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Abstract: It has become undeniable that global land surface temperature (LST) has continued to rise
in recent years. The threat of extreme heat to humans has become self-evident, especially in arid
regions. Many studies have clarified the temperature rise/fall mechanism of LST from the perspective
of influencing factors. However, there are few studies on mitigating LST from the standpoint of
regional networks. This paper first combines Landsat 8 with Sentinel-2 imagery for LST downscaling
based on the Google Earth engine as a way to match local climate zone (LCZ) with 17 classification
types. Then, the thermal environment resistance surface is constructed according to LCZ, and the
essential cold sources are identified using morphological spatial pattern analysis (MSPA) and circuit
theory to form the thermal environment green corridor and obtain the pinch point and barrier
point areas. The results show that (1) The downscaling of LST based on random forest (RF) for the
Urumqi–Changji–Wujiaqu metropolitan area has an R2 of 0.860 and an RMSE of 3.23, with high
downscaling accuracy. (2) High temperature (HT), medium temperature (MT), and low temperature
(LT) have the largest proportions in the study area; HT dominates in Urumqi, LT in Changji, and MT
in Wujiaqu. (3) The natural types (LCZ-D, LCZ-C, and LCZ-F) in the LCZ classification occupy a
large area, and the building types are mainly concentrated in Urumqi; LCZ-D, LCZ-G, and LCZ-A
contribute the most to the cooling of LST, and LCZ-F, LCZ-C, and LCZ-10 contribute the most to
the warming of LST. (4) After identifying critical cold source patches according to MSPA to arrive at
253 green corridors, subsensitive corridors and sensitive corridors need to take certain measures to
prevent corridor blockage; pinch point areas, as well as barrier point areas, need to be protected and
repaired according to their respective characteristics. In summary, corresponding cooling measures to
specific areas can improve the connectivity between cooling sources and slow down the temperature
increase of the whole area. This study and experimental approach can provide new insights for urban
planners and climate researchers.

Keywords: land surface temperature; downscaling; local climate zone; thermal environment network

1. Introduction

Land surface temperature (LST) is a “schematic” depicting the flow of matter and
energy between the land surface, the atmospheric insulation layer, and solar radiation [1,2].
It is well known that the temperatures in the downtown areas of most major cities are
greater than those in the surrounding suburbs [3]. This phenomenon is collectively referred
to as the urban heat island (UHI) effect [4,5]. In addition, some research has shown that
the size of the UHI varies seasonally due to changes in sun intensity [6], ground cover [7],
and weather [8]. Because of this variation, UHI is usually the greatest in summer [9,10].
The detrimental effects of the UHI effect are, without a doubt, enormous in summer
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too. Residents of the core region of UHI are subjected to high-temperature stress for an
extended period of time, which will increase the prevalence of heat stroke and the likelihood
of mortality [11]. In light of this, research on the distribution of LST at the urban scale is
crucial for fostering urban ecological security, enhancing human well-being, and controlling
urban microclimates.

The thermal infrared band carried by satellite sensors provides a technical means for
monitoring the thermal environment of the Earth’s surface [12,13]. Among them, MODIS
and Landsat are the most significant methods to invert the surface temperature, and their
spatial resolutions of 1000 m and 30 m, respectively, satisfy the observational needs of
large-scale and mesoscale LST variations [14,15]. It is insufficient, however, to support
the spatial heterogeneity of LST and urban land cover types (high, medium, and low-rise
structures; impervious surfaces such as airports and asphalt) inside the city [16,17]. In
order to address this need, LST downscaling research has garnered some attention in
recent years [18,19]. LST downscaling utilizes the low spatial resolution pixel value as an
explanatory variable for the fusing of high spatial resolution to acquire more specific spatial
information about ground objects [20]. Statistical regression downscaling approaches,
such as the DisTrad algorithm [21,22], TsHARP algorithm [23], and HUTS algorithm [24],
implement LST downscaling by utilizing the connection between LST and regression
statistical models. Furthermore, emerging machine learning algorithms are more robust
for building models with intricate relationships [25]. Compared to machine learning
approaches such as artificial neural networks (ANN) and support vector machines (SVM),
random forests (RF) are better suited for urban-scale downscaling studies due to their
minimal operation and huge capacity [26,27].

Additionally, for a long time, the UHI definition of “urban” and “rural” at the urban
scale has been measured by temperature differential [28]. However, this separation is
no longer always clear-cut, as urban versus rural is not simply a matter of population
accumulation [29]. In addition, there is a special presence in the thermal environment,
namely the oasis “cold island”, which means that the oasis area is a “cold source” compared
to the surrounding environment (bare ground such as desert and hay-like vegetation) [30].
Different regions of the same country have different urban spatial morphological structures,
and the traditional UHI division is clearly flawed; therefore, there is a need to understand
the urban land use structure in a standardized way [31]. Stewart and Oke’s [32] local
climate zone (LCZ) concept transforms the division of UHI from a binary structure to
a three-dimensional structure that can objectively reflect the spatial morphology and
covering properties of urban and rural areas. The LCZ framework has developed a series of
quantitative indicators based on differences in land use status, the nature of the underlying
surface, the structure of above-ground buildings, and the degree of human aggregation and
has classified urban underlayment into ten types of buildings and seven types of natural
cover, for a total of 17 categories [33]. The advent of the LCZ framework provides the
theoretical groundwork for regional and even global comparisons of UHI intensity [34].
Concerning, is the fact that as cities and towns expand, the oasis “cool source” in dry regions
is diminishing, and city dwellers in arid zones face tremendous heat stress issues [35].
Consequently, the research of UHI based on LCZ theory is extraordinarily significant to the
issue of thermal environment management in arid regions.

