Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System
Abstract
:1. Introduction
2. Materials and Methods
2.1. RAV RSS Configuration
2.2. Reference Tarps
2.3. Multispectral Radiometer
2.4. Quantum Sensor
2.5. Radiometric Calibration
2.6. Data Processing
2.7. Experimental Study Sites
3. Results
3.1. Definition of the Equations for Radiometric Calibration
3.2. Assessment of the Calibrated RAS Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Primicerio, J.; Di Gennaro, S.F.; Fiorillo, E.; Genesio, L.; Lugato, E.; Matese, A.; Vaccari, F.P. A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 2012, 13, 517–523. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Choi, J.; Xue, W.; Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 2018, 39, 2441–2462. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.; Linden, D.; Daughtry, C.S.; McCarty, G. Acquisition of NIR-Green-Blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sens. 2011, 3, 2529. [Google Scholar] [CrossRef] [Green Version]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Shin, T.; Ko, J.; Jeong, S.; Shawon, A.R.; Lee, K.D.; Shim, S.I. Simulation of wheat productivity using a model integrated with proximal and remotely controlled aerial sensing information. Front. Plant Sci. 2021, 12, 649660. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef] [Green Version]
- von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Mamaghani, B.; Salvaggio, C. Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, M.S.; Bryant, R.E.; Clarke, T.R.; Qi, J. Deployment and Calibration of Reference Reflectance Tarps for Use with Airborne Imaging Sensors. Photogramm. Eng. Remote Sens. 2001, 67, 273–286. [Google Scholar]
- Cao, S.; Danielson, B.; Clare, S.; Koenig, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. ISPRS J. Photogramm. Remote Sens. 2019, 149, 132–145. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring. Drones 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, H.; Zhang, B.; Chen, Z.; Yang, M.; Zhang, Y. A method suitable for vicarious calibration of a UAV hyperspectral remote sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3209–3223. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Ko, J.; Kim, M.; Kim, J. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring. J. Appl. Remote Sens. 2016, 10, 026027. [Google Scholar] [CrossRef]
- Guo, Y.; Senthilnath, J.; Wu, W.; Zhang, X.; Zeng, Z.; Huang, H. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, 11, 978. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, C.; Xue, Y.; Akbar, A.; Jia, S.; Zhou, Y.; Zeng, D. Radiometric calibration of a large-array commodity CMOS multispectral camera for UAV-borne remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102968. [Google Scholar] [CrossRef]
- Rosas, J.T.F.; de Carvalho Pinto, F.D.A.; Queiroz, D.M.D.; de Melo Villar, F.M.; Martins, R.N.; Silva, S.D.A. Low-cost system for radiometric calibration of UAV-based multispectral imagery. J. Spat. Sci. 2022, 67, 395–409. [Google Scholar] [CrossRef]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Yeom, J.-M.; Jeong, S.; Deo, R.C.; Ko, J. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite. GIScience Remote Sens. 2021, 58, 1–27. [Google Scholar] [CrossRef]
- Yeom, J.-M.; Deo, R.C.; Adamowski, J.F.; Park, S.; Lee, C.-S. Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environ. Res. Lett. 2020, 15, 094025. [Google Scholar] [CrossRef]
- Xu, K.; Gong, Y.; Fang, S.; Wang, K.; Zhiheng, L.; Wang, F. Radiometric Calibration of UAV Remote Sensing Image with Spectral Angle Constraint. Remote Sens. 2019, 11, 1291. [Google Scholar] [CrossRef] [Green Version]
