Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Methodological Workflow
2.2. Study Area
2.2.1. Identification of Study Villages and Sub-basins
2.2.2. Characteristics of Study Area
2.3. Satellite Imagery and Data Processing
2.3.1. PlanetScope Smallsat Constellation Datasets
2.3.2. Identification of Rapid Development of a Coexisting Mining Site
2.3.3. Estimation of Riverbank Erosion
2.4. Correlation among Landcover Transformation, Precipitation, River Extent, and Riverbank Erosion
3. Results
3.1. Potentially Toxic Element Contamination in Study Area
3.2. Time Series Landcover Transformations of a Coexisting Mining Site
3.3. Time Series Riverbank Erosion of Bone River
3.4. Changes in Precipitation Amount and Disasters That Occurred in the Study Area
4. Discussion
4.1. Potentially Toxic Element Contamination in the Study Area
4.2. Time Series Analysis of a Coexisting Mining Site
4.3. Time Series Analysis of Riverbank Erosion
4.4. Enhanced Potentially Toxic Element Contaminations from the Rapid Development of Coexisting Gold Mining Operations Combined with Riverbank Erosion
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Banik, C.; He, Z. The impact of heavy metal contamination on soil health. Manag. Soil Health Sustain. Agric. 2018, 2, 63–95. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; Volume 2. [Google Scholar]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar]
- Roy, M.; McDonald, L.M. Metal Uptake in Plants and Health Risk Assessments in Metal-Contaminated Smelter Soils. Land Degrad. Dev. 2013, 25, 785–792. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils, 2nd ed.; Springer: London, UK; Dordrecht, The Netherlands, 1995. [Google Scholar]
- World Health Organization. Artisanal and Small-Scale Gold Mining and Health; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ajeel, M.A.; Ajeel, A.A.; Nejres, A.M.; Salih, R.A. Assessment of Heavy Metals and Related Impacts on Antioxidants and Physiological Parameters in Oil Refinery Workers in Iraq. J. Health Pollut. 2021, 11, 210907. [Google Scholar] [CrossRef]
- Young, S.; Balluz, L.; Malilay, J. Natural and technologic hazardous material releases during and after natural disasters: A review. Sci. Total. Environ. 2004, 322, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Förstner, U.; Salomons, W. Mobilization of Metals from Sediments in Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, 2nd ed.; Wiley-VCH: Weinheim, Germany, 1991. [Google Scholar]
- Adamo, P.; Arienzo, M.; Imperato, M.; Naimo, D.; Nardi, G.; Stanzione, D. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 2005, 61, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.; Nicolli, H.; Macdonald, D.; Barros, A.; Tullio, J. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem. 2002, 17, 259–284. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of Bone river by ASGM activities in Eastern part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Komatsu, S.; Sano, S.; Sera, K. Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 530. [Google Scholar] [CrossRef]
- Basir, S.; Kimijima, M.; Sakakibara, M.; Pateda, S.M.; Sera, K. Contamination Level in Geo-Accumulation Index of River Sediments at Artisanal and Small-Scale Gold Mining Area in Gorontalo Province, Indonesia. Int. J. Environ. Res. Public Health 2022, 19, 6094. [Google Scholar] [CrossRef]
- World Bank. Working Together: How Large-Scale Mining Can Engage with Artisanal and Small-Scale Miners; World Bank: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M.; Gafur, N.A. Time-Series Assessment of Camp-Type Artisanal and Small-Scale Gold Mining Sectors with Large Influxes of Miners Using LANDSAT Imagery. Int. J. Environ. Res. Public Health 2021, 18, 9441. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Detection of Artisanal and Small-Scale Gold Mining Activities and Their Transformation Using Earth Observation, Nighttime Light, and Precipitation Data. Int. J. Environ. Res. Public Health 2021, 18, 10954. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Characterizing Time-Series Roving Artisanal and Small-Scale Gold Mining Activities in Indonesia Using Sentinel-1 Data. Int. J. Environ. Res. Public Health 2022, 19, 6266. [Google Scholar] [CrossRef]
- Kimijima, S.; Sakakibara, M.; Nagai, M. Investigation of Long-Term Roving Artisanal and Small-Scale Gold Mining Activities Using Time-Series Sentinel-1 and Global Surface Water Datasets. Int. J. Environ. Res. Public Health 2022, 19, 5530. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M. Monitoring Coexisting Rapid Small-Scale and Large-Scale Gold Mining Developments Using Planet Smallsats Constellations. Mining 2022, 2, 566–577. [Google Scholar] [CrossRef]
- United Nations Environment Programmet. Technical Background Report to the Global Mercury Assessment 2018; United Nations Environment Programme: Tromsø, Norway, 2018. [Google Scholar]
- Eisler, R.; Wiemeyer, S.N. Cyanide hazards to plants and animals from gold mining and related water issues. Rev. Environ. Contam. Toxicol. 2004, 183, 21–54. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality. Graphics, 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1&isAllowed=y#page=29 (accessed on 1 December 2022).