Then, after sorting out the boundaries of the UHI, how to identify the cold heat
island patches network structure of the urban thermal environment, so as to mitigate
the disadvantages brought by UHI and take specific measures, becomes a key objective
to cope with extreme climate change and improve the habitat for humanity. A part of
this objective, scholars use the urban blue-green space (water, wetland, and green space)
system to characterize a new indicator of the urban cold island effect [36]. However,
there are regional variations in the blue-green space cold island effect due to the various
landscape and space structures, such as terrain, underlying surface, and land cover, between
the urban core, urban fringe, and suburban areas [37]. Scholars have also combined
methods such as spatial morphology and landscape ecology to identify different spatial
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scale corridors and the spatial networks formed by their interactions for urban thermal
environment research [38–40]. Morphological Spatial Pattern Analysis (MSPA) can quantify
the internal connectivity of plaques and accurately classify the types of plaques that have
the characteristics of emphasizing ecological processes and ecological networks [41,42]. In
the meantime, circuit theory can successfully compensate for MSPA’s lack of functional
connection and is also utilized to determine key corridors [43]. In conclusion, the research
about UHI cannot be limited to the spatial and temporal variation of LST, the cooling
measures of the green landscape, and the driving of LST by the influencing factors, etc.; it
is also vital to research the formation mechanism within the complex system of the urban
thermal environment and the value function of the spatial network.

In summary, this paper uses the Urumqi–Changji–Wujiaqu metropolitan area in Xin-
jiang, China as the study area, investigates the distribution of LST from the perspective
of urban spatial morphological structure based on LST downscaling and LCZ theory, and
constructs an urban thermal environment network utilizing MSPA and circuit theory. The
purpose of this study is to judge the heat storage capacity of the urban spatial form, identi-
fying the key nodes of the thermal environment network, and effectively mitigating the
UHI effect based on the thermal environment network.

2. Materials and Methods
2.1. Study Area

Urumqi–Changji–Wujiaqu City is the most significant metropolitan area in northwest-
ern China, located at the foot of the Tianshan Mountain Range and southeast of Junggar
Basin, with an average altitude of about 800 m (Figure 1). The research region is bordered by
three mountains: Boda Mountain to the east, Karaza Mountain to the west, and Ilenhaberga
Mountain to the south [44]. The interior of the study area is primarily a plain with open ter-
rain, gentle undulations, and an overall “trumpet-shaped” distribution. From the Köppen
climate classification, the arid climate (B) is a typical climate in northwestern China. The
study area is far from the ocean, with high temperatures and dryness in summer and severe
cold and little rain in winter, and the climate types are mainly cold desert climate (BWk) and
cold steppe climate (BSk) [45]. Despite being located in an inland arid zone, the study area
is rich in above-ground glacial resources and groundwater resources, and as a result, it has
nurtured oasis ecosystems that are habitable for humans. The Urumqi–Changji–Wujiaqu
metropolitan area is a significant node on the economic belt of the Second Asia–Europe
Continental Bridge and a vital hub for economic, cultural, and ecological interchange in
western China. Due to its proximity to Central Asian countries, the metropolitan area has
a strong radiation effect and comprehensive influence on the entire Xinjiang and Central
Asian regions.
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2.2. Data and Source

In this paper, based on the remote sensing data cloud platform (https://earthengine.
google.com/) (accessed on 10 September 2022), Landsat-8 (L8), and Sentinel-2 (S2), re-
mote sensing images on 7 August 2021 were selected with a spatial resolution of 30 m
and 10 m, respectively. Both L8 and S2 cloud amounts are less than 5. After image
preprocessing, LST downscaling is performed, and the accuracy is compared with the
weather station data (https://www.resdc.cn/) (accessed on 2 October 2022). The remain-
ing data, including roads, water systems, and other vector data, are sourced from OSM
(https://www.openstreetmap.org/) (accessed on 10 October 2022), whilst building data
are crawled from the Baidu Map (https://map.baidu.com/) (accessed on 11 October 2022).
The specific research steps are shown in the figure below (Figure 2).
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Figure 2. Research Framework Diagram.