- Mafanya, M.; Tsele, P.; Botai, J.O.; Manyama, P.; Chirima, G.J.; Monate, T. Radiometric calibration framework for ultra-high-resolution UAV-derived orthomosaics for large-scale mapping of invasive alien plants in semi-arid woodlands: Harrisia pomanensis as a case study. Int. J. Remote Sens. 2018, 39, 5119–5140. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-Borne Hyperspectral Remote Sensing: From Observation and Processing to Applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Ghitas, A.E. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance. NRIAG J. Astron. Geophys. 2012, 1, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Ko, J.; Ng, C.T.; Jeong, S.; Tenhunen, J.; Xue, W.; Cho, J. Quantification of CO2 fluxes in paddy rice based on the characterization and simulation of CO2 assimilation approaches. Agric. For. Meteorol. 2018, 249, 348–366. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Phinn, S.; Johansen, K.; Robson, A. Assessing Radiometric Correction Approaches for Multi-Spectral UAS Imagery for Horticultural Applications. Remote Sens. 2018, 10, 1684. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Ortiz, M.; Sangjan, W.; Selvaraj, M.G.; McGee, R.J.; Sankaran, S. Effect of the Solar Zenith Angles at Different Latitudes on Estimated Crop Vegetation Indices. Drones 2021, 5, 80. [Google Scholar] [CrossRef]
- Brede, B.; Suomalainen, J.; Bartholomeus, H.; Herold, M. Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest. Remote Sens. Lett. 2015, 6, 972–981. [Google Scholar] [CrossRef]
- Gevaert, C.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of Spectral–Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3140–3146. [Google Scholar] [CrossRef]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
Reference Tarp Reflectance | ||||
---|---|---|---|---|
3.1% | 21% | 32% | 51% | |
TDNGreen | y = 0.009x + 8.139 r = 0.988 ** | y = 0.038x + 8.469 r = 0.999 ** | y = 0.058x + 8.002 r = 0.999 ** | y = 0.094x + 6.4 r = 0.998 ** |
TDNRed | y = 0.007x + 9.773 r = 0.988 ** | y = 0.034x + 10.006 r = 0.998 ** | y = 0.054x + 9.671 r = 0.999 ** | y = 0.083x + 10.914 r = 0.999 ** |
TDNNIR | y = 0.01x + 9.151 r = 0.974 ** | y = 0.027x + 8.075 r = 0.994 ** | y = 0.045x+ 6.253 r = 0.996 ** | y = 0.075x + 2.501 r = 0.998 ** |
ETDN | |||
---|---|---|---|
1179 μmol at NICS | 1100 μmol at CNU | 1230 μmol at CNU | |
TRGreen | y = 0.005x − 0.052 r = 1.000 ** | y = 0.005x − 0.055 r = 1.000 ** | y = 0.005x − 0.05 r = 1.000 ** |
TRRed | y = 0.005x − 0.062 r = 1.000 ** | y = 0.006x − 0.065 r = 1.000 ** | y = 0.005x − 0.06 r = 1.000 ** |
TRNIR | y = 0.007x − 0.084 r = 0.995 ** | y = 0.007x − 0.09 r = 0.995 ** | y = 0.006x − 0.081 r = 0.995 ** |
MTR | |||
---|---|---|---|
1179 μmol at NICS | 1100 μmol at CNU | 1230 μmol at CNU | |
ETRGreen | R2 = 1.000 ** RMSE = 0.009 Bias = −0.006 | R2 = 1.000 ** RMSE = 0.004 Bias = −0.004 | R2 = 1.000 ** RMSE = 0.006 Bias = −0.004 |
ETRRed | R2 = 1.000 ** RMSE = 0.003 Bias = −0.001 | R2 = 1.000 ** RMSE = 0.002 Bias = 0.002 | R2 = 1.000 ** RMSE = 0.007 Bias = −0.006 |
ETRNIR | R2 = 1.000 ** RMSE = 0.013 Bias = −0.01 | R2 = 1.000 ** RMSE = 0.01 Bias = 0.006 | R2 = 1.000 ** RMSE = 0.017 Bias = −0.016 |
CR | |||
---|---|---|---|
1179 μmol at NICS | 1100 μmol at CNU | 1230 μmol at CNU | |
ERGreen | R2 = 1.000 ** RMSE = 0.011 Bias = −0.01 | R2 = 1.000 ** RMSE = 0.008 Bias = −0.008 | R2 = 1.000 ** RMSE = 0.006 Bias = −0.006 |
ERRed | R2 = 1.000 ** RMSE = 0.004 Bias = −0.003 | R2 = 1.000 ** RMSE = 0.001 Bias = −0.001 | R2 = 1.000 ** RMSE = 0.004 Bias = −0.003 |
ERNIR | R2 = 1.000 ** RMSE = 0.011 Bias = −0.009 | R2 = 1.000 ** RMSE = 0.008 Bias = 0.006 | R2 = 1.000 ** RMSE = 0.012 Bias = −0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, T.; Jeong, S.; Ko, J. Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System. Remote Sens. 2023, 15, 1408. https://doi.org/10.3390/rs15051408
Shin T, Jeong S, Ko J. Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System. Remote Sensing. 2023; 15(5):1408. https://doi.org/10.3390/rs15051408
Chicago/Turabian StyleShin, Taehwan, Seungtaek Jeong, and Jonghan Ko. 2023. "Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System" Remote Sensing 15, no. 5: 1408. https://doi.org/10.3390/rs15051408
APA StyleShin, T., Jeong, S., & Ko, J. (2023). Development of a Radiometric Calibration Method for Multispectral Images of Croplands Obtained with a Remote-Controlled Aerial System. Remote Sensing, 15(5), 1408. https://doi.org/10.3390/rs15051408