- U.S. Environmental Protection Agency. Clean Water Act: Section 503; U.S. Environmental Protection Agency: Washington, DC, USA, 1993; Volume 58. [Google Scholar]
- Palapa, T.M.; Maramis, A.A. Heavy Metals in Water of Stream Near an Amalgamation Tailing Ponds in Talawaan—Tatelu Gold Mining, North Sulawesi, Indonesia. Procedia Chem. 2015, 14, 428–436. [Google Scholar] [CrossRef]
- Persaud, D.; Jaagumagi, R.; Hayton, A. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario; Ministry of Environment and Energy: Toronto, ON, Canada, 1993. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, Volume 1—National Sediment Quality Survey; U.S. Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Ontario Ministry of Environment Conservation and Parks. Rules for Soil Management and Excess Soil Quality Standards; Ontario Ministry of Environment Conservation and Parks: Toronto, ON, Canada, 2020. [Google Scholar]
- Kimijima, S.; Sakakibara, M.; Amin, A.; Nagai, M.; Arifin, Y.I. Mechanism of the Rapid Shrinkage of Limboto Lake in Gorontalo, Indonesia. Sustainability 2020, 12, 9598. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M.; Sakakibara, M.; Jahja, M. Investigation of Cultural–Environmental Relationships for an Alternative Environmental Management Approach Using Planet Smallsat Constellations and Questionnaire Datasets. Remote Sens. 2022, 14, 4249. [Google Scholar] [CrossRef]
- PT Bumi Resources Minerals Tbk. New Face New Direction. 2017. Available online: https://bumiresourcesminerals.com/wp-content/uploads/2020/11/brm_2017_annual_report-min2.pdf (accessed on 1 December 2022).
- Google Earth Engine. 2022. Available online: https://code.earthengine.google.co.in (accessed on 1 December 2022).
- Japan International Cooperation Agency. Summary: The Study on Flood Control and Water Management in Limboto-Bolango-Bone Basin; Final Report Volume-II Main Report; Japan International Cooperation Agency: Tokyo, Japan, 2002. [Google Scholar]
- The ASEAN Disaster Information Network. SEARCH. 2022. Available online: https://adinet.ahacentre.org/ (accessed on 1 December 2022).
- Japan International Cooperation Agency. The Study on Flood Control and Water Management Limboto-Bolango-Bone Basin in the Republic of Indonesia Volume-III Supporting Report: Part-A Existing Conditions; Japan International Cooperation Agency: Tokyo, Japan, 2002. [Google Scholar]
- Japan International Cooperation Agency. The Study on Flood Control and Water Management in Limboto-Bolango-Bone Basin in The Republic of Indonesia Final Report Volume-1 Summary; Japan International Cooperation Agency: Tokyo, Japan, 2002; p. D1-1. [Google Scholar]
- Planet Labs. Planet Explore. 2022. Available online: https://www.planet.com/expl (accessed on 1 December 2022).
- Planet Labs. PlanetScope. 2022. Available online: https://developers.planet.com/docs/data/planetscope/#:~:text=lastupdated%3AJune01%2C2022,200millionkm2%2Fday (accessed on 1 December 2022).
- Harrison, N.; Mascaro, J. Access to Planet High Spatial and Temporal Resolution Earth Observation Imagery via the NASA Commercial Smallsat Data Acquisition (CSDA) Program. 2021. Available online: https://www.hou.usra.edu/meetings/planetdata2021/pdf/7107.pdf (accessed on 1 December 2022).