2.3. LST Downscaling

The random forest (RF) method is a machine learning algorithm based on classification
decision trees [46]. Classification decision trees are constructed for each individual decision
tree based on the number of training samples selected, and the final regression results are
determined by averaging the voting results of all decision trees [47,48]. The essence of
constructing the RF model is a regression problem. In the downscaling process, there is a
nonlinear relationship between the LST and each explanatory variable [49]. In contrast, the
RF downscaling model is not sensitive to multicollinearity and can deal with the problem
of overfitting very well. Consequently, the choice of explanatory variable is of utmost
importance. In this study, the RF model is constructed based on the Google Earth engine.
The training samples are relatively low-resolution L8 remote sensing images (30 m); LST is
the dependent variable, and NDVI, NDBI, and NDWI are explanatory variables (Table 1
and Figure 3). The high spatial resolution S2 surface parameters (10 m) are input into the
constructed RF model to obtain high spatial resolution (10 m) LST prediction results [29].
Then, the LST downscaling results (10 m resolution) are obtained after inputting the fitted
residuals resampled to high spatial resolution.

https://earthengine.google.com/
https://earthengine.google.com/
https://www.resdc.cn/
https://www.openstreetmap.org/
https://map.baidu.com/
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Table 1. Downscaling process applied surface parameters.

Variables Acronym Formulation

Normalized difference
Vegetation index NDVI NIR−Red

NIR+Red

Normalized difference
Built-up index NDBI SWIR−NIR

SWIE+NIR

Normalized difference
Water index NDWI Green−NIR

Green+NIR

NIR is the near-infrared band; Red is the red band; SWIR is the short-wave infrared band; Green is the green band.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Local comparison of surface parameters: (a) NDVI, (b) NDWI, and (c) NDBI are L8 30 m 
resolution parameters; (d) NDVI, (e) NDWI, and (f) NDBI are S2 10 m resolution parameters. 

For Landsat8 TIRS, B11 band inversion parameters are not ideal with uncertainty, so 
B10 band inversion LST [50] is generally used: 𝐿 = 𝜀 ⋅ 𝐵(𝑇 ) + (1 − 𝜀)𝐿↓ ⋅ 𝜏 + 𝐿↑ (1)

where ε is the surface-specific emissivity; B(Ts) is the thermal radiation intensity of a black-
body at the same temperature; Ts is the true LST; and the atmospheric transmittance τ, 
atmospheric downward radiance L↓, and atmospheric upward radiance L↑ in the thermal 
infrared band can be obtained through NASA’s official website. 

After converting the Kelvin degree of LST into Celsius degree, the high spatial reso-
lution LST is obtained based on the idea that the functional relationship between LST and 
its surface parameters remains constant at different scales [27]: 𝑇 = 𝑓(𝑆 ) + Δ𝑇  (2)Δ𝑇 = 𝑇 − 𝑓(𝑆 ) (3)

where: SHR and SLR are the surface parameters of S8 and L8, respectively; f is the mapping 
relationship between surface temperature THR (TLR) and surface parameter SHR (SLR) at dif-
ferent scale spatial resolutions; and ΔTLR is the residual. This paper uses the mean-stand-
ard deviation method to classify the LST downscaling results (Table 2). 

Table 2. LST classification level table. 

LST Level Acronym Classification Range 
Extremely low temperature  ELT T < μ − 1.5 std 

Low temperature LT μ − 1.5 std ≤ T < μ − 0.5 std 
Medium temperature MT μ − 0.5 std ≤ T < μ + 0.5 std 

Figure 3. Local comparison of surface parameters: (a) NDVI, (b) NDWI, and (c) NDBI are L8 30 m
resolution parameters; (d) NDVI, (e) NDWI, and (f) NDBI are S2 10 m resolution parameters.

For Landsat8 TIRS, B11 band inversion parameters are not ideal with uncertainty, so
B10 band inversion LST [50] is generally used:

Lλ =
[
ε · B(Ts) + (1− ε)L↓

]
· τ + L↑ (1)

where ε is the surface-specific emissivity; B(Ts) is the thermal radiation intensity of a
blackbody at the same temperature; Ts is the true LST; and the atmospheric transmittance τ,
atmospheric downward radiance L↓, and atmospheric upward radiance L↑ in the thermal
infrared band can be obtained through NASA’s official website.

After converting the Kelvin degree of LST into Celsius degree, the high spatial resolu-
tion LST is obtained based on the idea that the functional relationship between LST and its
surface parameters remains constant at different scales [27]:

THR = f (SHR) + ∆TLR (2)

∆TLR = TLR − f (SLR) (3)
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where: SHR and SLR are the surface parameters of S8 and L8, respectively; f is the mapping
relationship between surface temperature THR (TLR) and surface parameter SHR (SLR) at
different scale spatial resolutions; and ∆TLR is the residual. This paper uses the mean-
standard deviation method to classify the LST downscaling results (Table 2).

Table 2. LST classification level table.

LST Level Acronym Classification Range

Extremely low temperature ELT T < µ − 1.5 std
Low temperature LT µ − 1.5 std ≤ T < µ − 0.5 std

Medium temperature MT µ − 0.5 std ≤ T < µ + 0.5 std
High temperature HT µ + 0.5 std ≤ T < µ + 1.5 std

Extremely high temperature EHT T > µ + 1.5 std
T is the LST value, µ is the mean, and std is the standard deviation.

