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Abstract: Multi-spectral imagery captured from unmanned aerial systems (UAS) is becoming
increasingly popular for the improved monitoring and managing of various horticultural crops.
However, for UAS-based data to be used as an industry standard for assessing tree structure and
condition as well as production parameters, it is imperative that the appropriate data collection and
pre-processing protocols are established to enable multi-temporal comparison. There are several
UAS-based radiometric correction methods commonly used for precision agricultural purposes.
However, their relative accuracies have not been assessed for data acquired in complex horticultural
environments. This study assessed the variations in estimated surface reflectance values of different
radiometric corrections applied to multi-spectral UAS imagery acquired in both avocado and banana
orchards. We found that inaccurate calibration panel measurements, inaccurate signal-to-reflectance
conversion, and high variation in geometry between illumination, surface, and sensor viewing
produced significant radiometric variations in at-surface reflectance estimates. Potential solutions
to address these limitations included appropriate panel deployment, site-specific sensor calibration,
and appropriate bidirectional reflectance distribution function (BRDF) correction. Future UAS-based
horticultural crop monitoring can benefit from the proposed solutions to radiometric corrections to
ensure they are using comparable image-based maps of multi-temporal biophysical properties.

Keywords: unmanned aerial system; multi-spectral imagery; radiometric correction; bidirectional
reflectance distribution function; horticulture

1. Introduction

There is a direct connection between how much photosynthetic active radiation is absorbed
and scattered by plant leaves and their biogeochemical properties. These include: concentrations
of photosynthetic pigments in visible bands, along with water and non-photosynthetic pigments in
mid-infrared bands, and leaf and canopy structure in near–infrared (NIR) bands [1–4]. Multi-spectral
imagery captured from unmanned aerial systems (UAS) is becoming more commonly used as
a technology for monitoring and managing horticultural crops based on such phenomenon [5–10].
One of the final products from common commercially available image processing applications is
an ortho-rectified mosaic with digital number values [9–11]. Although such images are sufficient
for some types of classification [4,10,11], the digital numbers only represent the relative brightness
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range of the ground features and cannot be used to extract consistent information on biophysical
properties, derive calibrated vegetation indices or be used to compare multi-temporal datasets.
Therefore, the orthomosaic imagery needs to be converted from digital number to normalised
at-surface reflectance [4,12].

In past studies, one of the most common ways to correct the imagery from digital numbers to
at-surface reflectance has been the simplified empirical approach [8,13,14]. The idea of the empirical
method is to identify the relationship between known reflectance targets within the extent of an image
to their measured digital number. The best-fit equation produced from this relationship is then
used to convert all digital numbers within the image to at-surface reflectance values. A novel
correction method to generate an orthomosaiced reflectance image directly without the need for
an empirical correction has been developed in recent years for calibrating Parrot Sequoia® (Parrot
Drone SAS, Paris, France) and MicaSense RedEdge® (MicaSense Inc., Seattle, WA, USA) multi-spectral
imagery. The function in the Pix4DMapper software (Pix4D S.A., Lucerne, Switzerland) is called
‘reflectance map’, while a similar function is called ‘calibrate reflectance’ in Agisoft PhotoScan
Pro (Agisoft LLC, St. Petersburg, Russia), which uses several photograph parameters to calculate
reflectance [15]. In terms of correcting for variations in illumination, software packages such as
Agisoft PhotoScan Pro and Pix4DMapper provide ‘colour correction/balancing’ features to implement
the image-information-based radiometric block adjustment algorithm. Yet such algorithms only
consider the homogeneity of adjacent images’ histogram, regardless of the bidirectional reflectance
distribution function (BRDF) effect within a single image. Moreover, studies have also stated that
irradiance normalisation and BRDF correction are essential for time-series applications and estimation
of biophysical properties [16,17], yet they are not included as features in any commercial UAS
processing software packages.

Another issue that has not been addressed in UAS image-bsed radiometric correction is the
selection of the most robust normalisation process. Traditionally, various parameters are considered
for normalisation when processing satellite images, including solar, topographic, viewing geometries
and Sun-Earth distance [4]. As for aerial imagery, the increasing spatial resolution and smaller
frame size can cause a higher spectral variance in features information, especially in complex
forest environments [18–20]. The increasing spatial resolution amplifies observed topographic and
BRDF effects within and between image scenes, as the non-uniformity of natural surfaces becomes
more obvious at finer scales [19,20]. When coupled with increased variability in measured spectral
reflectance observed at smaller pixel sizes, this creates a substantive problem for effective radiometric
normalisation. In a highly dynamic platform such as UAS, ineffective normalisation may limit the
ability for images of the same area, collected at different times, to be compared.

This study assesses radiometric correction algorithms for UAS imagery provided from
commercially available software packages. The applications of BRDF corrections are also investigated.
While radiometric correction approaches to satellite and airborne imagery are well established,
there is a significant lack of protocols and comparison of methods for radiometrically correcting
UAS-based imagery. Our research addresses this gap in knowledge with a specific focus on
horticultural environments.

2. Materials and Methods

2.1. Study Sites

The two study sites were located in Queensland, Australia. The avocado orchard was located to
the south of Bundaberg, which is one of the main avocado producing regions of Australia. The banana
plantation was located in Wamuran in the Sunshine Coast hinterland of South East Queensland.
The UAV-based focus areas encompassed 1 and 0.5 ha patches of the avocado and banana orchards,
respectively (Figure 1). The average elevation for the avocado orchard was around 60 m above sea
level, relatively flat terrain with an average slope of 4 degrees downward to the east. The banana



Remote Sens. 2018, 10, 1684 3 of 22

plantation was located on a hill slope with an elevation varying from 113 m to 170 m above sea level
and an average slope of 21 degrees downward to the north.
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Figure 1. Study sites: (a) Avocado orchard in Bundaberg, (b) banana orchard in Wamuran.

