Correlated K-Distributed clutter generation for radar detection and track. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 568–580. [Google Scholar] [CrossRef]
- Xu, X.H. Entropy metrics of radar signatures of sea surface scattering for distinguishing targets. Remote Sens. 2021, 13, 3950. [Google Scholar]
- Xu, W.; Chen, Y.S. An estimation method for K–distribution clutter parameters. Shipboard Electron. Count. Meas. 2013, 36, 82–84. (In Chinese) [Google Scholar]
- Tang, W.; He, H.; Gunzler, D. Kernel smoothing density estimation when group membership is subject to missing. J. Stat. Plan. Inference 2012, 142, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Wen, A.; Wang, Q.; Li, Y.Y. Simple and flexible photonic microwave waveform generation with low RMSE of square waveform. IEEE Photonics Technol. Lett. 2019, 31, 829–832. [Google Scholar] [CrossRef]
- Ossant, F.; Patat, F.; Lebertre, M.; Teriierooiterai, M.L.; Pourcelot, L. Effective density estimators based on the K-distribution: Interest of low and fractional order moments. Ultrason. Imaging 1988, 20, 243–259. [Google Scholar] [CrossRef]
- Deng, Z.H. Statistical Modeling of Sea Clutter Based on Measured Data. Ph.D. Thesis, Xidian University, Xi’an, China, 2014. (In Chinese). [Google Scholar]
- Abraham, D.A.; Lyons, A.P. Reliable methods for estimating the K-distribution shape parameter. IEEE J. Ocean. Eng. 2010, 35, 288–302. [Google Scholar] [CrossRef]
- Hu, W.L.; Wang, Y.L.; Wang, S.Y. Estimation of the parameters of K–distribution based on zrlog(z) Expectation. J. Electron. Inf. Technol. 2008, 30, 203–205. (In Chinese) [Google Scholar] [CrossRef]
- Blacknell, D.; Tough, R. Parameter estimation for the K–distribution based on [zlog(z)]. IEEE Proc Radar Sonar Navig. 2001, 148, 309–312. [Google Scholar] [CrossRef]
- Bílková, D. Lognormal distribution and using L-moment method for estimating its parameters. Int. J. Math. Model. Methods Appl. Sci. 2012, 6, 30–44. [Google Scholar]
- Huang, C. Parameter estimation of the lognormal distribution. Stud. Coll. Math. 2015, 18, 19–20. (In Chinese) [Google Scholar]
- Bhattacharya, P.; Bhattacharjee, R. A study on Weibull distribution for estimating the parameters. J. Appl. Quant. Methods 2010, 5, 234–241. [Google Scholar] [CrossRef]
- Menon, M.V. Estimation of the shape and scale parameters of the Weibull distribution. Technometrics 1963, 15, 175–182. [Google Scholar] [CrossRef]
- Li, Q.L.; Yin, Z.Y.; Zhu, X.Q. Measurement and Modeling of Radar Clutter from Land and Sea; National Defense Industry Press: Beijing, China, 2017; pp. 262–265. (In Chinese) [Google Scholar]
Estimation Method | Second-/Fractional-Order Moment | Log-III Method | Second-/Fourth-Order Moment | Ref. [18] Method | Ref. [26] Method | Ref. [27] Method | Our Method |
---|---|---|---|---|---|---|---|
Invalid estimated times | 2 | 4 | 2 | 0 | 0 | 4 | 0 |
99.8% | 99.6% | 99.8% | 100% | 100% | 99.6% | 100% | |
RMSE | 0.0157 | 0.0155 | 0.0170 | 0.0167 | 0.0156 | 0.0155 | 0.0154 |
Parameter | Value | Parameter | Value |
---|---|---|---|
RF frequency (GHz) | 9.39 | Unambiguity velocity (m/s) | 7.9872 |
Pulse length (ns) | 200 | Antenna beamwidth (°) | 0.9 |
PRF (Hz) | 1000 | Antenna gain (°) | 45.7 |
Azimuth (°) | 65.0775–64.8907 | Radar height (m) | 20 |
Elevation angle (°) | 359.7528–359.7693 | Polarization mode | HH, HV, VV, VH |
Radar latitude (°) | 43.21 | Radar longitude (°) | 79.60 |
Estimation Method | Second-/Fractional-Order Moment | Log-III Method | Second-/Fourth-Order Moment | Ref. [18] Method | Ref. [26] Method | Ref. [27] Method | Our Method |
---|---|---|---|---|---|---|---|
Invalid estimated times | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NAN times | 0 | 0 | 0 | 6 | 4 | 0 | 0 |
100% | 100% | 100% | 100% | 100% | 100% | 100% | |
RMSE | 0.0792 | 0.0786 | 0.0815 | 0.0886 | 0.0809 | 0.0786 | 0.0780 |
Estimation Method | Second-/Fractional- Order Moment | Log-III Method | Second-/Fourth- Order Moment | Ref. [18] Method | Ref. [26] Method | Ref. [27] Method | Our Method |
---|---|---|---|---|---|---|---|
Calculation time (s) | 1.859 × 10−5 | 2.779 × 10−5 | 2.669 × 10−5 | 6.598 × 10−3 | 6.585 × 10−3 | 2.586 × 10−5 | 6.564 × 10−3 |
Estimation Method | MLE | ME | Ref. [29] | Our Method |
---|---|---|---|---|
RMSE | 0.0943 | 0.1000 | 0.1000 | 0.0943 |
Estimation Method | MLE | ME | Ref. [29] | Our Method |
---|---|---|---|---|
RMSE | 0.0668 | 0.0723 | 0.0723 | 0.0648 |
Estimation Method | MLE | ME | Ref. [29] | Our Method |
---|---|---|---|---|
Calculation time (s) | 2.0749 × 10−5 | 1.3723 × 10−5 | 2.1330 × 10−5 | 4.9372 × 10−5 |
Estimation Method | MLE | ME | MENON Method | Our Method |
---|---|---|---|---|
RMSE | 0.0727 | 1.0434 | 0.0796 | 0.0688 |
Estimation Method | MLE | ME | MENON Method | Our Method |
---|---|---|---|---|
RMSE | 0.1517 | 2.0937 | 0.1664 | 0.1510 |
Estimation Method | MLE | ME | MENON Method | Our Method |
---|---|---|---|---|
Calculation time (s) | 6.5399 × 10−3 | 8.6569 × 10−3 | 2.9555 × 10−5 | 5.8162 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, Y.; Yang, W.; Su, X.; Shen, Q. A Clutter Parameter Estimation Method Based on Origin Moment Derivation. Remote Sens. 2023, 15, 1551. https://doi.org/10.3390/rs15061551
Yang L, Liu Y, Yang W, Su X, Shen Q. A Clutter Parameter Estimation Method Based on Origin Moment Derivation. Remote Sensing. 2023; 15(6):1551. https://doi.org/10.3390/rs15061551
Chicago/Turabian StyleYang, Liru, Yongxiang Liu, Wei Yang, Xiaolong Su, and Qinmu Shen. 2023. "A Clutter Parameter Estimation Method Based on Origin Moment Derivation" Remote Sensing 15, no. 6: 1551. https://doi.org/10.3390/rs15061551
APA StyleYang, L., Liu, Y., Yang, W., Su, X., & Shen, Q. (2023). A Clutter Parameter Estimation Method Based on Origin Moment Derivation. Remote Sensing, 15(6), 1551. https://doi.org/10.3390/rs15061551