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Abstract: Recently, several methods have been introduced and applied to estimate daily air surface
temperature (Ta) using MODIS land surface temperature data (MODIS LST). Among these methods,
the most common used method is statistical modeling, and the most applied algorithms are
linear/multiple linear regression models (LM). There are only a handful of studies using machine
learning algorithm models such as random forest (RF) or cubist regression (CB). In particular, there is
no study comparing different combinations of four MODIS LST datasets with or without auxiliary
data using different algorithms such as multiple linear regression, random forest, and cubist regression
for daily Ta-max, Ta-min, and Ta-mean estimation. Our study examines the mentioned combinations of
four MODIS-LST datasets and shows that different combinations and differently applied algorithms
produce various Ta estimation accuracies. Additional analysis of daily data from three climate
stations in the mountain area of North West of Vietnam for the period of five years (2009 to 2013)
with four MODIS LST datasets (AQUA daytime, AQUA nighttime, TERRA daytime, and TERRA
nighttime) and two additional auxiliary datasets (elevation and Julian day) shows that CB and LM
should be applied if MODIS LST data is used solely. If MODIS LST is used together with auxiliary
data, especially in mountainous areas, CB or RF is highly recommended. This study proved that the
very high accuracy of Ta estimation (R2 > 0.93/0.80/0.89 and RMSE ~1.5/2.0/1.6 ◦C of Ta-max, Ta-min,
and Ta-mean, respectively) could be achieved with a simple combination of four LST data, elevation,
and Julian day data using a suitable algorithm.

Keywords: MODIS LST; daily air surface temperature; northwest Vietnam; linear regression (LM);
random forest (RF); cubist regression (CB)

1. Introduction

Air surface temperature (Ta) with high spatial and temporal resolution plays an important role in
various applications, such as crop growth monitoring and simulations [1], hydrological, ecological,
and environmental studies [2–4], weather forecasting [5,6], and climate change [7,8]. It is used as
a key input variable and directly affects the accuracy of these applications. Traditionally, Ta is usually
measured by weather stations (often at 2 m above the ground) and usually limited in spatial coverage.
Especially in mountainous areas of Vietnam, weather station coverage is extremely sparse.
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Meanwhile, satellite data available at various spatial and temporal resolutions, such as
Landsat, the Advanced Very High Resolution Radiometer (AVHRR), Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), and especially Moderate-resolution Imaging
Spectroradiometer (MODIS), which was launched in the early 2000s, have marked a significant increase
in the quality and quantity of thermal data. The advantage of MODIS is that it can provide Land
Surface Temperature (LST) data directly. However, there is a difference between Ta and LST because of
the complex surface energy budget and multiple related variables between them.

Recently, several methods have been introduced and applied to estimate Ta using satellite
data such as the temperature–vegetation index method—TVX [9–11], surface energy-balance-based
methods [12], and statistical methods [13–18] using different satellite datasets such as
Landsat—ETM+ [19,20], AVHRR [21], or MODIS LST [11,14,22,23]. Among these satellite data, the most
used is MODIS LST because it is freely available and can be obtained easily [18]. In addition, MODIS
satellite provides four LST datasets daily, including: TERRA daytime (LSTtd), TERRA nighttime
(LSTtn), AQUA daytime (LSTad), and AQUA nighttime (LSTan), which overpass local time at around
10 a.m., 10 p.m., 1 p.m., and 1 a.m. (our study area), respectively.

Looking at the current literature, there are plentiful Ta estimation studies; however, studies using
machine learning techniques such as cubist regression (CB) or random forests (RF) are very rare (as far
as we know, only [18,24–26]. However, all of these studies used MODIS LST integrating auxiliary data
and estimated only Ta-max or Ta-mean. Furthermore, their conclusions are also different. Meyer et al. [26]
stated that RF algorithms show the weakest results among linear regression, generalized boosted
regression models (GBM), and Cubist regression. In contrast, Xu et al. [25] concluded that RF
outperforms the linear regression. Zhang et al. [18] divided their data record into two groups (group S1
contains all four MODIS LST under good quality and group S2 had at least one LST with poor quality).
The results based on the two datasets are different: in group S1, RF shows the best results in almost all
combinations, but in group S2 the best algorithm is the Cubist regression. As a final result, the best
algorithm for daily Ta-max, Ta-min, and Ta-mean estimation remains unknown.

Regarding MODIS LST data (v005), LST data are not available for a location (pixel) if cloudiness
is present inside the pixel [27]. Due to the differences in satellite overpass times, the valid observation
data at a specific location (pixel) varies between LSTad, LSTan, LSTtd, and LSTtn. Therefore, it is
important to compare the dynamic combination of one to four LST data that are available at different
times and locations as well as the most suitable algorithm to apply for Ta estimation. Furthermore,
a rising question using LST MODIS solely is the kind of relationship (linear or nonlinear) between LST
and Ta, especially in mountainous areas.