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote. Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Planet Labs. Understanding PlanetScope Instruments. 2022. Available online: https://developers.planet.com/docs/apis/data/sensors/ (accessed on 1 December 2022).
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Taylor, M.P.; Stokes, R. When is a River not a River? Consideration of the legal definition of a river for geomorphologists practising in New South Wales, Australia. Aust. Geogr. 2005, 36, 183–200. [Google Scholar] [CrossRef]
- Vidal-Abarca, M.; Gómez, R.; Sánchez-Montoya, M.; Arce, M.; Nicolás, N.; Suárez, M. Defining Dry Rivers as the Most Extreme Type of Non-Perennial Fluvial Ecosystems. Sustainability 2020, 12, 7202. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency. Basic Surveys and Studies; Japan International Cooperation Agency: Tokyo, Japan, 2002. [Google Scholar]
- Japanese International Cooperation Agency. Indonesian Profile of Environmental and Social Considerations: Environmental Management Act 1995. September 2011. Available online: https://openjicareport.jica.go.jp/pdf/12040044.pdf (accessed on 1 December 2022).
- Republic of Indonesia. Republic of Indonesia Government Regulation 82 on Water Quality Management and Water Pollution Control; Republic of Indonesia: Jakarta, Indonesia, 2011. [Google Scholar]
- Xie, Z.M.; Lu, S.G. Trace elements and environmental quality. In Micronutrients and Biohealth; Guizhou Sci Technol Press: Guiyan, China, 2000. [Google Scholar]
- Alloway, B.J.; Jackson, A.P. The behaviour of heavy metals in sewage sludge-amended soils. Sci. Total. Environ. 1991, 100, 151–176. [Google Scholar] [CrossRef]
- KONTAN. Gorontalo Minerals Immediately Implements Gold Mine Development. 2022. Available online: https://industri.kontan.co.id/news/gorontalo-minerals-segera-melaksanakan-pengembangan-tambang-emas (accessed on 1 December 2022).
- Yankson, P.W.; Gough, K.V. Gold in Ghana: The effects of changes in large-scale mining on artisanal and small-scale mining (ASM). Extr. Ind. Soc. 2019, 6, 120–128. [Google Scholar] [CrossRef]
- Caretta, M.A.; Fernandez, R.; Zegre, N.; Shinn, J. Flooding Hazard and Vulnerability. An Interdisciplinary Experimental Approach for the Study of the 2016 West Virginia Floods. Front. Water 2021, 3, 60. [Google Scholar] [CrossRef]
- Zégre, N.P.; Maxwell, A.; Lamont, S. Characterizing streamflow response of a mountaintop-mined watershed to changing land use. Appl. Geogr. 2013, 39, 5–15. [Google Scholar] [CrossRef]
- Kimijima, S.; Nagai, M. Rapid Lake Shrinkage Associated High-Spatiotemporal Flood Monitoring using Planet Smallsat Constellation and Sentinel-1 Datasets. Remote Sens. 2023. [Google Scholar]
Coexisting Mining Area | Bone River Area | ||
---|---|---|---|
Acquisition Date | Instrument | Acquisition Date | Provider/Instrument |
10 August 2019 | Dove-R | 3 September 2002 | Maxar Technologies |
13 April 2020 | Dove-R | 1 July 2012 | |
11 November 2020 | SuperDove | 19 February 2016 | |
29 January 2021 | 31 May 2017 | Dove-C | |
9 June 2021 | 28 October 2017 | ||
31 January 2022 | 23 February 2018 | ||
3 June 2022 | 27 September 2018 | ||
2, 7 March 2019 | |||
25 September 2019 | Dove-R | ||
12, 13 April 2020 | |||
11 November 2020 | SuperDove | ||
6 May 2021 | |||
24 October 2021 | |||
