Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm
Abstract
:1. Introduction
2. Mission Design
2.1. CubeSat Design
2.2. Target Areas
2.3. Constellation Design
3. Problem and Optimization Formulation
3.1. Problem Statement
3.2. Objective Functions Formulation
3.3. Multi-Objective Genetic Algorithm
4. Simulation Results and Discussion
4.1. Simulation Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lazreg, N.; Ben Bahri, O.; Besbes, K. Analysis and design of Cubesat constellation for the Mediterranean south costal monitoring against illegal immigration. Adv. Sp. Res. 2018, 61, 1017–1024. [Google Scholar] [CrossRef]
- Cappelletti, C.; Robson, D. 2—CubeSat Missions and Applications. In Cubesat Handbook; Cappelletti, C., Battistini, S., Malphrus, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 53–65. [Google Scholar] [CrossRef]
- Villela, T.; Costa, C.A.; Brandão, A.M.; Bueno, F.T.; Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. Int. J. Aerosp. Eng. 2019, 2019, 5063145. [Google Scholar] [CrossRef]
- Buzzi, P.G.; Selva, D.; Hitomi, N.; Blackwell, W.J. Assessment of Constellation Designs for Earth Observation: Application to the TROPICS Mission. Acta Astronaut. 2019, 161, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chen, W.; Cao, C.; Zhang, C.; Mu, Z. A Multiple-CubeSat Constellation for Integrated Earth Observation and Marine/Air Traffic Monitoring. Adv. Sp. Res. 2021, 67, 3712–3724. [Google Scholar] [CrossRef]
- Saeed, N.; Elzanaty, A.; Almorad, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.-S. CubeSat Communications: Recent Advances and Future Challenges. IEEE Commun. Surv. Tut. 2020, 22, 1839–1862. [Google Scholar] [CrossRef]
- Santilli, G.; Vendittozzi, C.; Cappelletti, C.; Battistini, S.; Gessini, P. CubeSat constellations for disaster management in remote areas. Acta Astronaut. 2018, 145, 11–17. [Google Scholar] [CrossRef]
- Chadalavada, P.; Dutta, A. Regional CubeSat Constellation Design to Monitor Hurricanes. IEEE Trans. Geosci. Remote 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Goncharenko, Y.v.; Berg, W.; Reising, S.C.; Iturbide-Sanchez, F.; Chandrasekar, V. Design and Analysis of CubeSat Microwave Radiometer Constellations to Observe Temporal Variability of the Atmosphere. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2021, 14, 11728–11736. [Google Scholar] [CrossRef]
- Meziane-Tani, I.; Métris, G.; Lion, G.; Deschamps, A.; Bendimerad, F.T.; Bekhti, M. Optimization of small satellite constellation design for continuous mutual regional coverage with multi-objective genetic algorithm. Int. J. Comput. Intell. Syst. 2016, 9, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wang, L.; Fu, W.; Zhou, H.; Li, T.; Xu, B.; Chen, R. LEO Navigation Augmentation Constellation Design with the Multi-Objective Optimization Approaches. Chinese J. Aeronaut. 2021, 34, 265–278. [Google Scholar] [CrossRef]
- Yan, D.; Liu, C.; You, P.; Shaowei, Y. Multi-objective optimization design of extended Walker constellation for global coverage services. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1309–1313. [Google Scholar] [CrossRef]
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Zhu, P.; Guo, J. Star of AOXiang: An innovative 12U CubeSat to demonstrate polarized light navigation and microgravity measurement. Acta Astronaut. 2018, 147, 97–106. [Google Scholar] [CrossRef]
- Guzmán, R.; López, R.; Ocerin Martínez, E.; Davis, S.; Hernani, J.T.; Brennan-Craddock, R.; Kellerman, N.; Pastena, M.; Melega, N.; Mariani, F. A compact multispectral imager for the MANTIS mission 12U CubeSat. In Proceedings of the CubeSats and SmallSats for Remote Sensing IV; Norton, C.D., Pagano, T.S., Babu, S.R., Eds.; SPIE: Bellingham, DC, USA, 2020; p. 5. [Google Scholar]
- IFRC World Disasters Report—Leaving No One Behind; International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2018; ISBN 9782970128908.