Finally, The LST obtained from the L8 inversion is used as the true LST with the 0 cm
surface temperature of the weather station to verify the degree of superiority of the results
after the LST downscaling. The root means square error (RMSE) and the coefficient of
determination (R2) are commonly used to test the degree of deviation [51,52]. When the
RMSE is smaller and R2 is larger, it indicates that the RF model LST downscaling results
are a more accurate, better fit.

2.4. LCZ and Its Contribution Degree Effect

The LCZ system divides the city limits into building types (LCZ 1–10) and natural
cover types (LCZ A-G) according to clear delineation guidelines [53]. With the help of
Google Earth’s (GE) historical image function, each LCZ category in the Urumqi–Changji–
Wujiaqu metropolitan area is judged, and a vector sample is generated. Before participating
in the classification, the images are first processed for correction. The classification usually
adopts the multiband of L8 OLI; in this study, SI, IBI, NDVI, and MNDWI indexes are
added (Tables 1 and 3), which have a significant prominent effect on the urban surface
characteristics of arid regions. In addition, principal component analysis is performed on
the multispectral bands of OLI and the band information. The first principal component
with the largest information load is used for texture analysis. Eight texture information
bands based on second-order probability statistics are obtained, which are mean, variance,
synergy, contrast, dissimilarity, information entropy, second-order moment, and correla-
tion [54]. Then, based on SAGA GIS software, each of the OLI bands, four index bands, and
eight texture information bands are used as data sets to participate in LCZ classification.
The final classification raster results are exported to Google Earth for comparison and vali-
dation, and 1000 random point validation samples are generated to judge the classification
accuracy [55].

Table 3. Remote sensing index calculation.

Variables Acronym Formulation

Bare soil index SI (SWIR+Red)−(NIR+Blue)
(SWIR+Red)−(NIR+Blue)

Index-based built-up index IBI NDBI−(NDVI+MNDWI)/2
NDBI+(NDVI+MNDWI)/2

Modified normalized
difference Water index MNDWI Green−SWIR

Green+SWIR

The strength of the contribution of different LCZ types to LST varies considerably. The
extent to which different LCZ types contribute to urban LST can be quantified using the
Contribution Index (CIX) [56]:

CIX =
(
LSTn − LSTmean

)
×
(

Sn

S

)
(4)
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where LSTn refers to the average LST of different LCZ landscape types within the study unit
n; LSTmean is the total average LST of the study unit; Sn is the area of varying LCZ landscape
types within that study unit n; and S is the total area of the study unit. The larger the
CIX value (positive numbers are warming contributions and negative numbers are cooling
contributions), the higher the degree of its contribution to the surface thermal environment.

2.5. Thermal Environment Network Construction
2.5.1. Identification of Urban Cold Island Patches

The heat accumulation capacity of LST under the large-scale desert substrate in the
oasis city in the arid area is remarkable. In contrast, the LST in the oasis area is relatively low,
forming a unique microclimate heterogeneous landscape. The contribution of vegetation
such as crops, garden trees, flowers, and plants in the oasis area to the constant temperature
of LST in the arid area becomes particularly important. Therefore, the results after LST
downscaling are divided into five categories using the mean standard deviation method.
It is further reclassified into binary pixel data that can be recognized by MSPA, and the
cold island region (low and very low temperature) is used as the foreground of MSPA,
while the rest is the background. Based on Guidos software, the urban cold island patch
landscape types are classified into seven categories, including core, bridge, islet, loop, edge,
perforation, and branch (Table 4) [57].

Table 4. MSPA Classification Criteria.

MSPA Class Meanings

Core The core is the largest and continuous area of cold island plaques.
Bridge The role of the bridge is to connect two separate cold island plaques.

Islet Islets are scattered and independent cold island plaques that are generally small in size.
Loop Loop functions similarly to bridge but connects different parts of the cold island core.
Edge Edge is the outer boundary between the cold island and the hot island plaques’ contact.

Perforation Perforation is the inner boundary between the cold island and the hot island plaques’ contact.
Branch The branch is the cold island plaques associated with the edge of the cold island, bridge, and one end of the loop.

Background Background is the area other than the cold island plaques.

