A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data
2.3. Data Query
2.4. Spatial and Temporal Coverage
2.5. Remotely-Sensed Water Surface Area and Water Level
2.6. SWOT-LS Simulations
3. Results
3.1. Hydrological Event
3.2. Satellite Coverage
3.3. Water Surface Area
3.4. Water Level
3.5. SWOT-LS Simulations
4. Discussion
4.1. Spatial and Temporal Coverage
4.2. Water Surface Area
4.3. Water Level
4.4. SWOT Mission Plus Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J. Worth of Wetlands: Revised Global Monetary Values of Coastal and Inland Wetland Ecosystem Services. Mar. Freshw. Res. 2019, 70, 1189–1194. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate Change: Protect the World’s Deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masselink, G.; Gehrels, R. Coastal Environments and Global Change; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Timoney, K.P. The Peace-Athabasca Delta: Portrait of a Dynamic Ecosystem; University of Alberta: Edmonton, Alberta, Canada, 2013. [Google Scholar]
- Prowse, T.D.; Conly, F.M. A Review of Hydroecological Results of the Northern River Basins Study, Canada. Part 2. Peace–Athabasca Delta. River Res. Appl. 2002, 18, 447–460. [Google Scholar] [CrossRef]
- Peters, D.L.; Prowse, T.D.; Pietroniro, A.; Leconte, R. Flood Hydrology of the Peace-Athabasca Delta, Northern Canada. Hydrol. Process. 2006, 20, 4073–4096. [Google Scholar] [CrossRef]
- Wolfe, B.B.; Karst-Riddoch, T.L.; Vardy, S.R.; Falcone, M.D.; Hall, R.I.; Edwards, T.W.D. Impacts of Climate and River Flooding on the Hydro-Ecology of a Floodplain Basin, Peace-Athabasca Delta, Canada since A.D. 1700. Quat. Res. 2005, 64, 147–162. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A Review of Remote Sensing Applications for Water Security: Quantity, Quality, and Extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Chasmer, L.; Mahoney, C.; Millard, K.; Nelson, K.; Peters, D.; Merchant, M.; Hopkinson, C.; Brisco, B.; Niemann, O.; Montgomery, J. Remote Sensing of Boreal Wetlands 2: Methods for Evaluating Boreal Wetland Ecosystem State and Drivers of Change. Remote Sens. 2020, 12, 1321. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bevington, A.; Gleason, H.; Giroux-Bougard, X.; de Jong, J.T. A Review of Free Optical Satellite Imagery for Watershed-Scale Landscape Analysis. Conflu. J. Watershed Sci. Manag. 2018, 2. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef] [Green Version]
- Adeli, S.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.J.; Brisco, B.; Tamiminia, H.; Shaw, S. Wetland Monitoring Using SAR Data: A Meta-Analysis and Comprehensive Review. Remote Sens. 2020, 12, 2190. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in Soil Moisture Retrieval from Synthetic Aperture Radar and Hydrological Applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. A Review of Applications of Satellite SAR, Optical, Altimetry and DEM Data for Surface Water Modelling, Mapping and Parameter Estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755–3769. [Google Scholar] [CrossRef] [Green Version]
- Landuyt, L.; Van Wesemael, A.; Schumann, G.J.-P.; Hostache, R.; Verhoest, N.E.C.; Van Coillie, F.M.B. Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established Approaches. IEEE Trans. Geosci. Remote Sens. 2018, 57, 722–739. [Google Scholar] [CrossRef]
- Siles, G.; Trudel, M.; Peters, D.L.; Leconte, R. Hydrological Monitoring of High-Latitude Shallow Water Bodies from High-Resolution Space-Borne D-InSAR. Remote Sens. Environ. 2020, 236, 111444. [Google Scholar] [CrossRef]