Therefore, in this research, we investigate all 15 (i.e., 24 − 1) possible dynamic combinations
of four LST with or without auxiliary data for daily Ta estimation using three different algorithms:
multiple linear regression (LM), cubist regression (CB), and random forests models (RF). Finally,
the accuracies of these Ta-estimated are evaluated by comparison with Ta-measured data, which are
collected from weather stations. Root mean square error (RMSE) and coefficient of determination (R2)
were used as the model evaluation scores.

2. Materials and Methods

2.1. Study Area and Weather Station Data

The study area is located in northwest Vietnam inside two large provinces: Lai Chau and Dien Bien.
It covers an area of 18,600 km2 (Figure 1). The study area presents a rural and mountainous region in
northwest Vietnam with a sparse distribution of weather stations. There are only four weather stations
(Figure 1) within these two provinces. However, due to the lack of data measurement, we chose
only three stations, Sin Ho, Dien Bien, and Lai Chau, for this study (Table 1). In each station, the Ta

data were recorded hourly. Ta-max and Ta-min are the highest (maximum) and lowest (minimum) air
surface temperatures that occur on a diurnal cycle (24 h cycle), respectively; Ta-mean was calculated
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by averaging all 24 hourly measurements in a day. Generally, Ta-max occurs after solar noon from one
to two hours, and Ta-min usually occurs shortly before dawn. In this study, we collected daily Ta-max,
Ta-min, and Ta-mean from 2009 to 2013 from the Vietnam Institute of Meteorology, Hydrology, and the
Environment (IMHEN).

Based on the MODIS land cover type product (MCD12Q1 data of 2010), the major land cover type
in this area is forest, covering approximately 64% (Figure 1).
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Figure 1. Location of the weather stations and range of elevation (a) and land cover (b) from MODIS
MCD12Q1 data in 2010 of the study area.

Table 1. Geographical description and land cover type of weather stations used in this study.

No. Station Lat (◦) Long (◦) Elevation (m) Land Cover

1 Sin Ho 22.37 103.25 1534 Forest
2 Dien Bien 21.37 103.00 475 Crop land
3 Lai Chau 22.07 103.15 243 Forest

2.2. Data

2.2.1. MODIS LST

All MODIS LST data used in this study were acquired from the U.S. Geological Survey (USGS)
website [28].

We used two MODIS LST products (v005, h27v06), MOD11A1 and MYD11A1 from TERRA and
AQUA satellites, respectively. The MODIS LST consists of daytime and nighttime data at a spatial
resolution of 1 km. Thus, in total there are four LST datasets: AQUA daytime (LSTad), AQUA nighttime
(LSTan), TERRA daytime (LSTtd), and TERRA nighttime (LSTtn).

In the literature, there are some studies that use eight-day LST averages to estimate Ta [13,14,29].
It should be considered that eight-day-average LST is calculated by averaging all valid data under clear
sky conditions, the number of participant data points varying from one to eight days depending on
availability. Meanwhile, eight-day-average Ta is calculated by averaging the data under changing sky
conditions. Therefore, if we compare eight-day-average LST and eight-day-average Ta, the sampling
may introduce uncertainty [22]. Taking this difference into consideration, in this study we decided to
use daily LST under clear sky conditions instead of eight-day-average LST data.
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2.2.2. MODIS Land Cover

The MODIS Land Cover Type Product (MCD12Q1) is downloaded from the Land Processes
Distributed Active Archive Center [30]. In order to use this product easily in the community, four main
classification schemes were provided, including IGBP (International Geosphere–Biosphere Programme),
UMD (University of Maryland), LAI/fPAR (Leaf Area Index/fraction of Photosynthetically Active
Radiation), and NPP (Net Primary Productivity) [30,31]. For our study, we use the primary land cover
scheme, which is provided by the IGPB land cover classification. Based on this scheme, our study
has 13 types of land cover classes. However, in order to make it easy to use and distinguish between
each class, consistent with the land cover of the study area we combined and reduced the classes to
six types (Figure 1). As is shown in Figure 1, the majority of land cover in the study area is forest and
crop land.

In addition, based on the results of our previous study [17], we take two more variables into
account for Ta estimation in northern Vietnam: station elevation (el) and Julian day data. Elevations of
stations were obtained from the Vietnam Institute of Meteorology, Hydrology and Environment
(IMHEN). The Julian day (jd) was extracted from the NASA server [32].

2.3. Methods

2.3.1. Calculating LST of Weather–Station–Location

LST data under clear sky conditions at weather stations are retrieved by the following steps:

• A total of 3652 MODIS images (MOD11A1 and MYD11A1, h27v06, Collection 5, from 1 January
2009 to 31 December 2013, over northern Vietnam) in HDF (Hierarchical Data Format) format
were reprojected to WGS_1984_UTM_zone_48N using the nearest neighbor resampling method
with the MODIS Re-Projection Tool. The corresponding layers (LST_Day_1km, LST_Night_1km,
Daytime LST observation time, and Nighttime LST observation time) were extracted in TIF
format. However, Daytime and Nighttime LST observation time were used in order to identify
the approximate overpass time of MODIS at local time.

• MODIS LST data for the pixels in which the weather stations are located are extracted from
7304 TIF format MODIS images (3652 daytime and 3652 nighttime images) using batch processing
of extract multi value to points in ArcGIS 10.3.