2.5.2. Spatial Network Identification for Thermal Environments

After obtaining the spatial distribution information of cold island patches based on
the MSPA method, this paper introduces the circuit theory and Ohm’s law to identify the
spatial network of the thermal environment in the Urumqi–Changji–Wujiaqu metropolitan
area. Circuit theory uses the nature of electrons traveling randomly in a circuit to model the
pattern of migration and diffusion of ecological flows or species, etc., in the corridor [39].
In this paper, the LST radiation process is regarded as “current”, and the thermal resistance
surface is viewed as a “conductive surface”. In addition, the urban cold island plaques with
a core greater than 1 Km2 are defined as the source and regarded as a circuit node. LCZ
landscapes with a high capacity to store and transmit heat to promote thermal movement
(bare ground, dense buildings, etc.) are assigned low resistance, while landscapes with a
high capacity to dissipate heat to impede thermal movement (water bodies, high-density
vegetation, etc.) are assigned low resistance. The thermal environment of the Urumqi–
Changji–Wujiaqu metropolitan area is transformed into a green corridor consisting of
“circuit nodes” and “resistance surfaces”. Further, the minimum cost distance to each
source is retrieved from the resistive surface using a certain source site as the starting point,
and the cumulative current brought about by the circulation of each circuit corridor is
calculated [58]. Higher current values indicate high corridor importance levels. The area
with high current density values is the thermal environment “pinch point”, indicating that
this area is the most effective area for urban cooling and mitigation restoration. One can
calculate the accumulated current recovery value of thermal environment obstacle points
that hinder the movement of green corridors and identify areas that restrict the connectivity
of green networks. This article uses the Linkage Mapper toolbox to identify the green
corridor and the Pinchpoint Mapper and Barrier Mapper in the Circuitspace software to
identify pinch points and obstacle points in the thermal environment.
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2.5.3. Corridor Importance Rating

Surface energy transfer is proportional to source area and current intensity and in-
versely proportional to corridor length. Therefore, the corridor coefficient is chosen to
divide the corridor importance (CI):

CI =
Areayd ×

∫ f
s Ii

LengthId
(5)

where Areayd is the area of the cold island source site at both ends of the corridor;
∫ f

s Ii is
the integral of the current intensity from the starting point s to the endpoint f on a corridor;
and LengthId is the length of the corridor.

3. Results
3.1. LST Downscaling Features
3.1.1. LST Downscaling Accuracy Verification

Based on the Google Earth engine platform and S2 images, the L8 images with an
LST spatial resolution of 30 m were downscaled to 10 m spatial resolution using the RF
algorithm. The downscaled LST is combined with L8 LST and weather station LST for
accuracy verification. It can be seen that there is a slight gap between the LST inversion
results and the LST data of weather stations, which is due to the deviation caused by
cloud cover, observation scale, sensor delay error, etc., which is also a certain limitation
of LST inversion (Table 5). Furthermore, the RMSE values of LSTsta and LST10m are
slightly lower than those of LST30m, indicating that LST at downscaling has the effect
of improving the inversion accuracy. It can be seen from Figure 4 that the regression
results R2 of LST30m and LST10m are 0.860, and the fitting degree of the two is also good.
This means that the accuracy of the LST downscaling results meets the requirements for
subsequent experiments. It is worth noting that even though the surface information of the
high-resolution image is used for LST downscaling, some thermal details still have some
connection with the original image [59].

Table 5. Comparison of weather station LST with the LST at the same location.

Station Station
Name

Altitude
(m) Lat N Lot W LSTsta LST30m LST10m LSTsta—

∆LST30m
LSTsta—

∆LST10m

1 51365 Caijiahu 440.5 44.12 87.32 28.1 29.3 30.1 −1.2 −2
2 51368 Changji 515.7 44.07 87.19 27.3 28.0 28.6 −0.7 −1.3
3 51369 Miquan 600.3 43.58 87.39 30.8 33.5 31.9 −2.7 −1.1
4 51463 Urumqi 935.0 43.47 87.39 28.8 35.4 34.7 −6.6 −5.9

Bias (mean
error) 2.8 2.6

RMSE 3.63 3.23
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To further investigate the relationship between LST before and after downscaling and
microscopic urban buildings, the overlay analysis is performed based on the Baidu Map
building contours and their floor height data with LST30m and LST10m results, centering
on People’s Park and Hongshan Park in Urumqi (Figure 5). And it can be seen that LST10m
can achieve a more transparent and detailed expression of urban architecture, which will
undoubtedly be of great help to the subsequent analysis of LCZ.
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3.1.2. LST10m Spatial Distribution Characteristics

This paper used the mean-standard deviation method to classify the downscaled LST
classes (Figure 6). It can be seen from the figure that ELT and LT are primarily distributed
in the cultivated land in the north of the study area and MT is distributed mainly in the
urban built-up area, while HT and EHT are primarily distributed in the unutilized land in
the south of the study area. The study area has a high percentage of HT overall, followed
by MT and LT. Among them, HT has the highest proportion of LST in Urumqi City; LT has
the highest ratio of LST in Changji City; and MT has the highest LST in Wujiaqu City. This
is due to the high level of urbanization in Urumqi City and a certain range of bare land,
resulting in a relatively high LST, while Changji City occupies a large area of cultivated
land, so the LST is relatively low; Wujiaqu City has no large-scale cultivated land, and the
urbanization level is low, so the LST is at the middle level. This means that after neglecting
the peripheral landscape (unused land such as desert) of the oasis in the arid zone, the
town expansion still causes UHI and is more destructive to the cold and wet climate of
the oasis. In addition, from the local map of the city in the study area and combined with
the surface parameter information of S2 (Figure 3), it can be seen that the results of LST
downscaling inherit the high-resolution urban profile information of S2 better.
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3.2. LCZ Characteristics and Their Contributed Effect on LST
3.2.1. LCZ Classification Accuracy Verification