2.2. UAS Data Acquisition

Five UAS flight datasets, including three for the avocado orchard and two for the banana orchard,
were captured with a Parrot Sequoia multi-spectral camera mounted on a 3DR Solo (3D Robotics,
Berkeley, CA, USA) quadcopter under clear sky conditions. The camera acquires imagery in the
green (550 nm, 40 nm bandwidth), red (660 nm, 40 nm bandwidth), red edge (735 nm, 10 nm
bandwidth), and NIR (790 nm, 40 nm bandwidth) part of the spectrum with its 4.8 × 3.6 mm
(1280 × 960 pixels) complementary metal–oxide–semiconductor (CMOS) sensor. The camera is also
fitted with an upward-facing irradiance sensor with the same spectral bands. The sensor can measure
the arbitrary incoming irradiance for each image frame so that the irradiance measurement can be
used for radiometric normalisation.

The image acquisition of the avocado trees was conducted using an established flight grid pattern,
which included both along- and across- tree-row flight directions. The first flight was conducted
at 75 m above ground level (AGL) on 2 February 2017 between 2:11–2:25 PM (60◦ solar elevation);
the second flight was at 100 m AGL on 3 February 2017 between 12:46–12:59 PM (80◦ solar elevation);
and the third flight was at 50 m AGL on 5 February 2017 between 12:34–12:40 PM (80◦ solar elevation).

The banana plantation in Wamuran was located in hilly terrain. Therefore, the flight pattern had
to follow the direction perpendicular to the slope aspect to ensure safety and data quality. A 1 m digital
elevation model (DEM) was used to design the flight plan, to ensure the flight height was maintained
at approximately 50 m AGL for each camera waypoint. We used the data from two flights, which were
collected between 11:37–11:44 AM and between 12:11–12:17 PM on 4 April 2018. The sun elevation for
both flights was approximately 57◦. The rest of the flight settings were the same for both the avocado
and banana orchard, that is, an 80% sidelap, 1-s image capture interval (>85% forward overlap),
and 5 m/s flight speed.

For every dataset, 10 AeroPoints® (Propeller Aerobotics Pty Ltd., Surry Hills, Australia) were
deployed as ground control points (GCPs). The locations of the AeroPoints were recorded for five
hours and subsequently post-processed using the Propeller® network correction based on the nearest
base station, located within 26 and 11 km of the Bundaberg and Wamuram study sites, respectively.
Eight radiometric calibration panels with greyscales ranging from black to white were deployed,
following the method suggested by [8,13]. The reflectance values of the calibration panels were
measured with an ASD FieldSpec® 3 spectrometer (Malvern Panalytical Ltd., Malvern, UK) and
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ranged from 4% to 92% in all spectral bands, corresponding with the four bands of the Sequoia®

camera (Figure 2). For the banana datasets only, a MicaSense® calibration panel was used to acquire
calibration images for the Parrot Sequoia® camera.
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Figure 2. Measured spectral reflectance of the eight greyscale radiometric calibration panels,
corresponding with the four Parrot Sequoia® multi-spectral bands using a handheld ASD visible-
near-infrared (NIR) range spectrometer.

2.3. Image Pre-Processing

2.3.1. Geometric Correction and Initial Pre-Processing

Agisoft PhotoScan Pro and Pix4DMapper were used to process the multi-spectral UAS data
with the addition of in-house Python scripts. For photo alignment, a limit of 10,000 tie points was
used with the measured GCPs, derived from the AeroPoint® centres, imported to geometrically
calibrate the images. The geo-referencing root-mean-square errors (RMSE) of the GCPs were 0.07 m,
0.11 m, and 0.02 m for the three avocado datasets, and 0.01 m for both banana datasets, respectively.
The overall projection error was 0.6 pixel in all datasets based on the bundle-adjustment error
assessment report [21]. The projection errors of tie points were taken into account to eliminate
poor-quality points, and a noise filter was also applied to assure the quality of the final products.
For the Agisoft PhotoScan Pro, a noise filter was applied during point cloud generation, while for
Pix4DMapper the noise filter was applied during the derivation of the digital surface model (DSM).
Mild filtering (or sharp smoothening) was used in both workflows to preserve as much detail as
possible of the tree crown structure. The final step was to ortho-rectify the image pixels to the DSM
and create a mosaic. In Pix4DMapper a vignetting polynomial was used, while for Agisoft PhotoScan
Pro, a distance to the surface model was developed for every pixel to simulate the radiant attenuation
for vignetting correction [22–24]. The two software packages use different projection algorithms to
project pixels to the DSM. The orthomosaics from Agisoft PhotoScan look closer to the original images,
while the orthomosaics from Pix4DMapper often appeared with a halo effect around the perimeter of
tall features (e.g., trees) caused by the ortho-rectification process (Figure 3). By default, Pix4DMapper
produces the orthomosaic with colour-balancing enabled, while Agisoft PhotoScan Pro did not have
a function to balance brightness until version 1.3 as an optional calibration.
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Figure 3. The appearance of the same avocado tree between (a) an original image; and the orthomosaics
derived from (b) Agisoft PhotoScan and (c) Pix4DMapper. Although the avocado tree looks similar in
(a–c), the halo effect surrounding the tree in (c) is visible.

2.3.2. Producing Analysis-Ready Data

At-surface reflectance images were generated for each band for all datasets with four types of
correction methods:

1. Simplified empirical correction;
2. Colour balancing before empirical correction;
3. Irradiance normalisation before empirical correction; and
4. Sensor-information based calibration.

The empirical correction in methods 1 to 3 was achieved using an in-house Python script to
convert digital number (DN) values to at-surface reflectance from the orthomosaic products based on
the radiometric calibration panels. This processing workflow produced a total of 144 (4 correction
methods × 3 flight patterns × 3 flights × 4 spectral bands) and 32 (4 correction methods × 2 flights ×
4 × spectral bands) corrected images from each avocado and banana dataset, respectively. The reason
we did not apply irradiance normalisation to the banana data is due to the unstable performance on
the avocado data, which will be discussed in the discussion section later. The conceptual workflow of
the radiometric correction process is shown in Figure 4.
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Figure 4. Conceptual workflow of the radiometric correction methods.

