Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations
Abstract
:1. Introduction
2. Tectonic Background
3. InSAR Observations
4. Geodetic Modelling
4.1. The 23 January 2022 Hala Lake Earthquake
4.2. The 25 March 2022 Hala Lake Earthquake
5. Discussion
5.1. Relationship between the 7 January 2022 MW 6.7 Menyuan Earthquake and the January and March 2022 MW > 5.5 Hala Lake Earthquakes
5.2. Possible Causes for The Stop-Start Rupture of the Two Hala Lake Events
5.3. Regional Seismic Hazards Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Xu, C.; Wen, Y.; Xu, G. Complex coseismic and postseismic faulting during the 2021 northern Thessaly (Greece) earthquake sequence illuminated by InSAR observations. Geophys. Res. Lett. 2022, 49, e2022GL098545. [Google Scholar] [CrossRef]
- Walters, R.J.; Gregory, L.C.; Wedmore, L.N.; Craig, T.J.; McCaffrey, K.; Wilkinson, M.; Chen, J.; Li, Z.; Elliott, J.R.; Goodall, H.; et al. Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence. Earth Planet. Sci. Lett. 2018, 500, 1–14. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Cakir, Z.; Akoglu, A.M. Synthetic aperture radar interferometry observations of the M = 6.0 Orta earthquake of 6 June 2000 (NW Turkey): Reactivation of a listric fault. Geochem. Geophys. Geosyst. 2008, 9, Q08009. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wang, S.; Wang, X. Sentinel-1 observation of 2019 Mw 5.7 Acıpayam earthquake: A blind normal-faulting event in the Acipayam basin, southwestern Turkey. J. Geodyn. 2020, 135, 101707. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wen, Y. The 2019 Mw 5.9 Torkaman chay earthquake in Bozgush mountain, NW Iran: A buried strike-slip event related to the sinistral Shalgun-Yelimsi fault revealed by InSAR. J. Geodyn. 2020, 141, 101798. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wen, Y.; Xu, G. The July 2020 M w 6.3 Nima Earthquake, Central Tibet: A Shallow Normal-Faulting Event Rupturing in a Stepover Zone. Seismol. Res. Lett. 2022, 93, 45–55. [Google Scholar] [CrossRef]
- Xu, X.W.; Tan, X.B.; Yu, G.H.; Wu, G.D.; Fang, W.; Chen, J.B.; Song, H.P.; Shen, J. Normal-and oblique-slip of the 2008 Yutian earthquake: Evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics 2013, 584, 152–165. [Google Scholar] [CrossRef]
- Yuan, D.Y.; Champagnac, J.D.; Ge, W.P.; Molnar, P.; Zhang, P.Z.; Zheng, W.J.; Zhang, H.P.; Liu, X.W. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau. Bulletin 2011, 123, 2016–2030. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; He, W.G.; Yuan, D.Y.; Shao, Y.X.; Zheng, D.W.; Ge, W.P.; Wei, M. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Jian, H.Z.; Wang, L.F.; Ren, Z.K.; Gong, W.Y.; LI, Y.C.; LIU, J.R. Present-day slip rate and interseismic fault coupling along the Elashan fault using GPS. Chin. J. Geophys. 2020, 63, 1127–1142. [Google Scholar]
- Pan, Z.; Yun, Z.; Shao, Z. Contemporary crustal deformation of Northeast Tibet from geodetic investigations and a comparison between the seismic and geodetic moment release rates. Phys. Earth Planet. Inter. 2020, 304, 106489. [Google Scholar] [CrossRef]
- Wen, Y.; Li, Z.; Xu, C.; Ryder, I.; Bürgmann, R. Postseismic motion after the 2001 MW 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J. Geophys. Res. Solid Earth 2012, 117, B08405. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Li, Y.; Shen, W.; He, Z.; Li, B.; Li, Q.; Jiao, Q.; Tian, Y. Coseismic Rupture Model and Tectonic Implications of the January 7 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation. Remote Sens. 2022, 14, 2111. [Google Scholar] [CrossRef]