• All these LST data (DN value) were converted to Celsius temperature using the following equation:

◦C = 0.02 * DN − 273.15,

where ◦C is the Celsius temperature and 0.02 is the scale factor of the MODIS LST product.
• Removing outlier data: MODIS LST products are not available for a location (pixel) if clouds

are present [27]. However, there are some pixels that are lightly covered or contaminated by
clouds. These pixels are not removed because the contamination is very small and cannot be
detected by the cloud-removing mask algorithm [33,34]. To avoid this kind of data, we studied
and developed a similar method that was used in [35]. This approach includes two steps: First,
we simply filter and remove all unrealistic LST data that had values greater than 100 ◦C and/or
below −50 ◦C. Second, we calculated the difference between Ta-max versus LST daytime and Ta-min

versus LST nighttime. Then, we applied statistical outlier removal based on these differences’
histograms to detect and remove data with unusually large differences (the histogram does not
follow a normal distribution).
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2.3.2. Estimation Air Temperature Using MODIS LST Data

• Dynamic Combination of MODIS LST data

To estimate daily Ta, we used all possible combinations of four LST data (LSTad, LSTan, LSTtd,
and LSTtn). These 15-combinations are shown in Table 2.

Due to the cloud cover effect, the number of valid observations from each station and each
combination (C01–C15) are various (Table 2).

Table 2. All possible combinations of four LST data and the valid number of observations.

No. Combination SinHo DienBien LaiChau Total

C01 LSTad 488 572 571 1631
C02 LSTan 420 321 261 1002
C03 LSTtd 427 500 507 1434
C04 LSTtn 562 593 528 1683
C05 LSTad +LSTan 254 219 190 663
C06 LSTtd +LSTtn 255 286 298 839
C07 LSTad +LSTtd 297 318 348 963
C08 LSTan +LSTtd 231 193 176 600
C09 LSTad +LSTtn 283 348 340 971
C10 LSTan +LSTtn 294 224 193 711
C11 LSTtd +LSTtn +LSTad 195 200 229 624
C12 LSTtd +LSTtn +LSTan 176 132 131 439
C13 LSTad +LSTan +LSTtd 184 138 137 459
C14 LSTad +LSTan +LSTtn 198 159 143 500
C15 LSTad +LSTan +LSTtd +LSTtn 141 92 100 333

Due to some missing Ta-max, Ta-min, and Ta-mean observations, the number of valid observations in Table 2 differs
from that in Figure 2.

In order to investigate the difference between dynamic combinations, as well as the performance
of different algorithms, we used two datasets: Dataset A, MODIS LST data only; and Dataset B,
MODIS LST together with elevation (ele) and Julian day (jd) data.

• Algorithms used

Linear/Multiple Linear Regression Model (LM) is a model that represents the relationship between
one response variable and one predictor variable (Simple Linear Regression) or more than one predictor
variable (Multiple Linear Regression) by using parameters entered linearly and estimated by the least
squares method. So far, LM is one of the most popular statistical models for Ta estimation using
MODIS LST [14,17,22,25,36,37]. Although it was found that the correlation between LST and Ta is high,
this relationship may not actually be linear [18]. Therefore, our current knowledge might be incomplete
if we do not try machine learning algorithms. Machine learning algorithms promise a better estimation
of Ta using MODIS LST because they can handle non-linearity and highly correlated predictor
variables [26,38,39]. Furthermore, based on the conceptual designs of machine learning algorithms,
they are able to deal with data that have a different relationship between predictor and response
variables under different conditions such as season, elevation, and land cover characteristic [26].

Random Forests (RF), which was proposed by Breiman in 2001 [40], is a nonparametric and
ensemble technique. Random forests are a combination of tree predictors such that each tree depends
on the values of a random vector sampled independently and with the same distribution for all trees
in the forest. It is different from traditional statistical methods that contain a parametric model for
prediction. In RF, it contains many decision trees, where each tree is built from a random subset of
training data with a random subset of predictor variables. The final predicted values are produced by
the aggregation of the results of all the individual trees that make up the forest [25].

Cubist regression (CB) is a rule-based regression technique that was developed based on
a combination of the ideas of Quinlan [41–43]. CB does not retrieve one final model like RF, but a set
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of rules associated with sets of multi-variate models. Then, a specific set of predictor variables will
choose an actual prediction model based on the rule that best fits the predictors [44]. Cubist is
a commercial, proprietary product and has the least algorithmic documentation in comparison to linear
regression and random forest [45]. However, it is currently a popular and widely used regression and
classification method because it was ported into R by Kuhn et al. [46] in 2013. Most recently, it was
used in Ta estimation research and showed very good results in the research of Meyer et al. [26] and
Zhang et al. [18].

Therefore, in this study, to estimate Ta and assess the accuracy of estimation, three different
methods were employed: linear regression (LM), cubist regression (CB) and random forests (RF).
All methods are performed in the R statistical software.

2.3.3. Comparison of Different Combination and Algorithms

• Assessment Criteria

To assess the performance of models, we used and compared the values of the two most popular
criteria: the coefficient of determination (R2) and the root mean square error (RMSE) that were
calculated from the measured and estimated Ta values from three algorithms: LM, CB, and RF.