For method 1, Agisoft PhotoScan Pro was used to produce the orthomosaic with DN values.
Its mosaic blending mode calculates weight for each matching pixel and gives the pixel with a projection
vector closest to the planar normal vector the highest weight [25]. Blended digital numbers were
automatically adjusted based on the camera dark current and sensitivity.
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For method 2, we created a colour-balanced orthomosaic with DN values for the avocado data
using Pix4DMapper and for the banana data using Agisoft PhotoScan Pro. This was because the
colour-balancing feature was not included in the Agisoft PhotoScan Pro software at the time of
processing the avocado data and it was preferable to keep the trees in the mosaic as similar to the
original images as possible (see Figure 3). Nevertheless, these two software packages use the same
algorithm for this task, so similar pixel value patterns were observed. The algorithm generated the
new DN value of object point k in image j based on the equation:

DNjk = arelj
DNik + brelj

(1)

where DNjk is the DN value of object point k in adjacent image i; arelj
and brelj

are the applied coefficients
to the reference image to ensure that the overlapping images are radiometrically homogeneous.

For method 3, an in-house Python code was used to extract the irradiance measurements recorded
by the irradiance sensor and stored in the image metadata, to normalise all raw images using the
image with the lowest irradiance as the reference to avoid DN saturation. It adjusted the DN value
based on a multiplier coefficient:

Cj(λ) = Ere f (λ)/Ej(λ) (2)

where Ere f (λ) is the irradiance measured in the reference image and Ej(λ) is the irradiance measured
in image j. By multiplying the DN value in image j with Cj(λ), image j can be assigned the same
irradiance level as the reference image. Afterwards, the irradiance-normalised images were imported
into Agisoft PhotoScan Pro to create the irradiance-normalised orthomosaic.

For method 4, we generated the reflectance image directly based on the equation:

ρ = K f 2 (DN − B)GΓ
(Aεγ + C)Count

(3)

where ρ is the reflectance, K is an unknown arbitrary number; f is the camera f-number, ε is the exposure
time in seconds, γ is the ISO value; A, B, and C are calibration coefficients which are recorded in the
metadata. Count, G, and Γ are parameters of the irradiance sensor, which represent arbitrary irradiance
level, gain, and exposure time in seconds respectively. When processing, users can choose whether to
enable irradiance input for such calculation. If there is no irradiance measurement or the irradiance
measurement input was disabled in the software, the irradiance level is then assumed to be the same
across all images. To get K, at least one known reflectance target is required within the image to solve
the arbitrariness. Otherwise, the calculated reflectance would be in an arbitrary reflectance without
normalisation. This equation can also be applied when there is no irradiance measurement. In this case,
it is based on the assumption that the irradiance was a constant and as such can be part of K. If neither
importing irradiance measurements nor solving K in Equation (3), the calculated ρ would be surface
radiance in an arbitrary unit, which is linearly correlated with Wsr−1m−2. This method is relatively
novel for UAS image processing but very similar to the conventional way of processing satellite
imagery [4]. Equation (3) was applied to convert both avocado and banana datasets to at-surface
reflectance. At-surface radiance images were produced for the banana data only. It should be noted
that Equation (3) can only be applied to Parrot Sequoia products because different sensors use different
conversion equations.

2.3.3. Correcting for Solar and Viewing Geometries Within and Between Images—Bidirectional
Reflectance Distribution Function (BRDF)

Previous studies suggest that BRDF correction increases the brightness homogeneity of the
mosaiced images for crop fields [16,17]. To address this, we implemented a BRDF correction using
the Walthal model [26] with an in-house Python script as a plugin of Agisoft PhotoScan Pro. For each
pixel, it is assumed we can back-calculate their spatial location accurately as well as their projection on
the earth after optimising camera positions and orientations with the aid of GCPs. Based on the known
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solar ephemeris, we can calculate the solar zenith and azimuth angles at a specific date and time for
every pixel. Sensor view zenith and azimuth angles were calculated using the projection vectors from
the camera centre to each pixel, then transform the vectors from the camera coordinates to the world
coordinate system. With the known illumination and viewing angles, we can then use the parameters
to solve a Walthal BRDF model using tie points as multiple observations. The Walthal BRDF model is
described as:

r = aθ2
v + bθv cos(ϕv − ϕs) + c (4)

where r is the reflectance, θv is the viewing zenith angle, ϕv is the viewing azimuth angle, ϕs is the sun
azimuth angle; and a, b, and c are the coefficients of the multivariate linear regression. We can calculate
the nadir reflectance for the tie points by calculating the c value. In a horticultural environment,
it is assumed there are usually two features on the ground: soil and vegetation. Therefore, we solved
the Gaussian mixture model for each image and predicted which feature each pixel belonged to,
based on its DN value. The linear regression for each feature in each image based on the tie points’
BRDF models was then calculated. By predicting which feature each pixel belonged to, a respective
linear regression was applied to calculate the nadir reflectance for every pixel. For the avocado
data, the BRDF correction was only applied to the generated orthomosaic with colour-balancing
(method 2), following the recommendation of previously reported studies [16,17]. However, the BRDF
correction algorithm was applied to the banana data with the sensor-information-based calibration
(method 4), to explore a workflow which is similar to method applied to satellite imagery for obtaining
at-surface reflectance.

2.4. Assessment of Canopy Reflectance Consistency

If it is possible to correct both internal and external errors due to canopy geometry and image
orientation, then it should be possible to achieve similar results from the measurements which are
conducted at the same time for the same features [1,19,27,28]. In other words, if a correction algorithm
works properly, the corrected images from the temporally near-coincident datasets should provide
consistent surface reflectance regardless of the variation in acquisition parameters.