12 March 2022 | |||
2 August 2022 |
Sample | As | Hg | Pb | pH | Reference | ||
---|---|---|---|---|---|---|---|
Water | Reported Range | Mining site 2018 | 66–118 | 176–489 | 22–135 | 1.96–4.00 | [18] |
(μg L−1) | Bone River 2018 | 103–82,500 | 16–2080 | 18–1670 | 7.53–7.82 | [18] | |
Water Quality | WHO 1 2022 | 10 | 6 | 10 | 6.5–8.0 | [29] | |
Guidelines | US-EPA 1 1993 | 10 | 2 | 15 | 6.5–8.5 | [30] | |
(QGs) | IWQI 1 2001 | 50 | 1 | 30 | 6.0–9.0 | [53,54] | |
Sediment | Reported Range | Mining site 2018 | 27,000–62,100 | ND–790 | 843–2660 | [18] | |
(mg kg−1) | Bone River 2018 | 4.6–120,000 | ND–57.9 | 24.1–10,700 | [18] | ||
Bone River 2018-2019 | 15.9–798 | 9.5–86.3 | 58.2–645 | [20] | |||
Sediment QGs | Persaud et al. (1993): LEL | 6 | 0.2 | 31 | [32] | ||
SEL | 33 | 2 | 250 | [32] | |||
US-EPA (1997): TEL | 7.24 | 0.013 | 30.2 | [33] | |||
PEL | 41.6 | 0.696 | 112 | [33] | |||
MacDonald et al. (2000): TEC | 9.79 | 0.18 | 35.8 | [34] | |||
PEC | 33 | 1.06 | 128 | [34] | |||
Soil | Reported Range | Bone River (2018) | 0–36,500 | 0–36 | 8–11,400 | [19] | |
(mg kg−1) | Soil QGs | ERO (2000): Agricultural | 11 | 0.24 | 45 | [35] | |
Residential | 18 | 0.27 | 120 | [35] | |||
Industrial | 18 | 0.27 | 250 | [35] | |||
Metal-rich Soils | 250–2500 | 10–100 | >1% | [3,55] |
River Extents (km2) | Eroded Extents (km2) | Eroded Volumes (m3) | |
---|---|---|---|
September 2002 | 2.13 | - | - |
July 2012 | 2.09 | 0.66 | 859,003.35 |
December 2016 | 2.23 | 0.31 | 408,713.59 |
May 2017 | 1.78 | 0.10 | 128,724.72 |
October 2017 | 2.15 | 0.38 | 489,717.59 |
February 2018 | 2.13 | 0.01 | 15,316.75 |
September 2018 | 2.15 | 0.03 | 38,461.11 |
March 2019 | 2.21 | 0.06 | 73,957.46 |
September 2019 | 2.22 | 0.02 | 24,534.75 |
April 2020 | 2.19 | 0.01 | 19,068.75 |
November 2020 | 3.18 | 1.01 | 1,307,705.23 |
May 2021 | 3.16 | 0.01 | 18,424.66 |
October 2021 | 3.14 | 0.02 | 29,230.93 |
March 2022 | 2.99 | 0.00 | - |
August 2022 | 2.96 | 0.02 | 23,280.54 |
Total | 3,436,139.40 |
Year | Type | Number of Occurrences | River | Affected Population | Damaged Houses |
---|---|---|---|---|---|
2012 | Flood | 2 | Bone Raya | 1236 | 63–211 |
2013 | Flood | 2 | Bone | 145–611 | 77–90 |
2014 | Flood | 1 | Bone | 574 | NA |
2017 | Flood | 1 | Bone | 10,350 | 499 |
2018 | Flood | 1 | Bolango | 1540 | NA |
2020 | Landslide, Flood | 4 | Bone and Bolango | 1321–9301 | NA |
2021 | Landslide, Flood | 3 | Bone | 238–1231 | 60–376 |
2022 | Landslide, Flood | 5 | Bone | 342–3166 | 106–901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimijima, S.; Nagai, M.; Sakakibara, M. Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations. Remote Sens. 2023, 15, 861. https://doi.org/10.3390/rs15030861
Kimijima S, Nagai M, Sakakibara M. Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations. Remote Sensing. 2023; 15(3):861. https://doi.org/10.3390/rs15030861
Chicago/Turabian StyleKimijima, Satomi, Masahiko Nagai, and Masayuki Sakakibara. 2023. "Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations" Remote Sensing 15, no. 3: 861. https://doi.org/10.3390/rs15030861
APA StyleKimijima, S., Nagai, M., & Sakakibara, M. (2023). Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and Coexisting Gold Mining Activities Using Planet Smallsat Constellations. Remote Sensing, 15(3), 861. https://doi.org/10.3390/rs15030861