• Comparison

Being one of the most popular validation methods, cross-validation was used in order to compare
different combinations and different algorithms.

In order to implement the cross-validation, the dataset is divided into k groups (k-fold) of
approximately the same size. Then, k − 1 groups of the dataset are used as the training set, and the
left-out group is used for validation. When the number of groups (k) equals the number of observations
(n), it is called “leave-one-out cross-validation”.

Due to the high number of observations, we used 10-fold cross-validation (k = 10) and repeated it
twice for cross-validation.

3. Results

3.1. The Relationship between Ta and LST MODIS

In order to evaluate the MODIS LST data for Ta estimation, we first test the relationship between
Ta and LST MODIS of all three weather stations.

Figure 2 shows the scatter plot of Ta and LST of daytime and nighttime. It was found that:
The coefficients of determination were high, ranging from 0.43 to 0.72, and the correlation between
LST nighttime and Ta-min were higher than LST daytime and Ta-max at Dien Bien and Sin Ho stations.
However, at Lai Chau station, the correlation between LST daytime versus Ta-max was slightly higher
than nighttime versus Ta-min. This indicates that the relationship between MODIS LST and Ta of this
study area is complex.

The relationships between Ta-min versus LSTan and LSTtn were quite similar at all three stations.
However, the relationships between Ta-max versus LST daytime were different; at Lai Chau station
most Ta-max values are higher than the LSTad and LSTtd values (most of the points lie above the red
line). Meanwhile, at Dien Bien station, Ta-max is quite similar to LSTad but Ta-max was higher than
LSTtd. At Sin Ho station, there is not much difference between Ta versus LST but there are a lot of data
points lying outside the “±5 lines”.

Due to the cloud effect, the number of valid observations changes from daytime to nighttime;
during the daytime the AQUA sensor gives more observations than TERRA. However, at night, TERRA
gives more observations than AQUA.
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Figure 2. The relationship between LST (x-axis) and Ta-max (first and third columns), Ta-min (second
and last columns) of all meteorological stations from 2009 to 2013. The dashed line indicates that the
difference between Ta and LST is over ±5 ◦C (±5 line). The red line indicates the 1:1 line.

3.2. Different Combinations of MODIS LST for Ta Estimation

As shown in Figure 2, the linear correlation between Ta and LST are strong for both Terra LST and
Aqua LST of daytime and nighttime. Furthermore, in Section 1 we also showed that there are plenty of
studies using MODIS LST data for Ta estimation using the LM method.

Therefore, in order to estimate the effect of different MODIS LST data combinations, we applied all
three methods (linear regression, cubist regression, and random forest models) to the 15 combinations
as shown in Table 2.

In the LM method, the equations of 15 combinations (C01–C15) are shown in Appendixes A and B.
However, regarding CB and RF, which are nonparametric methods, equations cannot be provided as
for the LM method.

3.2.1. Combinations Using One LST Variable

Figure 3a,b show the coefficient of determination (R2) and root mean square error (RMSE) of
combinations C01–C04 using three algorithms (LM, CB, and RF) with Dataset A and Dataset B,
respectively. It can be clearly seen that there is a large difference between Figure 3a (using LST solely)
and Figure 3b (using LST with elevation and Julian day data). At Figure 3a, LM and CB show similar
results and higher accuracy than the RF algorithm in all four combinations (C01–C04). In contrast,
Figure 3b shows similar results for CB and RF in all four combinations and slightly higher values
than with the LM algorithm. It is suggested that when one LST is used with an auxiliary data for Ta

estimation, RF and CB performance are better than LM.
Both Figure 3a,b show that the accuracy of C02 and C04 is much higher than for C01 and C03

(higher value of R2 and lower value of RMSE). It can be stated that nighttime LST was better than
daytime for deriving daily Ta. This result is consistent with [17,47]. Regarding the two datasets used,
in all combinations (C01–C04) the accuracies of Ta estimation using Dataset B are much higher than
when using Dataset A.
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Figure 3. (a) Cross-validation results for one-LST-combination (C01–C04) using Dataset A, and multiple
comparisons of the three algorithms. The x-axis shows the value of R2 and RMSE (◦C), the y-axis
shows the model types. The box and whiskers plots show the distributions of R2 and RMSE;
(b) Cross-validation results for one-LST-combination (C01–C04) using Dataset B, and multiple
comparisons of the three algorithms. The x-axis shows the values of R2 and RMSE (◦C); the y-axis
shows the model types. The box and whiskers plots show the distributions of R2 and RMSE.
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For Ta-min and Ta-mean estimation, Figure 3a shows that the combinations using LST nighttime
(C02 and C04) have significantly higher accuracy than the combinations using LST daytime (C01 and
C03). However, these differences are not clearly shown in Figure 3b (except for in the LM results).

Regarding Dataset A, AQUA daytime (C01) shows better results for Ta-max estimation than TERRA
daytime (C03). However, at night AQUA and TERRA show similar results for Ta estimation. The results of
both daytime and nighttime of TERRA and AQUA are consistent and similar in Ta estimation (Figure 3b).