It was difficult to guarantee that the distribution of pixel values would be similar in the same
area from different datasets, due to the variations in observation perspectives among different flights
caused by differences in flying height, speed and flying pattern. However, we can still compare the
similarity of the datasets in terms of calibrated pixel values using methods relying on simple statistical
values such as box-and-whisker comparison. We compared the medians and interquartile range (IRQ)
between two datasets to determine the likelihood of difference at the scale of objects, that is, individual
trees and patches of bare ground. If the two datasets did not have overlapping IRQs, we can confidently
say that the two datasets are significantly different. If the IRQs are overlapping, then we can use the
fraction of difference between medians (DBM) over overall visible spread (OVS) to determine whether
there is a difference between two datasets. As Wild, et al. [29] suggested, the critical fraction to identify
the difference of DBM/OVS are stated as follow:

5. For a sample size of 30, if this fraction is over 33%, there tends to be a difference.
6. For a sample size of 100, if this fraction is over 20%, there tends to be a difference.
7. For a sample size of 1000, if this fraction is over 10%, there tends to be a difference.

In this case, the sample size is the pixel counts of the selected objects in the images. Based on
the sample size and fraction values provided by [29], the critical fraction for the sample size between
these numbers can be derived using the exponential relationship between the fraction criterion and
the natural logarithm of the sample size as:

critical fraction = 2.6104 × (ln(sample size))−1.686 (5)
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This equation can help to determine the critical fraction for samples which have less than
1000 samples. Once the sample size reaches 1000, 10% is enough to determine if there tends to
be a difference between two datasets. If the calculated DBM/OVS fraction had not exceeded the
respective critical fraction, we concluded that there was no significant difference between the different
input data. Thus, the estimated reflectance for selected feature was consistent between the datasets.

For the avocado and banana image datasets, the areas and number of sites sampled were chosen
purposely, to cover variability in the trees, but also to be logistically feasible within our resources and
time. The sample datasets will contain some bias, but it was not possible to obtain an exhaustive and
statistically sound data set within our time constraints. For the avocado trees, we visually delineated
image areas in the inner tree crowns for 17 purposely selected trees. In association with these trees,
image areas of 15 flat and weed-free ground areas, were also purposely selected. For the banana data,
image areas of 15 trees and 10 ground areas were selected for the comparison (Figure 5). The delineated
areas were saved as ESRI shapefiles and then batch-processed using an in-house Python script to
derive zonal statistics of the delineated areas from corrected images, including median, the first
quartile, the third quartile, minimum extreme, and maximum extreme. Such statistical attributes were
extracted to Microsoft Excel files and compared between the same sampled feature from temporal
near-coincident images which were corrected with the same correction method. The percentage of
consistent results divided by total inputs was defined as the consistency rate in our study and used as
an indicator of the robustness of each correction method.
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Figure 5. Selected trees and ground areas for both avocado (a) and banana (b) sites for
box-and-whisker comparison.

3. Results

In this section, we present the results of the calibrated reflectance consistency assessment with
object-based box-and-whisker comparison for the avocado images. The box-and-whisker comparison
results for the banana images will subsequently be presented. It should be highlighted that the analysis
results in this section show the consistency of the calibrated reflectance rather than the absolute
accuracy compared to other spectral measurements.

3.1. Reflectance Consistency Assessment of Avocado Imagery

Figure 6 shows the consistency rate of the calibrated reflectance for the 17 selected tree canopies
and 15 selected ground patches. Detailed comparison for tree canopies and ground areas can be
found in Tables A1–A3 and Tables A4–A6 respectively. From Figure 6, we can tell that the reflectance
consistency was much better for the canopy areas than the ground areas. Datasets 1, 2, and 3 had
above ground flight altitudes of 75 m, 100 m, and 50 m, and solar elevation of approximately 60◦, 80◦,
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and 80◦ respectively. As mentioned before, we compared the sub-datasets which were the data with
different flight patterns from the same flight. Therefore, since the tree canopy biophysical conditions
did not change much during one flight, a high consistency percentage across all flight patterns was
expected if a correction method was optimal. It is noted that the consistency rates of the red edge
and NIR bands are mostly moderate and higher than the green and red bands, especially using the
empirical-correction-based methods. However, it seems that no correction method provided an overall
high consistency percentage for all bands in all datasets in this presented experiment. No correction
method provided consistently corrected reflectance values even for the canopy areas for dataset 3.
The performance of colour-balancing and irradiance normalisation was not stable. Both of them
increased the consistency rate in some of the datasets while decreased in others.
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Figure 6. Consistency rate derived from box-and-whisker comparison for (a) canopy areas and (b)
ground patches of avocado datasets. It only shows the lowest consistency rates among the three
datasets because box-and-whisker comparison was only applicable to two datasets at a time. It shows
that no method provided overall robust correction, while the consistency in the red edge and NIR
bands is generally higher than in the green and red bands.

3.2. Correction Consistency Assessment of Banana Imagery

Figure 7 shows the consistency rate of the radiometrically calibrated values between two
temporally close datasets for the 15 selected tree canopies and 10 selected ground patches. Detailed
information can be found in Table A7. From Figure 7, we can tell that the calibrated values of canopies
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were more consistent than those for the ground areas, except for the NIR band using the simplified
empirical correction. The consistency rates for the canopies in the red edge and NIR bands were
generally higher than those for the green and red bands when the images were corrected with the
empirical-correction-based method. It is noted that although the reflectance consistency rate was poor
in the sensor-information-based calibration, the calibrated arbitrary radiance provided the highest
consistency for the green and red bands.
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ground patches of banana datasets. The flight height is the same as avocado dataset 3 but the corrected
values consistency is higher. The empirical-correction-based method provided higher consistency in
red edge and NIR bands while sensor-information-based calibration provided higher consistency in
green and red bands on canopies.

3.3. BRDF Correction Consistency Assessment

Figure 8 shows the estimated BRDF models for both canopy and ground features for an avocado
orchard image in the NIR band. Both prediction models and Figure 9 show that most of the DN
changes, where BRDF corrections were largest, occurred in the canopy areas. We analysed both single
image brightness homogeneity and surface reflectance consistency to assess whether the proposed
BRDF correction worked properly.
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Figure 8. The diagrams show the predicted nadir DN versus observed DN by solving tie points’ Walthal
bidirectional reflectance distribution function (BRDF) coefficients for the avocado image, (a) shows the
scatterplot for canopy tie points, (b) shows the scatterplot for ground tie points. The x-axis represents
squared viewing zenith angle, and the y-axis represents the viewing zenith angle multiply by the cosine
of solar-viewing azimuth angle difference.
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Figure 9. Image comparison before and after BRDF correction. The black arrow shows where the
hot spot is.