- Gan, C.; Ming, A.; Wenjun, Z.; Haiyun, B.; Jinrui, L.; Yipeng, Z.; Weipeng, G.; Dongli, Z.; Rong, H. Nonrigid Bookshelf Kinematics of Northeastern Tibet: Constrains from Fault Slip Rates around the Qinghai Lake and Chaka-Gonghe Basins. Lithosphere 2021, 2021, 4115729. [Google Scholar] [CrossRef]
- Cheng, F.; Zuza, A.V.; Haproff, P.J.; Wu, C.; Neudorf, C.; Chang, H.; Li, X.; Li, B. Accommodation of India–Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold–thrust belt, northern margin of the Tibetan Plateau. J. Geol. Soc. 2021, 178, jgs2020-20. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000; Volume 1620, p. 1620. [Google Scholar]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 support in the GAMMA software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1998, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res. Solid Earth 2007, 112, B03403. [Google Scholar] [CrossRef] [Green Version]
- Funning, G.J.; Parsons, B.; Wright, T.J.; Jackson, J.A.; Fielding, E.J. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. J. Geophys. Res. Solid Earth 2005, 110, B09406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar]
- Fattahi, H.; Amelung, F. DEM error correction in InSAR time series. IEEE Trans. Geosci. Rem. Sens. 2013, 51, 4249–4259. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys. Res. Lett. 2016, 43, 8399–8406. [Google Scholar] [CrossRef] [Green Version]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosystems 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z.H. The 2011 MW 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Tablebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef] [Green Version]
- Symithe, S.J.; Calais, E.; Haase, J.S.; Freed, A.M.; Douilly, R. Coseismic slip distribution of the 2010 M 7.0 Haiti earthquake and resulting stress changes on regional faults. Bull. Seismol. Soc. Am. 2013, 103, 2326–2343. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.; Stein, R.S.; Simpson, R.W. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. J. Geophys. Res. Solid Earth 1999, 104, 20183–20202. [Google Scholar] [CrossRef] [Green Version]
- Freed, A.M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 2005, 33, 335–367. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.S.; King, G.C.; Lin, J. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake. Science 1992, 258, 1328–1332. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo-Martin, F.; Roth, F. PSGRN/PSCMP—A new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Biasi, G.P.; Wesnousky, S.G. Steps and gaps in ground ruptures: Empirical bounds on rupture propagation. Bull. Seismol. Soc. Am. 2016, 106, 1110–1124. [Google Scholar] [CrossRef]
- Zhang, P.; Slemmons, D.B.; Mao, F. Geometric pattern, rupture termination and fault segmentation of the Dixie Valley-Pleasant Valley active normal fault system, Nevada, USA. J. Struct. Geol. 1991, 13, 165–176. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Xiu, W.; Zhang, B.; Zhang, G.; Liu, P. Characteristics of the seismogenic faults in the 2018 Lombok, Indonesia, earthquake sequence as revealed by inversion of InSAR measurements. Seismol. Res. Lett. 2020, 91, 733–744. [Google Scholar] [CrossRef]
- Hubert, A.; King, G.; Armijo, R.; Meyer, B.; Papanastasiou, D. Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence. Earth Planet. Sci. Lett. 1996, 142, 573–585. [Google Scholar] [CrossRef] [Green Version]