3.2.2. Combinations Using Two-LST Variables

In this case, we used all possible combinations with LST to estimate Ta. As shown in Table 2,
we applied six possible combinations of LST for Ta estimation.

In general, Figure 4a,b show that both results of Ta estimation using Dataset A and B are higher
than the one-LST-combination (Figure 3a,b). Figure 4a shows that the difference between the three
algorithms is not as large as in the results shown in Figure 3a (except for C07).

In these combinations (C05–C10), CB and LM show similar and slightly higher accuracies than
RF for Dataset A. The contrast is also evident in Dataset B: the CB and RF results are similar and
slightly higher than LM. Especially in C07, the results of LM are much lower than those of CB and RF
(Figure 4b). The results of all Ta estimations using Dataset B are still higher than using Dataset A.
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for Ta estimation.  

The most interesting finding of two-LST-combined is the combination of C07. The results of 
Dataset A (panel row 3, Figure 4a) show the lowest accuracy in comparison to five other 
two-LST-combined (R2 approximately 0.6, 0.5 and 0.35; RMSE approximately 3.5, 3.2, and 3.7 °C for 
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Figure 4. (a) Cross-validation results for two-LST-combinations (C05–C10) using Dataset A and
multiple comparisons of the three algorithms. The x-axis shows the value of R2 and RMSE (◦C);
the y-axis shows the model types. The box and whiskers plots show the distributions of R2 and RMSE;
(b) Cross-validation results for two-LST-combinations (C05–C10) using Dataset B and multiple
comparisons of the three algorithms. The x-axis shows the values of R2 and RMSE (◦C); the y-axis
shows the model types. The box and whiskers plots show the distributions of R2 and RMSE.

Looking at the first two rows of Figure 4a,b (C05, combined LSTad + LSTan; and C06, combined
LSTtd + LSTtn), there are similar results for Ta estimations between them. It is indicated that the overpass
times of AQUA and TERRA do not significantly affect the result of Ta estimation when we combine
daytime and nighttime LST. This is true for all three methods (LM, CB, and RF). These results are also
consistent with previous studies [15,17,47], which used LM as the statistical model for Ta estimation.

The most interesting finding of two-LST-combined is the combination of C07. The results
of Dataset A (panel row 3, Figure 4a) show the lowest accuracy in comparison to five other
two-LST-combined (R2 approximately 0.6, 0.5 and 0.35; RMSE approximately 3.5, 3.2, and 3.7 ◦C
for Ta-max, Ta-mean, and Ta-min, respectively). In addition, among the three algorithms, RF shows the
lowest results with lower R2 and higher RMSE. In contrast, the results of Dataset B are absolutely
different (Figure 4b, panel row 3). The results of C07 (using Dataset B) are similar to the five other
two-LST-combined (R2 approximately 0.88, 0.80, and 0.73; RMSE approximately 1.8, 1.9, and 2.5 ◦C
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for Ta-max, Ta-mean, and Ta-min, respectively, except for the results of LM) and much higher than
using Dataset A. Among the three algorithms, the lowest result for Ta estimation is LM (Figure 4b).
Meanwhile, CB and RF show higher results, especially for Ta-min and Ta-mean estimation. It should be
noted that C07 is the combination of TERRA and AQUA daytime LST, which is the most complicated
in the relationship between Ta and LST in comparison to the rest of the combinations. The difference
between the results of Datasets A and B indicates that elevation and Julian day (i.e., season) also affect
the relationship between LST and Ta. This is consistent with the results from [15,23,48,49]. The high
accuracy of Ta estimation using the RF and CB algorithms in Figure 4b also indicates that RF and
CB can account for the complicated relationship between predictor and response variables under
different conditions, especially in mountainous area. This finding is consistent with the studies by
Zhang et al. [18] and Xu et al. [25].

3.2.3. Combinations Using Three-LST Variables

In general, Figure 5a,b show that all three-combined LST result in a very high accuracy of Ta

estimation and the differences in accuracy between the three different algorithms are not significant
(p-value > 0.05). However, the results of Ta estimation using Dataset B are much higher than using
Dataset A. In both datasets, the results of Ta-max and Ta-mean are always better than Ta-min (except C12
and C14 of Dataset A). This can be explained by the fact that, because of two LST nighttime variables
(LSTtn and LSTan) in C12 and C14, the accuracy of Ta-min estimation could be increased. However,
in Dataset B, by introducing the two variables elevation and Julian day, the accuracy of all Ta-max,
Ta-min, and Ta-mean estimations has increased (Ta-max and Ta-mean is increased more significantly than
Ta-min when elevation and Julian day data were introduced).
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Figure 5. (a) Cross-validation results for three-LST-combinations (C11–C14) using Dataset A and
multiple comparisons of the three algorithms. The x-axis shows the values of R2 and RMSE (◦C);
the y-axis shows the model types. The box and whiskers plots show the distributions of R2 and RMSE;
(b) Cross-validation results for three-LST-combinations (C11–C14) using Dataset B and multiple
comparisons of the three algorithms. The x-axis shows the value of R2 and RMSE (◦C); the y-axis shows
the model types. The box and whiskers plots show the distributions of R2 and RMSE.