We used an image which contained mostly ground features and calculated the DN mean for every
row and column. The covariance of rows and columns between the original image and corrected
image were then compared to assess the single image brightness homogeneity for the avocado datasets.
The larger the covariance was, the larger the DN values varied through the whole image. Results
show that the covariance of the original image was 4,409,616 DN, whereas the covariance of the BRDF
corrected image was 3,864,839 DN, which means the overall spread of DN distribution became smaller
after BRDF correction. We also used images where the calibration panels were in different locations to
compare the DN values difference. The black panel in the original images had a DN difference up to
6000 higher when the panel was near the image edge rather than at the centre, where the difference
was reduced to around 1000 in the BRDF corrected images. These assessments were evidence that
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the proposed algorithm increased the brightness homogeneity. Increasing brightness homogeneity
for the same features from different images can reduce brightness variation between similar features.
From Figure 9, we can tell that the hot spots in some of the original images of the avocado orchard
were eliminated after BRDF correction.

Table 1 shows the results of the box-and-whisker plot comparison for assessing reflectance
consistency between different flight patterns. The proposed BRDF correction did not improve the
performance in the green and red bands. Compared to the result of colour balancing before the
empirical correction in Tables A2 and A5, the overall consistency increased a little bit in the red edge
and NIR bands for canopies, although the difference was not significant. The consistency became even
worse for the ground areas.

Table 1. Reflectance consistency percentages between different flight patterns in dataset 2.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

BRDF + Colour balancing +
Empirical correction on canopies

Green 0% (same) 0% (same) 5.9% (better)
Red 0% (same) 0% (same) 0% (same)

Red edge 52.9% (better) 88.2% (better) 64.7% (better)
NIR 41.2% (better) 17.6% (worse) 64.7% (better)

BRDF + Colour balancing +
Empirical correction on ground

Green 0% (same) 0% (same) 6.7% (better)
Red 0% (same) 0% (worse) 26.7% (better)

Red edge 0% (worse) 26.7% (better) 0% (worse)
NIR 6.7% (worse) 6.7% (worse) 46.7% (better)

The results of the BRDF correction with sensor-information-based calibration for the banana
datasets did not provide robust solutions either (Table 2). Although the consistency rate of at-surface
reflectance increased by a maximum of 33% in NIR band, the consistency of the calibrated at-surface
radiance dropped significantly in the green and red bands compared to the results in Table A7.

Table 2. Consistency assessment results for banana from box-and-whisker comparison between two
temporally close flights.

Correction Method Band Canopies Ground

BRDF + Sensor-information-based
calibrated surface reflectance

Green 46.7% (better) 10% (better)
Red 26.7% (better) 0% (same)

Red edge 26.7% (better) 0% (same)
NIR 33.3% (better) 0% (same)

BRDF + Sensor-information-based
calibrated arbitrary surface radiance

Green 33.3% (worse) 10% (worse)
Red 33.3% (worse) 40% (better)

Red edge 53.3% (better) 0% (worse)
NIR 20% (worse) 20% (worse)

To sum up, we found that for the avocado datasets, none of the proposed corrections provided
consistent at-surface reflectance in the green and red bands. The empirical corrections provided
moderate consistency rates in the red edge and NIR bands when the data was acquired above 75 m
AGL. There is no evidence to prove that colour-balancing and on-board irradiance normalisation
provided robust improvements in consistency rates. However, the proposed BRDF correction somehow
improved consistency rates in the red edge and NIR bands for the canopy areas compared to the
colour-balancing correction. This result is an important finding in terms of the use of UAS, particularly
the NIR band for mapping variability in tree health. High NIR reflectance is synonymous with high
tree vigour [30,31], and as such, using these image layers where high NIR reflectance is the result of
a BRDF effect as opposed to actual tree variability may lead to incorrect assessment of crop condition
and management decisions. For the banana datasets, we found that the empirical correction provided
moderate consistency rates in the green and red bands even though the data was acquired at 50 m
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AGL. The consistency rates in the red edge and NIR bands were still higher, consistent with the
observations for the avocado datasets. The sensor-information-based calibrated at-surface reflectance
had the worst consistency rates in all bands. Nevertheless, the sensor-information-based calibrated
arbitrary at-surface radiance showed the best consistency rates in the green and red bands. A brief
performance comparison of the proposed methods can be found in Table 3.

Table 3. A simplified comparison table of the proposed correction methods. G, R, RE, and NIR are
green, red, red edge, and NIR bands respectively. X means the method doesn’t work well; V means the
method works well; ∆ means the results are unstable; O means the results are moderately consistent.

Correction Method
Avocado Datasets Banana Datasets

G R RE NIR G R RE NIR

Simplified empirical correction X X V V O O V V
Colour-balancing + empirical correction X X ∆ ∆ O O V V

Irradiance normalisation + empirical correction X X ∆ ∆
Sensor-information-based calibrated reflectance X X X X X X X X
Sensor-information-based calibrated radiance V V X O

Remarks None of them works when flight
altitude is 50 m

4. Discussion

4.1. The Influences of Flight Altitude and Image Scale

There are several factors which affect the reflectance of tree canopies, such as viewed area, canopy
geometry, terrain, and the viewing geometry between the ground surface, sensor, and the Sun [19].
As the spatial resolution increases, so does the variance of observed reflectance [19]. In addition,
increasing spatial resolution in UAS imagery comes with lower flight altitude, which also means
that each camera frame covers a smaller area. When creating orthomosaics for the same area with
smaller image frames, higher variation in the illumination conditions and solar-viewing geometry will
occur [12,16,17,19]. Therefore, the cause of the reflectance inconsistency in dataset 3 of the avocado
orchard may be due to these two factors. Besides, when pre-processing satellite images, the topographic
effect caused by terrain is much more severe than individual features in the scene so that the canopy
geometry variation can usually be simplified by simple physical models [32]. However, when the
spatial resolution increases, the canopy geometry starts contributing to the variation in reflectance
which is no longer negligible.