- Matgen, P.; Schumann, G.; Henry, J.-B.; Hoffmann, L.; Pfister, L. Integration of SAR-Derived River Inundation Areas, High-Precision Topographic Data and a River Flow Model toward near Real-Time Flood Management. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Hostache, R.; Matgen, P.; Schumann, G.; Puech, C.; Hoffmann, L.; Pfister, L. Water Level Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images of Floods. IEEE Trans. Geosci. Remote Sens. 2009, 47, 431–441. [Google Scholar] [CrossRef]
- Birkett, C.M. Radar Altimetry: A New Concept in Monitoring Lake Level Changes. Eos Trans. Am. Geophys. Union 1994, 75, 273–275. [Google Scholar] [CrossRef]
- Eldardiry, H.; Hossain, F.; Srinivasan, M.; Tsontos, V. Success Stories of Satellite Radar Altimeter Applications. Bull. Am. Meteorol. Soc. 2021, 103. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review. Can. J. Remote Sens. 2018, 44, 247–262. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. In Remote Sensing and Water Resources; Springer: Berlin/Heidelberg, Germany, 2016; pp. 117–147. [Google Scholar]
- Thompson*, A.A. Overview of the RADARSAT Constellation Mission. Can. J. Remote Sens. 2015, 41, 401–407. [Google Scholar] [CrossRef]
- Pietroniro, A.; Peters, D.L.; Yang, D.; Fiset, J.-M.; Saint-Jean, R.; Fortin, V.; Leconte, R.; Bergeron, J.; Siles, G.L.; Trudel, M.; et al. Canada’s Contributions to the SWOT Mission—Terrestrial Hydrology(SWOT-C TH). Can. J. Remote Sens. 2019, 45, 116–138. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, C.; Lettenmaier, D.P.; Ke, L. Where and in What Quantity Are Lakes Observable by SWOT? In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Desrochers, N.M.; Trudel, M.; Biancamaria, S.; Siles, G.; Desroches, D.; Carbonne, D.; Leconte, R. Effects of Aquatic and Emergent Riparian Vegetation on SWOT Mission Capability in Detecting Surface Water Extent. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12467–12478. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Schumann, G.-P.; Frasson, R.P.M.; Wei, R.; Pavelsky, T.M.; Castellarin, A.; Brath, A.; Durand, M.T. Characterizing Water Surface Elevation under Different Flow Conditions for the Upcoming SWOT Mission. J. Hydrol. 2018, 561, 848–861. [Google Scholar] [CrossRef]
- Grippa, M.; Rouzies, C.; Biancamaria, S.; Blumstein, D.; Cretaux, J.; Gal, L.; Robert, E.; Gosset, M.; Kergoat, L. Potential of SWOT for Monitoring Water Volumes in Sahelian Ponds and Lakes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2541–2549. [Google Scholar] [CrossRef]
- Elmer, N.J.; Hain, C.; Hossain, F.; Desroches, D.; Pottier, C. Generating Proxy SWOT Water Surface Elevations Using WRF-Hydro and the CNES SWOT Hydrology Simulator. Water Resour. Res. 2020, 56, e2020WR027464. [Google Scholar] [CrossRef]
- Nair, A.S.; Verma, K.; Karmakar, S.; Ghosh, S.; Indu, J. Exploring the Potential of SWOT Mission for Reservoir Monitoring in Mahanadi Basin. Adv. Space Res. 2022, 69, 1481–1493. [Google Scholar] [CrossRef]
- Frasson, R.P.D.M.; Schumann, G.J.-P.; Kettner, A.J.; Brakenridge, G.R.; Krajewski, W.F. Will the Surface Water and Ocean Topography (SWOT) Satellite Mission Observe Floods? Geophys. Res. Lett. 2019, 46, 10435–10445. [Google Scholar] [CrossRef] [Green Version]
- Parks Canada. Wood Buffalo National Park World Heritage Site Action Plan; Parks Canada: Gatineau, QC, Canada, 2019.
- Peters, D.L.; Watt, D.; Devito, K.; Monk, W.A.; Shrestha, R.R.; Baird, D.J. Changes in Geographical Runoff Generation in Regions Affected by Climate and Resource Development: A Case Study of the Athabasca River. J. Hydrol. Reg. Stud. 2022, 39, 100981. [Google Scholar] [CrossRef]
- ECCC Environment And Climage Change Canada HYDAT Water Survey Data Product 2022. Available online: https://wateroffice.ec.gc.ca/ (accessed on 17 April 2021).
- Elmer, N.J. CNES Large Scale SWOT Simulator: User’s Tutorial for Terrestrial Surface Water Applications. 2020. Available online: https://github.com/CNES/swot-hydrology-toolbox (accessed on 16 September 2022).