3.2.4. Combinations Using Four-LST Variables

The first result clearly seen from Figure 6 is that all three algorithms show a similar accuracy of Ta

estimation in both Dataset A and B. However, the results of Dataset B (R2 approximately 0.93, 0.89 and
0.8, RMSE approximately 1.5, 1.6, and around 2.0 ◦C for Ta-max, Ta-mean, and Ta-min, respectively) are
much higher than the results of Dataset A (R2 approximately 0.84, 0.88, and 0.75; RMSE roughly 2.2,
1.7, and 2.2 ◦C for Ta-max, Ta-mean, and Ta-min, respectively).

In addition, the statistical results also indicate that the difference between the three algorithms is
not significant (p-value > 0.05) in either Dataset A or B.
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4. Discussion

4.1. Model Calibration and Validation

In several previous studies [23,36], one of the most common validation methods is that the sample
data is randomly divided into a calibration and a validation dataset (e.g., 70% and 30% respectively).
Calibration data were used for training data and validation data were used to assess the model
performance. However, there is a drawback with this random choice: If we use a local dataset to train
the model (i.e., a dataset that does not represent all dataset characteristics), then we apply a fitted model
to the validation data. This could be misleading in the accuracy assessment. Especially in machine
learning algorithms like CB or RF, this could lead to overfitting problems (e.g., the accuracy of the
training part is very high; however, the model cannot be applied successfully to the validation dataset).

In this paper, we studied this problem in Ta estimation using MODIS LST. First, we randomly
divide the data of all 15 combinations into two datasets: calibration and validation (70% and 30%,
respectively). Next, we fitted the model using a calibration dataset, and then we applied the fitted
model to the validation dataset and the entire dataset. Finally, we assessed the accuracies of validation
data, full data, and cross-validation.

These processes are applied to both Dataset A and Dataset B.
In Figure 7, the LM algorithm shows consistent results between the validation data, the total

data, and the cross-validations of both Dataset A and B. The results of Ta estimation using Dataset B
(right-hand panel) are slightly higher than with Dataset A (left-hand panel). It could be suggested
that when LST data alone were used (without auxiliary data), the accuracy of Ta estimation could be
affected by a change in season or the elevation of the weather station. This is consistent with previous
studies [17,36]. In the CB method (Figure 8), the results of validation, full data, and cross-validation are
also consistent with each other. However, in both algorithms LM and CB, the results of Dataset A and
Dataset B showed a significant difference, especially the combinations 1, 3, and 7 (C01, C03, and C07),
where there is only LST daytime data. It is suggested that if LST nighttime is not available then the
accuracy of Ta estimation could be improved by adding auxiliary data. Comparing Figures 7 and 8,
it can be clearly seen that CB produces better results for Ta estimation than LM.
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Figure 7. Comparison of accuracy (R2 and RMSE) when applying the LM algorithm to the validation
dataset (_val), the full dataset (_all), and a cross-validation (_cv) of all combinations. The x-axis shows
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Figure 8. Comparison of accuracy (R2 and RMSE) when applying the CB algorithm to the validation
dataset (_val), the full dataset (_all), and a cross-validation (_cv) of all combinations. The x-axis shows
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Unlike LM and CB, the results of RF algorithm (Figure 9) are not consistent when applied to the
validation data, full data, and cross-validation using Dataset A or Dataset B. As is shown in Figure 9,
the results of cross-validation and the results using the validation data are similar and lower than
when using the full data. It is suggested that the RF algorithm could be overfitting the Ta estimation
using MODIS LST. It is also clearly seen that the results of Ta estimation using Dataset B are much
higher than Dataset A, especially the combinations C01, C03, and C07. Again, the results of RF confirm
that auxiliary data (i.e., elevation and Julian day) together with the RF algorithm can increase the
accuracy of Ta estimation, especially in the case of missing LST nighttime data (i.e., combinations C01,
C03, and C07).
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Regarding Dataset A, in all combinations (C01–C15) for all Ta-max, Ta-min, and Ta-mean estimations, 
the results of the LM and CB algorithms are similar and higher than RF. However, from C10 to C15, 
the differences between the three algorithms are not clear. The results of combinations C01, C03, and 
C07 are much lower than the rest of the combinations in all three algorithms.  

Figure 9. Comparison of accuracy (R2 and RMSE) when applying the RF algorithm to the validation
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the combination number. The y-axis shows the values of RMSE (◦C) and R2.

4.2. Effects of Different Combinations and Statistical Model Applications

Figure 10 shows a comparison between the 15 combined LST datasets when applied to three
different algorithms (LM, CB, and RF), based on the criteria of R2 and RMSE.

Regarding Dataset A, in all combinations (C01–C15) for all Ta-max, Ta-min, and Ta-mean estimations,
the results of the LM and CB algorithms are similar and higher than RF. However, from C10 to C15,
the differences between the three algorithms are not clear. The results of combinations C01, C03,
and C07 are much lower than the rest of the combinations in all three algorithms.