Moreover, it is well-known that the reflection properties of natural materials are usually
scale-dependent [33]. For very high spatial resolution imagery such as that acquired by a UAS,
the BRDF effect becomes more serious because of increasing Sun-surface-view geometry variation [19].
For correcting topographic effects for large-scale images, the Lambertian assumption is applied to
most of the natural surfaces [33]. However, many studies have suggested that the BRDF models for
natural surfaces are more sophisticated instead of being Lambertian [34–37]. Meanwhile, the diffusive
illumination from the environment may affect the observed reflectance as well [33,38]. Such scattering
from surroundings is easier to observe from the fine-scale measurement [38]. This factor may be the
cause of the inconsistent reflectance we found in our ground samples and some of the tree canopies.
In a horticultural environment, trees cover the majority of a scene, and ground areas are surrounded
by trees. Therefore, we suspect that the higher possibility of diffusive light influenced the radiance the
camera acquired, especially in the ground areas.

4.2. The Influence of Canopy Geometric Complexity on Reflectance Consistency

As mentioned above, the reflectance variation caused by canopy geometry becomes significant as
the spatial resolution increases. This effect can be observed in the avocado datasets. Avocado datasets
2 and 3 had almost the same acquisition conditions, except for the flight altitude. Dataset 2 had a flight
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altitude of 100 m, which resulted in a 9.86 cm ground sample distance (GSD), whereas dataset 3 at
a flight altitude of 50 m had a GSD of 4.74 cm. At such a high spatial resolution, we suspect that the
effect of directional reflectance caused by leaf angle variation also started to contribute to radiometric
distortion due to the reflection angle non-uniformity. In addition, such effect was more serious for the
avocado orchard than for the banana plantation because the complexity of avocado tree crowns is much
higher. The avocado dataset 3 had the same flight altitude as the banana datasets. However, there was
no reflectance consistency in avocado dataset 3 while there was still some consistency observed in the
banana datasets.

4.3. The Limitation of Simplified Empirical Correction

Studies have observed that the Parrot Sequoia multi-spectral camera has different sensitivity in
different bands, and the maximum detectable reflectance for green and red bands is around 40% [39].
The saturation problem in the green and red bands reduces the effectiveness of empirical correction
because it reduces the samples for calculating the linear regression. Moreover, the diffusive radiant
flux in the horticultural environment may also cause the observed albedo of the calibration panels in
the UAS images to be inaccurate, especially if the panels were deployed in a tree-surrounded area.
Since the green and red bands are more sensitive, we suspect that the scattering of green and red
radiant flux from the environment influenced the albedo measurement of the panels more seriously.
Such characteristics can explain why the empirical correction always resulted in worse consistency
in the green and red bands. Besides, the bidirectional reflectance phenomenon was also observed on
the panels (see Section 3.3). Perfectly Lambertian surface materials are expensive so we used a more
cost-effective alternative, which was proposed by Wang and Myint [13]. However, brightness variation
in panels was still observed in some individual images. Except for the possible diffusive flux influence,
some of the brightness difference may be caused by backscatter as well.

In addition, the canopy geometric complexity of avocado trees also caused some problems when
applying empirical corrections. The calibrated reflectance was very often negative in the green and
red bands in the avocado data when using the empirical correction, but such a negative reflectance
problem was absent in the banana data using the same correction. We suspect that the complex
canopy geometry caused many shaded leaves within tree crowns so that those shaded leaves obtained
negative reflectance values after applying the empirical correction based on the panels. Besides,
as previously mentioned, diffusive green and red radiant flux may increase the measured albedo
from the panels, creating a false relationship between pixel DN and at-surface reflectance. Setting the
linear regression with a 0 interception could solve the negative values problem. However, this is not
practical since the minimum DN value depends on the black current of the camera instead of zero.
The negative reflectance will cause problems when deriving vegetation indices from the reflectance
data. The solution is subtracting the minimum value which was found in the canopy areas (equivalent
to adding the value which has the maximum magnitude in the negative domain) from the calibrated
reflectance image, as long as the reflectance still matches the spectral signature of vegetation.

4.4. UAS Based Irradiance Measurements

We also noticed that the irradiance measurements with the Sequoia® irradiance sensor had
directional variation. In avocado dataset 1, the solar elevation was around 60◦, and the flight direction
was along-row, approximately aligned with the direction of the Sun. Comparing this with the
coincident dataset, which was flown perpendicular to the Sun direction, the recorded irradiance
measurements from adjacent images appeared with a 30% difference in its arbitrary irradiance unit,
which is homogeneous to Wm−2. Such differences may be the cause of unstable correction performance
(see Table 3). Most of the modern onboard UAS irradiance sensors are equipped with a cosine corrector,
which was proved to increase the accuracy [40]. The lack of a cosine corrector for the Sequoia irradiance
sensor may prevent the measured irradiance from being direction independent. This is why we did not
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apply the irradiance measurements for the radiometric correction and the sensor-information-based
calibration for the banana datasets.

4.5. Proposed BRDF Correction

From Table 1, we can tell that the proposed BRDF correction did not improve the reflectance
consistency. Part of the reason may be due to the limitation of the empirical correction we mentioned
in Section 4.3. However, from Table 2, we can tell that even without applying the empirical
correction, the BRDF correction did not provide a robust solution for consistent measurements. Such
inconsistency may be caused by non-uniform leaf inclination angle, which is proved to impact the
BRDF models [26,35]. Besides, some studies also suggested that the topographic effect on the BRDF
models need to be addressed [19,33]. As we discussed in Section 4.1, with very fine-scale UAS imagery,
the non-uniform reflection properties caused by solar-surface-viewing geometry variation starts to
affect the observation. Therefore, instead of only addressing the solar-viewing geometry, as with the
proposed BRDF correction algorithm, the surface topography also needs to be considered for solving
solar-surface-viewing geometry variation.