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Blarel, F.; Fayad, I.; Bergé-Nguyen, M.; Crétaux, J.-F.; Shu, S.; Schregenberger, J.; Baghdadi, N. Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sens. 2021, 13, 2196. [Google Scholar] [CrossRef]
- Beltaos, S.; Carter, T. Minor 2020 Ice Jamming in Lower Peace River despite Extreme Breakup Flows: Assessment of Hydroclimatic Controls. In Proceedings of the CGU HS Committee on River Ice Processes and the Environment 21st Workshop on the Hydraulics of Ice Covered Rivers, Saskatoon, SK, Canada, 29 August 2021; Volume 29. [Google Scholar]
- Li, Z.; Shen, H.; Weng, Q.; Zhang, Y.; Dou, P.; Zhang, L. Cloud and Cloud Shadow Detection for Optical Satellite Imagery: Features, Algorithms, Validation, and Prospects. ISPRS J. Photogramm. Remote Sens. 2022, 188, 89–108. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote Sensing for Wetland Classification: A Comprehensive Review. GIScience Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Peters, D.L.; Prowse, T.D.; Marsh, P.; Lafleur, P.M.; Buttle, J.M. Persistence of Water within Perched Basins of the Peace-Athabasca Delta, Northern Canada. Wetl. Ecol. Manag. 2006, 14, 221–243. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-Based Detection of Flooded Vegetation—A Review of Characteristics and Approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Fayne, J.V.; Smith, L.C. Characterization of Near-Nadir Ka-Band Scattering from Wet Surfaces. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6132–6135. [Google Scholar]
Mission | Type | Spatial Resolution (m) | Swath Width (km) | Polarisation (SAR Only) | Repeat Cycle | # of Satellites |
---|---|---|---|---|---|---|
RCM | SAR | 30/50 * | 350 | Variable | 12 days | 3 |
Sentinel-1 | SAR | 20 | 250 | VV VH | 12 days | 2 |
Sentinel-2 | Optical | 10 | 290 | N/A | 10 days | 2 |
Landsat-8 | Optical | 30 | 185 × 180 | N/A | 16 days | 1 |
Sentinel-3 | Altimetric | N/A | N/A | N/A | 27 days | 2 |
Jason-3 | Altimetric | N/A | N/A | N/A | 10 days | 1 |
SWOT | Altimetric SAR | 100 and 250 ** | 2 × 50 | VV (right), HH (left) | 21 days | 1 |
Instruments | # of Cycles | # of Days Full Coverage | Total # of Observation Days | # of Relative Orbits per Cycle | # of Observation Days Used in WSA Analysis |
---|---|---|---|---|---|
Sentinel-1 | 12.75 | 20 | 44 | 4 | 17 |
Sentinel-2 | 15.3 | 62 | 62 | 2 | 6 |
Landsat-8 | 9.5 | 9 | 29 | 3 | 3 |
RCM * | 12.75 | 41 | 130 | 10 | 15 |
Jason-3 | 15.45 | 12 | 12 | 1 | 12 |
Sentinel-3 | 5.7 | 20 | 20 | 2 | 20 |
SWOT | 7.3 | 14 | 53 | 7 | N/A |
Total | 78.75 | 178 | 350 | 29 | 71 |
Jason-3 | Sentinel-3 | SWOT-LS | |
---|---|---|---|
Mamawi Lake | 12 | 0 | 35 |
Lake Claire | 0 | 5 | 35 |
Lake Athabasca | 12 | 15 | 35 |
Baril Lake | 0 | 0 | 28 |
Richardson Lake | 0 | 0 | 21 |
Lake Name | Observed Input WSE June (m) | SWOT-LS WSE June (m) | Observed Input WSE August (m) | SWOT-LS WSE August (m) |
---|---|---|---|---|
Mamawi | 210.08 | 210.08 | 210.98 | 210.98 |
Jemis | 210.30 | 210.04 | 210.98 | 210.99 |
Otter | - | - | 210.98 | 210.98 |
M12 | 210.20 | 210.02 | 210.98 | 211.01 |
M14 | 210.46 | 210.47 | 210.98 | 210.99 |
Mission | WSA Claire (km2) | WSA Mamawi (km2) | WSA Baril (km2) |
---|---|---|---|
Sentinel-1 | 1330.1 | 120.7 | 31.7 |
RCM 50m | 1506.5 | 131.3 | 27.5 |
RCM 30m | 1302.4 | 111.3 | 13.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desrochers, N.M.; Peters, D.L.; Siles, G.; Cauvier Charest, E.; Trudel, M.; Leconte, R. A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission. Remote Sens. 2023, 15, 1278. https://doi.org/10.3390/rs15051278
Desrochers NM, Peters DL, Siles G, Cauvier Charest E, Trudel M, Leconte R. A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission. Remote Sensing. 2023; 15(5):1278. https://doi.org/10.3390/rs15051278
Chicago/Turabian StyleDesrochers, Nicolas M., Daniel L. Peters, Gabriela Siles, Elizabeth Cauvier Charest, Mélanie Trudel, and Robert Leconte. 2023. "A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission" Remote Sensing 15, no. 5: 1278. https://doi.org/10.3390/rs15051278
APA StyleDesrochers, N. M., Peters, D. L., Siles, G., Cauvier Charest, E., Trudel, M., & Leconte, R. (2023). A Remote Sensing View of the 2020 Extreme Lake-Expansion Flood Event into the Peace–Athabasca Delta Floodplain—Implications for the Future SWOT Mission. Remote Sensing, 15(5), 1278. https://doi.org/10.3390/rs15051278