Considering Dataset B, the results are very different to those of Dataset A. Especially,
in combinations C01, C03, and C07, the results of CB and RF are similar and much higher than LM.
This can be explained by the fact that during the daytime, solar radiation affects the thermal infrared
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signal, and the relationship between Ta and LST becomes more complicated. That is why simple
models like C01, C03, and C07 (of Dataset A) cannot handle this relationship well. The results of all
combinations (C01 to C15) were quite similar when the CB and RF algorithms were applied.
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Figure 10. Different performance of the algorithms LM (red), CB (green), and RF (blue) through
15 combinations of Dataset A and Dataset B. The x-axis shows the combination number. The y-axis
shows the values of RMSE (◦C) and R2.

It can be clearly seen that, in all combinations (C01–C15) of Dataset B, the cubist regression always
shows the highest accuracy of Ta estimation (slightly higher than RF and much higher than LM).
This is consistent with the studies of [18,25]. It should be remembered that Xu et al. [25] used MODIS



Remote Sens. 2017, 9, 398 18 of 23

LST and many other auxiliary variables like NDVI, longitude, latitude, etc. In this case, it could be
explained by the complex terrain of the study area. It is suggested that the differences in topography,
land surface properties, solar radiation, and many other factors could affect the relationships between
Ta and LST [14,50–52]. Therefore, a linear regression model, considered as a single global model,
could not handle the complicated relationship between Ta and the abovementioned variables under
different conditions [25]. In contrast, CB and RF can account for the nonlinear and complicated
relationship between the predictor and response variables under different conditions. That is why,
in this mountainous study area, the cubist regression and random forest algorithms always show
better results than LM in all 15 combinations (Figure 10, right panel).

However, from combination number C02 and C04 to 15 (except number 7—C07), which have
at least one nighttime LST term in the combination, the performances of all three methods are good
(high correlation and low errors).

Another point is that in Dataset A, the different combinations of LST had a similar effect on all
three algorithms. However, in Dataset B, the different combinations of LST had a similar effect on RF
and CB but a significantly different effect on the LM algorithm. The largest difference was found in
Ta-min estimation, follow by Ta-mean and Ta-max estimation.

5. Conclusions

This study proved that the very high accuracy of Ta estimation (R2 > 0.93/0.80/0.89 and
RMSE ~1.5/2.0/1.6 ◦C of Ta-max, Ta-min, and Ta-mean, respectively) could be achieved with a simple
combination of four LST data, elevation, and Julian day data using a suitable algorithm.

Using Dataset B (MODIS LST, elevation, and Julian day) with RF or CB algorithms would give
a stable and high accuracy in all combinations (C01–C15). With the LM algorithm, the more LST terms
(especially LST nighttime) are presented the higher the accuracy that can be achieved.

The impact of the different combinations is larger in Dataset A than in Dataset B. However,
in Dataset B, this impact was also large when using the LM algorithm.

LST nighttime data of both AQUA and TERRA play an important role in daily Ta estimation,
guaranteeing higher accuracy. Depending on LST data availability, it could be used in any combination
from C02, C04, and C05 to C15 (except C07 and C09) to achieve the highest results solely with
MODIS LST using any of the three mentioned algorithms. However, when MODIS LST and auxiliary
(elevation and Julian day) are available, any combination (C01–C15) can be applied with the CB or
RF algorithm.

Among Ta-max, Ta-min, and Ta-mean, using Dataset A, Ta-mean was estimated with the highest
accuracy, followed by Ta-min and Ta-max. However, the difference between Ta-max and Ta-min was not
significant. Considering Dataset B, Ta-max was estimated with the highest accuracy, followed by Ta-mean

and Ta-min. This means that the highest improvement for Ta-max is made by introducing elevation and
Julian day data, followed by Ta-mean and Ta-min. However, the difference between Ta-max and Ta-mean

was not significant.
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Appendix A

Table A1. Parameters of LM models for Ta estimation using Dataset A.

Combination a0 a1 a2 a3 a4

Ta-min Estimation

C01 −0.4567 0.6037
C02 −0.2678 1.0020
C03 −1.1905 0.7170
C04 −1.7601 1.0184
C05 0.1561 −0.0656 1.0647
C06 −3.6700 0.0382 1.0329
C07 −4.1084 0.4906 0.2442
C08 −1.4168 1.0031 0.0277
C09 −2.1783 −0.0425 1.0769
C10 −2.2857 0.4799 0.5784
C11 −2.8733 −0.0336 0.0347 1.0349
C12 −2.4495 0.5464 −0.0378 0.5552
C13 −1.0977 −0.0344 0.9997 0.0496
C14 −0.5283 −0.1538 0.6645 0.5408
C15 −1.6045 −0.0714 0.6659 −0.0020 0.4556