In this paper, about 2000 vector training samples are selected in the same period of GE
to obtain the preliminary classification results of LCZ, and the classification results are led
back to GE for class-by-class superposition. The sample points with errors in classification
are resampled to finally obtain the LCZ classification map (Figure 7). Then, using the
high-resolution images of GE, we select randomly sampled 1000 sample points for accuracy
verification, and the total classification accuracy (OA) is obtained as 83.1% with a Kappa
coefficient of 0.804 (Table 6). The results of user accuracy and producer accuracy show that
the natural classification accuracy (A–G) of LCZ is higher than the building classification
accuracy (1–10). This is due to the large area and single type of natural feature type, while
the classification standards of building types are detailed and the distribution is compact,
so the error caused by building types is high. The phenomenon of “different things with
the same spectrum” in the spectral curves of the features also has some influence on the
misclassification of LCZ. Overall, the LCZ classification meets the accuracy requirements.
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3.2.2. Characteristics of LCZ Spatial Distribution and Its Relationship with LST

As seen in Figure 7, the study area has the largest proportion of natural types LCZ-D,
LCZ-F, and LCZ-C, while it has the largest proportion of building types LCZ-5, LCZ-10,
and LCZ-3. The metropolitan area has fewer high-rise buildings and mostly mid-rise and
low-rise buildings, with a medium to high level of urban development and a weaker overall
development force than the coastal cities in eastern China. The urban buildings in Urumqi
are distributed in a “T” shape, and the factories and lightweight buildings (containers, etc.)
in the metropolitan area are mainly spread around the central city of Urumqi, with a high
level of industrial development. Changji and Wujiaqu cities are less urbanized; LCZ-D is
the primary land use type, while LCZ-3 is presented in a rural form, mainly concentrated
between cities and towns.

Overlaying the LCZ results with the LST10m, we can see that the mean LST values
are higher for building types LCZ-2, LCZ-7, LCZ-8, LCZ-9, and LCZ-10 and natural
types LCZ-C, LCZ-E, and LCZ-F (Figure 8). The building type is mainly warming caused
by impervious surfaces such as asphalt, while the high temperature of the natural type
is mostly heat gathering caused by bare sand and hay-like vegetation. Comparing the
temperature statistics, it is found that the LST in the Urumqi–Changji–Wujiaqu metropolitan
area shows a changing pattern of high-rise < low-rise < mid-rise for both “dense” and
“open” building types (LCZ1-LCZ6). In addition, LCZ7-LCZ10 building types have a
higher impact on LST. The difference in the effects of urban building type on LST is evident.
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3.2.3. Contribution Effect of LCZ on LST

The contribution index is introduced in this paper to explore the contribution of
LCZ type on LST warming/cooling (Figure 9). We can see from the results that LCZ-D
contributes the most to the cooling effect of LST, followed by LCZ-G, LCZ-4, and LCZ-A.
LCZ-F contributed the most to the heating effect of LST, followed by LCZ-C, LCZ-1, LCZ-3,
LCZ-5, and LCZ-7. The contribution of the LCZ to the LST is not only the nature of the
underlying surface of the ground object itself, but it also has a great relationship with the
area of the study area occupied by the LCZ.
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3.3. Analysis of Urban Thermal Environment Networks and Key Corridors
3.3.1. MSPA-Based Cold Island Plaques Identification

We identify cold island patches in the Urumqi–Changji–Wujiaqu metropolitan area
based on MSPA and classify them into seven types (Figure 10a). Overall, the core type is
the primary type of cold island patch, with an area of about 630.38 km2, accounting for
57.49% of the area of cold island patches and 18.39% of the total area of the whole study
area (Table 7). In the theory of spatial morphology, the size of the core type determines the
stability of the network, and the core of the cold island is generally covered with arable
land, forest land, and water bodies. The second is the perforation type, which is located in
the area where the hot and cold islands meet, accounting for 15.02% and 4.81% of the cold
island patch and the overall study area, respectively. The following categories are bridge,
loop, edge, and branch, which account for 8.96%, 6.95%, 5.37%, and 4.04% of the cold island
patches, respectively. Islets accounted for the lowest proportion of the MSPA category,
accounting for only 2.17% of the total cold island patches and 0.69% of the study area.

Table 7. MSPA Statistics Table.

MSPA Class Area (km2)
Total Area of the

Cold Island Patches (%)
Total Study

Area (%)

Core 630.38 57.49 18.39
Bridge 98.20 8.96 2.86

Islet 23.76 2.17 0.69
Loop 76.24 6.95 2.22
Edge 58.88 5.37 1.72

Perforation 164.72 15.02 4.81
Branch 44.31 4.041 1.29



Remote Sens. 2023, 15, 1129 13 of 18Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 10. Green corridor, pinch point, and obstacle point identification for the thermal environment 
based on MSPA and circuit theory: (a) cold island patch classification based on MSPA; (b) green 
corridor identification and importance classification; (c) key pinch point identification; (d) key ob-
stacle point identification. 