- King, G.C.P.; Cocco, M. Fault interaction by elastic stress changes: New clues from earthquake sequences. Adv. Geophys. 2001, 44, 1–38. [Google Scholar]
- Kroll, K.A.; Richards-Dinger, K.B.; Dieterich, J.H.; Cochran, E.S. Delayed seismicity rate changes controlled by static stress transfer. J. Geophys. Res. Solid Earth 2017, 122, 7951–7965. [Google Scholar] [CrossRef]
- Salman, R.; Lindsey, E.O.; Lythgoe, K.H.; Bradley, K.; Muzli, M.; Yun, S.H.; Chin, S.T.; Tay, C.J.; Costa, F.; Wei, S.J.; et al. Cascading partial rupture of the Flores thrust during the 2018 Lombok earthquake sequence, Indonesia. Seismol. Res. Lett. 2020, 91, 2141–2151. [Google Scholar] [CrossRef]
- Ravilious, K. Data hint at quake forecasts Italian-earthquake analysis suggests possibility of predicting aftershocks of some quakes. Nature 2018, 562, 470–471. [Google Scholar] [CrossRef] [Green Version]
- Ziv, A.; Rubin, A.M. Static stress transfer and earthquake triggering: No lower threshold in sight? J. Geophys. Res. Solid Earth 2000, 105, 13631–13642. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Toda, S.; Faure Walker, J.P.; Roberts, G.P. Evaluating models of Coulomb stress transfer: Is variable fault geometry important? Geophys. Res. Lett. 2016, 43, 12407–12414. [Google Scholar] [CrossRef]
Model | Lon/° | Lat/° | Strike/° | Dip/° | Rake/° | Length/km | Depth/km | Slip/m | MW |
---|---|---|---|---|---|---|---|---|---|
USGS | 97.34 | 38.46 | 171 | 60 | −168 | - | 10 | - | 5.6 |
GCMT | 97.39 | 38.52 | 169 | 74 | −173 | - | 18.4 | - | 5.6 |
U-S-model | 5.53 |
Model | Lon/° | Lat/° | Strike/° | Dip/° | Rake/° | Length/km | Depth/km | Slip/m | MW |
---|---|---|---|---|---|---|---|---|---|
USGS | 97.29 | 38.54 | 352 | 90 | 172 | - | 10 | - | 5.7 |
GCMT | 97.34 | 38.54 | 173 | 87 | −174 | - | 21.1 | - | 5.8 |
U-S-model | 87 (Fixed) | 5.71 |
Satellite | Track | Reference Date | Repeat Date | Perp. B (m) | Inc. Angle | Azi. Angle |
---|---|---|---|---|---|---|
Sentinel-1A | T99A | 15 January 2022 | 27 January 2022 | −13.1 | 36.9 | −10.3 |
Sentinel-1A | T4D | 8 January 2022 | 1 February 2022 | 15.7 | 36.9 | −169.7 |
Satellite | Track | Reference Date | Repeat Date | Perp. B (m) | Inc. Angle | Azi. Angle |
---|---|---|---|---|---|---|
Sentinel-1A | T99A | 16 March 2022 | 28 March 2022 | −96.6 | 36.9 | −10.3 |
Sentinel-1A | T4D | 21 March 2022 | 2 April 2022 | 51.2 | 36.9 | −169.7 |
Satellite | Track | Reference Date | Repeat Date | Perp. B (m) | Inc. Angle | Azi. Angle |
---|---|---|---|---|---|---|
Sentinel-1A | T99A | 15 January 2022 | 28 March 2022 | −86.9 | 36.9 | −10.3 |
Sentinel-1A | T4D | 8 January 2022 | 2 April 2022 | 80.2 | 36.9 | −169.7 |
Satellite | Track | Reference Date | Date Due | No. of Images | Used Interferograms |
---|---|---|---|---|---|
Sentinel-1A | T99A | 27 January 2022 | 16 March 2022 | 5 | 10 |
Sentinel-1A | T4D | 1 February 2022 | 21 March 2022 | 5 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xu, C.; Wen, Y. Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations. Remote Sens. 2023, 15, 1124. https://doi.org/10.3390/rs15041124
Yang J, Xu C, Wen Y. Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations. Remote Sensing. 2023; 15(4):1124. https://doi.org/10.3390/rs15041124
Chicago/Turabian StyleYang, Jiuyuan, Caijun Xu, and Yangmao Wen. 2023. "Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations" Remote Sensing 15, no. 4: 1124. https://doi.org/10.3390/rs15041124
APA StyleYang, J., Xu, C., & Wen, Y. (2023). Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations. Remote Sensing, 15(4), 1124. https://doi.org/10.3390/rs15041124