Ta-max Estimation

C01 0.7418 0.9849
C02 8.4402 1.1748
C03 6.1865 0.9026
C04 5.8675 1.2125
C05 −0.0367 0.5587 0.7505
C06 4.3759 0.1263 1.1694
C07 −0.0708 1.0098 −0.0068
C08 8.5918 1.1432 0.0458
C09 −0.7751 0.4757 0.8778
C10 5.5651 0.3821 0.9083
C11 1.0850 0.5573 −0.2434 0.9824
C12 7.5080 0.4518 −0.1274 0.9481
C13 3.7089 0.6542 0.8513 −0.3246
C14 −1.1526 0.4704 0.3212 0.6027
C15 3.2723 0.5978 0.4074 −0.4465 0.7015

Ta-mean Estimation

C01 −0.3329 0.7579
C02 3.0973 1.0630
C03 0.9103 0.8154
C04 1.1378 1.0888
C05 −0.4702 0.2122 0.9074
C06 −1.6236 0.1523 1.0316
C07 −3.2005 0.6693 0.1964
C08 1.3821 1.0028 0.1121
C09 −2.2374 0.1935 0.9691
C10 0.7231 0.4639 0.6828
C11 −2.3500 0.2016 0.0036 0.9516
C12 −0.0214 0.5094 0.0377 0.6325
C13 −0.2995 0.2344 0.8818 −0.0172
C14 −1.5659 0.1396 0.5060 0.5450
C15 −1.1587 0.1968 0.5392 −0.0702 0.4952

a0 is the intercept of each model (combination), a1–a4 are parameters of LST variables with the same order as shown
in Table 2.
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Appendix B

Table A2. Parameters of LM models for Ta estimation using Dataset B.

Combination a0 a1 a2 a3 a4 Elevation Julian Day

Ta-min
Estimation

C01 4.1126 0.4728 −0.0029 0.0066
C02 0.3258 0.9505 −0.0008 0.0057
C03 3.1331 0.6298 −0.0042 0.0046
C04 −1.6854 0.9873 −0.0005 0.0050
C05 0.4293 −0.0318 0.9822 −0.0007 0.0050
C06 −4.5116 0.1075 0.9595 −0.0006 0.0053
C07 1.7992 0.0921 0.5553 −0.0041 0.0042
C08 −1.4452 0.9067 0.0887 −0.0009 0.0054
C09 −2.3238 0.0098 0.9868 −0.0007 0.0049
C10 −2.7464 0.4843 0.5678 −0.0003 0.0056
C11 −3.0229 −0.0266 0.1405 0.8891 −0.0011 0.0045
C12 −3.2945 0.5450 −0.0031 0.5286 −0.0003 0.0053
C13 −0.7924 −0.0512 0.8894 0.1366 −0.0010 0.0044
C14 −0.7538 −0.1054 0.6304 0.4971 −0.0005 0.0044
C15 −1.8881 −0.0530 0.6303 0.0650 0.3815 −0.0007 0.0041

Ta-max
Estimation

C01 10.4393 0.7387 −0.0043 0.0007
C02 18.4850 0.8308 −0.0045 −0.0048
C03 15.9842 0.7267 −0.0066 −0.0048
C04 13.5620 0.9526 −0.0032 −0.0040
C05 10.5450 0.4115 0.5496 −0.0038 −0.0010
C06 12.3927 0.3408 0.6526 −0.0044 −0.0055
C07 11.3235 0.3628 0.4616 −0.0058 −0.0027
C08 16.0125 0.5685 0.3214 −0.0052 −0.0056
C09 6.3793 0.4536 0.6361 −0.0031 −0.0007
C10 15.0605 0.3058 0.6539 −0.0038 −0.0045
C11 8.8810 0.2941 0.1853 0.5654 −0.0041 −0.0032
C12 15.3856 0.3071 0.2084 0.4250 −0.0048 −0.0060
C13 13.7642 0.1994 0.4982 0.2098 −0.0049 −0.0043
C14 8.8056 0.3859 0.2534 0.4067 −0.0037 −0.0008
C15 12.8016 0.2253 0.3015 0.1265 0.3065 −0.0047 −0.0044

Ta-mean
Estimation

C01 5.4211 0.6044 −0.0030 0.0035
C02 6.6191 0.9322 −0.0017 0.0003
C03 7.1288 0.6996 −0.0048 −0.0001
C04 3.4497 1.0007 −0.0011 0.0006
C05 2.4255 0.1864 0.8229 −0.0013 0.0016
C06 0.6160 0.2471 0.8388 −0.0016 0.0003
C07 4.1489 0.2239 0.5289 −0.0043 0.0007
C08 3.8781 0.7786 0.2243 −0.0020 −0.0002
C09 −0.5674 0.2103 0.8726 −0.0011 0.0019
C10 3.1115 0.4446 0.6126 −0.0011 0.0004
C11 −0.1692 0.1288 0.1705 0.7716 −0.0016 0.0009
C12 2.0954 0.4650 0.1490 0.4676 −0.0015 −0.0002
C13 2.9232 0.0875 0.7353 0.1781 −0.0019 0.0001
C14 0.6955 0.1371 0.4779 0.4833 −0.0011 0.0014
C15 1.5190 0.0943 0.4956 0.1184 0.3575 −0.0016 0.0001

a0 is the intercept of each model (combination), a1–a4 are parameters of LST variables with the same order as shown
in Table 2.
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