- Cornara, S.; Beech, T.W.; Belló-Mora, M.; Janin, G. Satellite constellation mission analysis and design. Acta Astronaut. 2001, 48, 681–691. [Google Scholar] [CrossRef]
- Ma, D.M.; Hong, Z.C.; Lee, T.H.; Chang, B.J. Design of a micro-satellite constellation for communication. Acta Astronaut. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Whittecar, W.R.; Ferringer, M.P. Global coverage constellation design exploration using evolutionary algorithms. AIAA/AAS Astrodyn. Spec. Conf. 2014, 2014, 1–20. [Google Scholar] [CrossRef]
- Kak, A.; Akyildiz, I.F. Designing Large-Scale Constellations for the Internet of Space Things With CubeSats. IEEE Internet Things J. 2021, 8, 1749–1768. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Ferringer, M.P.; Spencer, D.B. Satellite constellation design tradeoffs using multiple-objective evolutionary computation. J. Spacecr. Rockets 2006, 43, 1404–1411. [Google Scholar] [CrossRef]
- Savitri, T.; Kim, Y.; Jo, S.; Bang, H. Satellite Constellation Orbit Design Optimization with Combined Genetic Algorithm and Semianalytical Approach. Int. J. Aerosp. Eng. 2017, 2017, 1235692. [Google Scholar] [CrossRef] [Green Version]
- Pu, M.; Wang, J.; Zhang, D.; Jia, Q.; Shao, X. Optimal small satellite orbit design based on robust multi-objective optimization method. Aerosp. Sci. Technol. 2017, 70, 339–350. [Google Scholar] [CrossRef]
- Vallado, D.A.; MacClain, W.D. Fundamentals of Astrodynamics and Applications; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Bate, R.R.; Mueller, D.D.; White, J.E. Fundamentals of Astrodynamics; Dover Publications: Mineola, NY, USA, 1971. [Google Scholar]
- Wekerle, T.; Pessoa Filho, J.B.; da Costa, L.E.V.L.; Trabasso, L.G. Status and Trends of Smallsats and Their Launch Vehicles—An Up-to-Date Review. J. Aerosp. Technol. Manag. 2017, 9, 269–286. [Google Scholar] [CrossRef]
Subsystem | Description |
---|---|
Structure | Mass: 24 kg |
Size: 226mm × 226mm × 340mm | |
ADCS | High performance up to 0.01° pointing accuracy |
Power | 90 Wh |
Communication | S-Band: 1 Mbps |
X-Band: 150 Mbps | |
Payload | EOC: Conic sensor FOV angle of 30° |
UHF receiver: COTS dipole antenna at 436 MHz |
Optimization Parameter | Range | Unit | |
---|---|---|---|
Regional | Multi-Mission | ||
Altitude | 400, 450, 500 | 450 | km |
Inclination | 40 | 40–90 | deg. |
Number of orbital planes | 2–10 | 2–10 | – |
Number of sat per plane | 2–10 | 2–10 | – |
No. | N (P,S) | inclination (deg) | Regional ART (h) | Global ART (h) | Coverage (%) |
---|---|---|---|---|---|
1 | 4 (2,2) | 45 | 3.93 | 13.91 | 70.79 |
2 | 4 (2,2) | 47 | 4.06 | 14.07 | 77.78 |
3 | 4 (2,2) | 53 | 4.48 | 14.87 | 83.92 |
4 | 4 (2,2) | 58 | 4.75 | 15.79 | 89.14 |
5 | 4 (2,2) | 64 | 4.9 | 16.43 | 93.38 |
6 | 4 (2,2) | 70 | 5.1 | 17.21 | 96.61 |
7 | 4 (2,2) | 76 | 5.25 | 18.5 | 97.81 |
8 | 4 (2,2) | 79 | 5.29 | 17.92 | 98.34 |
9 | 4 (2,2) | 89 | 5.38 | 17.55 | 99.93 |
10 | 6 (3,2) | 53 | 2.95 | 11.17 | 83.92 |
11 | 6 (3,2) | 59 | 3.19 | 11.65 | 89.14 |
12 | 6 (3,2) | 64 | 3.33 | 12.1 | 93.38 |
13 | 6 (3,2) | 72 | 3.53 | 12.81 | 96.43 |
14 | 6 (3,2) | 84 | 3.62 | 12.72 | 99.86 |
15 | 8 (2,4) | 40 | 1.82 | 7.1 | 70.79 |
16 | 8 (4,2) | 71 | 2.64 | 9.77 | 96.61 |
17 | 8 (4,2) | 80 | 2.72 | 10.18 | 98.77 |
18 | 12 (2,6) | 45 | 1.33 | 5.29 | 70.79 |
19 | 16 (8,2) | 49 | 1.08 | 4.61 | 77.78 |
20 | 20 (5,4) | 76 | 1.07 | 4.37 | 98.77 |
21 | 24 (4,6) | 88 | 1.17 | 3.68 | 99.93 |
22 | 27 (3,9) | 87 | 0.8 | 3.24 | 99.86 |
23 | 40 (5,8) | 61 | 0.47 | 2.03 | 89.14 |
24 | 54 (6,9) | 47 | 0.32 | 1.35 | 77.78 |
25 | 56 (7,8) | 53 | 0.29 | 1.31 | 83.92 |
26 | 63 (9,7) | 46 | 0.23 | 1.06 | 77.78 |
27 | 70 (10,7) | 66 | 0.32 | 1.27 | 93.38 |
28 | 72 (9,8) | 70 | 0.26 | 1.21 | 96.61 |
29 | 80 (10,8) | 42 | 0.15 | 0.77 | 70.79 |
30 | 81 (9,9) | 57 | 0.26 | 0.99 | 83.92 |
31 | 90 (9,10) | 42 | 0.15 | 0.7 | 70.79 |
32 | 90 (9,10) | 76 | 0.21 | 0.98 | 98.77 |
33 | 100 (10,10) | 41 | 0.13 | 0.6 | 70.79 |
34 | 100 (10,10) | 76 | 0.24 | 0.88 | 98.77 |
35 | 100 (10,10) | 77 | 0.24 | 0.88 | 98.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melaku, S.D.; Kim, H.-D. Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm. Remote Sens. 2023, 15, 1572. https://doi.org/10.3390/rs15061572
Melaku SD, Kim H-D. Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm. Remote Sensing. 2023; 15(6):1572. https://doi.org/10.3390/rs15061572
Chicago/Turabian StyleMelaku, Shimeles Demissie, and Hae-Dong Kim. 2023. "Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm" Remote Sensing 15, no. 6: 1572. https://doi.org/10.3390/rs15061572
APA StyleMelaku, S. D., & Kim, H. -D. (2023). Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm. Remote Sensing, 15(6), 1572. https://doi.org/10.3390/rs15061572