Another problem in our proposed algorithm is that solving the Gaussian mixture model of the
pixel value distribution did not provide a good prediction to the objects in the images. Although there
were usually two types of features in the scenes, there were many pixels in the canopies belonging
to shaded leaves that were classified as ground features, and some pixels of the ground features
which had hot spots that were classified as canopies. The wrong prediction of features resulted in the
inappropriate linear regression being applied to those pixels. Consequently, such corrected images
were very likely to make the correction more inconsistent. Since object detection using machine
learning in UAS imagery has significantly progressed [41–43], we believe that this technology can
possibly provide a robust solution to object detection. The correct object detection can help to solve the
BRDF problem by providing the correct model to respective objects in the images. An accurate object
detection method can also help us to build empirical BRDF models for specific features in the images
with enough input data. We believe that this will be a convenient way to deal with the BRDF problem.

4.6. Potential of Sensor-Information-Based Calibration

Although the sensor-information-based calibration to at-surface reflectance with panel input did
not work very well (Figure 7), the arbitrary at-surface radiance from such calibration provided the
best consistency in the green and red bands. The reason that the calibrated at-surface reflectance was
not consistent may be due to insufficient data to correlate the radiance with reflectance. This method
only relies on one reflectance target to solve the arbitrariness instead of creating a linear relationship
over a range of reflectance values. Additionally, this calibration heavily relies on the coefficients
provided by the manufacturers (Equation (3)). This characteristic can explain why the at-surface
radiance consistency rates in the red edge and NIR bands were not as high as the green and red bands
because the coefficients recorded in the firmware may not have been as accurate. The behaviour of how
captured radiance is converted to DN may also change after a firmware update. Therefore, camera
manufacturers should pay careful attention to identify the physical variables collected to calibrate the
sensor, to make sure the energy-to-signal conversion behaviour works as expected [44,45]. Moreover,
with the in-situ radiance measurement, camera end users could possibly calculate the conversion
equation themselves to fit their needs in the local environments [44]. Once we can figure out accurate
calibration parameters for a specific camera to get accurate surface radiance in Wsr−1m−2, it is possible
to use either ground or onboard irradiance sensors to measure the irradiance in Wm−2 to calculate
accurate surface reflectance.

5. Conclusions

Our results show that the bidirectional reflectance distribution function (BRDF) is an essential
factor, which needs to be taken into account to reduce brightness variations due to illumination
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and sensor geometries in UAS images. As discussed in Sections 4.1 and 4.5, the fine-spatial scale
characteristic of UAS imagery causes more serious BRDF effect. Past studies suggest that using the
Walthal BRDF model will resolve the solar-viewing geometry variation [17]. However, in a more
complex environment like orchards or even forest, the topography should also be considered to resolve
the solar-surface-viewing geometry variation instead [33]. With enough input data, we can even build
empirical BRDF models for features of interest and apply the respective models to different features in
the images with the aid of object detection. Accurate BRDF model application should enable effective
BRDF correction, which allows accurately mosaicking UAS images to provide more accurate analysis
ready data for mapping and monitoring environmental changes.

The simplified empirical correction worked to some degree. Although the simplified empirical
correction has proved to provide some good results in precision agricultural applications [12,14],
for measuring trees with complex canopy geometry, it is suggested not to acquire UAS imagery below
a specific height because the smaller frame size and higher spatial resolution can increase the variation
of solar-surface-viewing geometry. Some studies also suggested that flying the UAS at around 80 m
AGL is the optimal protocol for measuring trees [8,46], which is very close to the height threshold
we found for the avocado datasets. Besides, the surrounding environment of the calibration panels
plays an important role to provide accurate reference. As we discussed in Section 4.3, it should be
as open and flat as possible to avoid diffusive radiant flux, influencing the observed albedo for the
panels. Meanwhile, the reflectance design of the panels should also consider the radiant flux spectral
sensitivity of the camera to avoid signal saturation.

The proposed illumination corrections, including colour-balancing and irradiance normalisation,
did not exhibit stable performance in our experiment. Although colour-balancing has appeared to
improve brightness homogeneity in past studies [16,17], previous studies were conducted in a relatively
homogenous environment and did not assess its absolute accuracy. On the other hand, the lack of
cosine corrector on the irradiance sensor makes the measured irradiance directionally dependent.
Therefore, in order to address a proper irradiance normalisation, accurate irradiance measurements
should be conducted either on ground or onboard the UAS [16].

Finally, sensor-information-based calibration has the potential to provide accurate reflectance.
Although it did not provide consistent results in our experiment, by calculating the accurate calibration
coefficients, it is possible to convert the DN values to at-sensor radiance in Wsr−1m−2 directly.
With a simultaneously accurate measurement of irradiance in Wm−2, the camera-measured at-surface
radiance may be processed to at-surface reflectance directly. In addition, this calibration method takes
photography factors into account so that it can reduce the possibility of brightness variation due to
floating photography settings.

Radiometric correction protocols for satellite images are now commonly applied, and provide the
basis for analysis-ready data and for correcting images for illumination change, atmospheric effect,
viewing geometry, and instrument response characteristics [2]. Although techniques for processing
UAS multi-spectral imagery are relatively new, the general problems we need to deal with are still very
similar, although the scale is much smaller and the details of data are much higher. This study addresses
which factors should be considered for radiometrically correcting UAS multi-spectral imagery in order
to analyse tree crops’ biophysical properties and their temporal changes. Future related work should
focus on addressing effective BRDF correction, as well as establishing a standard protocol for camera
signal-to-radiance-to-reflectance conversion.
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Appendix A. Box-and-Whisker Comparison Results of Avocado Datasets

Table A1. Reflectance consistency percentages of tree canopies between different flight patterns
in dataset 1.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