3.3.2. Thermal Environment Green Corridor and Its Grade Analysis 
Before determining the corridor, in this paper, based on the contribution index, it is 

judged whether each LCZ type is conducive to land surface energy transmission and ac-
cording to the ratio to give different resistance values. That is, LCZ-D has the highest cool-
ing contribution to LST, indicating that it is easy to diffuse land surface thermal energy, 
and it is assigned the highest resistance coefficient; LCZ-F has the most increased warm-
ing contribution to LST, suggesting that it is easy to store land surface thermal energy, 
and is assigned the lowest resistance coefficient (Table 8). 

According to the corridor coefficient and equal spacing method, the thermal environ-
ment green corridors are classified into four categories (Figure 10b). The path from one 
source to another is affected by inhomogeneous extension resistance, so the shortest path 
between sources is not a straight line but the result of a combined calculation of resistance 
surfaces. The total number of green corridors in the study area is 253, and the greater the 
distance between two cold island patches, the higher the degree of sensitivity of the 

Figure 10. Green corridor, pinch point, and obstacle point identification for the thermal environment
based on MSPA and circuit theory: (a) cold island patch classification based on MSPA; (b) green
corridor identification and importance classification; (c) key pinch point identification; (d) key obstacle
point identification.

3.3.2. Thermal Environment Green Corridor and Its Grade Analysis

Before determining the corridor, in this paper, based on the contribution index, it
is judged whether each LCZ type is conducive to land surface energy transmission and
according to the ratio to give different resistance values. That is, LCZ-D has the highest
cooling contribution to LST, indicating that it is easy to diffuse land surface thermal energy,
and it is assigned the highest resistance coefficient; LCZ-F has the most increased warming
contribution to LST, suggesting that it is easy to store land surface thermal energy, and is
assigned the lowest resistance coefficient (Table 8).
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Table 8. LCZ-based resistance values for cold island plaques.

LCZ Class Resistance Value LCZ Class Resistance Value

LCZ1 15 LCZ10 5
LCZ2 10 LCZA 30
LCZ3 10 LCZB 25
LCZ4 30 LCZC 5
LCZ5 10 LCZD 100
LCZ6 15 LCZE 15
LCZ7 10 LCZF 1
LCZ8 15 LCZG 50
LCZ9 15

According to the corridor coefficient and equal spacing method, the thermal envi-
ronment green corridors are classified into four categories (Figure 10b). The path from
one source to another is affected by inhomogeneous extension resistance, so the shortest
path between sources is not a straight line but the result of a combined calculation of
resistance surfaces. The total number of green corridors in the study area is 253, and the
greater the distance between two cold island patches, the higher the degree of sensitivity of
the corridors. The substable corridors and stable corridors are mainly distributed in the
cold island patches in the northern part of the study area. Sensitive green corridors are
vulnerable to destruction by human activities, and the identification of green corridor paths
can effectively protect and maintain them.

3.3.3. Green Corridor Analysis and Restoration

Based on the results of green corridor extraction, the “all-to-one” mode in the pinch
point mapper is invoked to identify the pinch point area (Figure 10c); the minimum search
radius of 30 m and the maximum search radius of 120 m is used to determine the obstacle
points (Figure 10d). The value range of the green corridor’s current intensity is [0~1] A.
The average value of the current intensity is about 0.01 A. The pinch point is a region
with a high current density concentration, primarily distributed in rural areas within the
study area. The mean value of regional cumulative current recovery is 5.34 A, and the
high-value area is mainly distributed between cultivated land and cultivated land (mostly
areas where villages are gathered), which is a hindrance to corridor connectivity and surface
heat dissipation.

4. Discussion
4.1. Relationship between LCZ and LST in Arid Zones and Their Cooling Measures

Compared with the traditional land use classification (six significant categories such
as cropland, forest land, grassland, construction land, water bodies, and unused land), LCZ
has extremely fine delineation for surface cover [60,61]. In particular, the building types
cover almost all urban space buildings. Therefore, the study combining LST downscaling
with LCZ can effectively shrink the errors caused by spatial scale mismatch. In this study,
the positive and negative contribution effects of 17 categories of LCZ on LST are basically
consistent with previous studies [33]. However, a particular category of natural types
deserves our attention, that is LCZ-C (mainly grassland with low coverage), which has a
positive effect on LST and occupies a large proportion, which is inconsistent with previous
studies. The occurrence of this phenomenon is strongly associated with the climatic
characteristics of the arid zone. The average annual precipitation in arid areas is less than
200 mm, and with the high temperature for water vapor consumption, evapotranspiration
is high, so vegetation is generally sparse and usually dominated by drought-resistant
short-growth plants (haloxylon ammodendron, alhagi sparsifolia shap, tamarix chinensis
lour, etc.) [62]. Although LCZ-C belongs to vegetation, its cooling ability to LST is limited.
In contrast, the cooling contribution of LCZ-D to LST is the most significant, coupled with
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the fact that the study area is a typical agricultural oasis, so agricultural irrigation and
arable land conservation are the primary means of maintaining the oasis’s cold island.