Empirical correction

Green 41.2% 11.8% 0%
Red 0% 0% 0%

Red edge 58.8% 76.5% 76.5%
NIR 82.4% 94.1% 70.6%

Colour balancing +
Empirical correction

Green 58.8% 94.1% 88.2%
Red 23.5% 88.2% 41.2%

Red edge 29.4% 88.2% 70.6%
NIR 47.1% 76.5% 82.4%

Irradiance normalisation +
Empirical correction

Green 0% 47.1% 0%
Red 0% 0% 0%

Red edge 76.5% 70.6% 82.4%
NIR 82.4% 94.1% 88.2%

Sensor-information-
based calibration

Green 47.1% 100% 82.4%
Red 0% 52.9% 0%

Red edge 47.1% 0% 0%
NIR 0% 88.2% 0%

Table A2. Reflectance consistency percentages of tree canopies between different flight patterns
in dataset 2.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

Empirical correction

Green 0% 58.8% 0%
Red 0% 11.8% 0%

Red edge 64.7% 47.1% 88.2%
NIR 64.7% 70.6% 76.5%

Colour balancing +
Empirical correction

Green 11.8% 0% 0%
Red 17.6% 0% 0%

Red edge 47.1% 17.6% 52.9%
NIR 11.8% 82.4% 11.8%

Irradiance normalisation +
Empirical correction

Green 47.1% 58.8% 76.5%
Red 23.5% 5.9% 5.9%

Red edge 47.1% 70.6% 94.1%
NIR 52.3% 82.4% 23.5%

Sensor-information-
based calibration

Green 0% 0% 0%
Red 0% 23.5% 0%

Red edge 0% 100% 0%
NIR 0% 88.2% 0%
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Table A3. Reflectance consistency percentages of tree canopies between different flight patterns
in dataset 3.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

Empirical correction

Green 0% 5.9% 0%
Red 0% 58.8% 0%

Red edge 5.9% 35.3% 5.9%
NIR 5.9% 82.4% 0%

Colour balancing +
Empirical correction

Green 0% 52.9% 0%
Red 0% 17.6% 0%

Red edge 23.5% 29.4% 17.6%
NIR 0% 76.5% 0%

Irradiance normalisation +
Empirical correction

Green 0% 0% 0%
Red 0% 52.9% 0%

Red edge 29.4% 52.9% 70.6%
NIR 0% 88.2% 0%

Sensor-information-
based calibration

Green 0% 5.9% 0%
Red 0% 0% 0%

Red edge 0% 88.2% 0%
NIR 0% 64.7% 0%

Table A4. Reflectance consistency percentages of ground areas between different flight patterns
in dataset 1.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

Empirical correction

Green 33.3% 0% 0%
Red 0% 0% 0%

Red edge 33.3% 60% 40%
NIR 40% 66.6% 60%

Colour balancing +
Empirical correction

Green 0% 0% 6.7%
Red 13.3% 13.3% 20%

Red edge 20% 40% 33.3%
NIR 40% 73.3% 46.7%

Irradiance normalisation +
Empirical correction

Green 33.3% 20% 0%
Red 0% 6.7% 0%

Red edge 26.7% 40% 26.7%
NIR 13.3% 53.3% 33.3%

Sensor-information-
based calibration

Green 40% 73.3% 20%
Red 0% 53.3% 0%

Red edge 6.7% 0% 0%
NIR 13.3% 60% 6.7%

Table A5. Reflectance consistency percentages of ground areas between different flight patterns
in dataset 2.

Correction Method Band Along vs. Cross Along vs Grid Cross vs. Grid

Empirical correction

Green 26.7% 6.7% 26.7%
Red 6.7% 6.7% 6.7%

Red edge 66.7% 26.7% 40%
NIR 13.3% 6.7% 60%

Colour balancing +
Empirical correction

Green 0% 0% 0%
Red 0% 6.7% 6.7%

Red edge 33.3% 6.7% 26.7%
NIR 26.7% 40% 26.7%
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Table A5. Cont.

Correction Method Band Along vs. Cross Along vs Grid Cross vs. Grid

Irradiance normalisation +
Empirical correction

Green 0% 26.7% 40%
Red 0% 0% 20%

Red edge 60% 40% 20%
NIR 40% 46.7% 46.7%

Sensor-information-
based calibration

Green 6.7% 0% 0%
Red 13.3% 40% 6.7%

Red edge 6.7% 53.3% 0%
NIR 6.7% 40% 0%

Table A6. Reflectance consistency percentages of ground areas between different flight patterns
in dataset 3.

Correction Method Band Along vs. Cross Along vs. Grid Cross vs. Grid

Empirical correction

Green 0% 0% 0%
Red 0% 13.3% 0%

Red edge 0% 40% 6.7%
NIR 0% 93.3% 0%

Colour balancing +
Empirical correction

Green 0% 20% 0%
Red 20% 0% 0%

Red edge 26.7% 6.7% 26.7%
NIR 0% 46.7% 0%

Irradiance normalisation +
Empirical correction

Green 0% 0% 0%
Red 6.7% 6.7% 0%

Red edge 40% 40% 33.3%
NIR 0% 60% 0%

Sensor-information-
based calibration

Green 0% 20% 0%
Red 0% 0% 0%

Red edge 0% 73.3% 0%
NIR 0% 6.7% 0%

Appendix B. Box-and-Whisker Comparison Results of Banana Datasets

Table A7. Consistency assessment results from the box-and-whisker plot comparison between two
temporally close flights.

Correction Method Band Canopies Ground

Empirical correction

Green 46.7% 30%
Red 60% 20%

Red edge 66.7% 20%
NIR 100% 100%

Colour balancing + Empirical correction

Green 46.7% 20%
Red 40% 30%

Red edge 66.7% 20%
NIR 73.3% 30%

Sensor-information- based calibrated
surface reflectance

Green 33.3% 0%
Red 20% 0%

Red edge 13.3% 0%
NIR 0% 0%

Sensor-information-based calibrated
arbitrary surface radiance

Green 73.3% 20%
Red 66.7% 30%

Red edge 26.7% 40%
NIR 40% 40%
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