Different building types have different contribution effects on LST. Dense urban space
buildings have poorer ventilation effects and higher temperature concentrations than open
buildings [29]. Therefore, on the premise of ensuring the allocation and supply of land
resources that are in short supply within the city, natural elements such as vegetation and
water bodies can be assigned to dense building areas as a priority in urban space planning.
In addition, in the process of selecting the area of interest, we found that a large part
of the dense middle-rise buildings are old residential areas or urban villages. The high
building density and population density in these areas are not conducive to human thermal
comfort [63]. Effective urban renewal is required, such as widening roads or transforming
them into mid-rise and open buildings. It is important to emphasize that a higher number
of floors in a building is not better. Although high-rise buildings are suitable for urban
ventilation, they have certain safety risks when elevators fail or in case of fire. Therefore,
promoting the construction of local blue-green space is the key to improving the urban
thermal environment.

4.2. Protection and Optimization of Green Space in the Metropolitan Area

As the political and economic center of “One Belt and One Road” construction in
Xinjiang and even Northwest China, the influence and radiation of the Urumqi–Changji–
Wujiaqu metropolitan area is undoubtedly massive [64]. This paper chooses a combination
of MSPA and circuit theory to be applied to urban heat island research. The construction
of green corridors for the urban thermal environment from the perspective of combining
urban and rural gradients can enhance the connectivity of cold source landscapes and
maintain the security of the regional thermal environment [39]. In the present study,
we identify 253 green corridors, and planners and decision-makers need to take certain
precautions when implementing plans for urban construction, focusing on the degree of
sensitivity of the corridors, as blockage of the corridors will further exacerbate the UHI
intensity [40]. In addition, the ecological background characteristics of the pinch point area
are good, and it is recommended that natural protection be the main focus, supplemented
by human restoration, including measures such as developing unused land into arable
land or stopping construction land from encroaching on cropland. Furthermore, human
activities are frequent in the ecological obstacle area. In order to reduce the ecological
flow resistance and effectively improve the landscape connectivity, it is recommended to
adopt a method of equal emphasis on artificial restoration and natural protection, including
building reservoirs or planting high-coverage forests and shrubs in the obstacle area.

4.3. Limitations and Prospects for the Future

First, the Urumqi–Changji–Wujiaqu metropolitan area is at the intersection of multiple
image coverage. Since the accuracy of LST downscaling of the L8 image will be significantly
reduced after image stitching, and the research scope has covered the main urban buildings,
this paper only selects a single image of L8 for analysis. In future work, we will continue to
optimize the LST downscaling algorithm to achieve large-scale downscaling of LST. Second,
limited by the launch time of S2 satellite L2A, this paper only performs downscaling
analysis of the summer 2021 LST, which can be combined with subsequent images of
S2 in future work or can resample L8 to high spatial resolution as an auxiliary surface
parameter to improve the temporal resolution of the study. And last, the construction
of the resistance surface in this paper contains information on the two-dimensional and
three-dimensional level of the city, and the influence of the topography and elevation, etc.,
are ignored. Although the topography of the Urumqi–Changji–Wujiaqu metropolitan area
is flat, and the terrain is not highly undulating, there are still some errors. In future work,
the factors that affect LST can be ranked and incorporated into constructing the thermal
environment resistance surface.
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5. Conclusions

The background of rapid urbanization has a more substantial impact on arid areas,
and how to moderately cool local places is the focus of the academic community. This
study proposes to combine L8 and S2 for LST downscaling and then construct a thermal
environment resistance surface based on LCZ to form a regionally integrated cooling
network, which is rarely performed in previous studies. The results showed that ELT and
LT were mainly distributed in arable land (LCZ-D), high cover degree vegetation (LCZ-A,
LCZ-B), and water bodies (LCZ-G), HT was distributed primarily on residential areas of
built-up land (LCZ1-LCZ6), HT and very high temperature were mainly distributed in
factories of built-up land (LCZ7-LCZ10), low cover degree grassland (LCZ-C) and bare
(LCZ-C) and bare land (LCZ-F). A total of 253 green corridors in the thermal environment
network were identified using circuit theory. The longer the distance between cold sources,
the higher the degree of sensitivity of the corridors. Combined with the locations of pinch
points and obstacle points in the thermal environment network, policymakers applied
the corresponding measures of protection and repair to relieve the thermal pressure in
the metropolitan area. In addition to providing a scientific basis for urban planners in
arid zones to mitigate extreme urban heat waves in terms of building type and regional
integration, the study can also be applied to every city at thermal risk. With the process of
global integration, the continued elevation of LST will face even greater challenges.
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