Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China
Abstract
:1. Introduction
2. Instrument and Channel Descriptions
3. Cross-Comparison Method
3.1. Data Processing
- In terms of spatial resolution matching, the original channel images are uniformly projected onto a 0.02° grid with equal latitudes and longitudes by using the nearest-neighbor interpolation method, and the differences in data are quantitatively compared at this resolution.
- For uniformity control, if the standard deviations of the TB values at a point and its eight adjacent points exceed 3 K, or the standard deviations of the reflectivity at the above points exceed 0.1, the data at the point and its eight adjacent points are removed.
- Regarding noise suppression, since the spatial positioning of the two sensors is difficult to be entirely consistent, there are some positioning biases, which may cause the uncertainty of comparison. In order to reduce the comparison uncertainty due to spatial positioning bias, we need to smooth the 0.02° grid data by taking the average value of the values at a point and its eight adjacent points as the data at this point.
3.2. Statistical Analysis
4. Results and Discussion
4.1. Comparative Analysis of the Overall Data
4.2. Comparative Analysis of Different Reflectivity or Brightness Temperature Data
4.3. Comparative Analysis in Different Regions
4.3.1. Study Regions
4.3.2. Comparative Analysis in Different Regions
4.4. Comparative Analysis of Different Underlying Surfaces
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Zheng, W.; Liu, C. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data. J. Nat. Disasters 2017, 26, 197–204. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, W.; Wu, S.; Liu, C.; Yan, H. Fire Monitoring Algorithm and Its Application on the Geo-Kompsat-2A Geostationary Meteorological Satellite. Remote Sens. 2022, 14, 2655. [Google Scholar] [CrossRef]
- Wang, X.; Tang, S.-H.; Cao, Z.-Q. Capability and latest progress of tropical cyclone monitoring over the Belt and Road area by FENGYUN meteorological satellites. J. Mar. Meteorol. 2020, 40, 10–18. [Google Scholar] [CrossRef]
- Gao, L.; Chen, L.; Li, J.; Li, C.-C.; Zhu, L. An improved dark target method for aerosol optical depth retrieval over China from Himawari-8. Atmos. Res. 2021, 250, 105399. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Xian, D.; Ke, L. Watching astronomy to observe time change—Exploring Fengyun Meteorological Satellites. Sci. Cult. Pop. Nat. 2021, 4, 8. [Google Scholar]
- Jang, J.-C.; Sohn, E.-H.; Park, K.-H. Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea. Remote Sens. 2022, 14, 1840. [Google Scholar] [CrossRef]
- Chung, S.-R.; Ahn, M.-H.; Han, K.-S.; Lee, K.-T.; Shin, D.-B. Meteorological Products of Geo-KOMPSAT 2A(GK2A) Satellite. Asia Pac. J. Atmos. Sci. 2020, 56, 185. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-Y.; Suh, M.-S. Development of a Land Surface Temperature Retrieval Algorithm from GK2A/AMI. Remote Sens. 2020, 12, 3050. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Yoshida, R. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Gu, M.; Oh, T.-H.; Kim, E.-K.; Yang, H.-J. Introduction of the Advanced Meteorological Imager of Geo-Kompsat-2a: In-Orbit Tests and Performance Validation. Remote Sens. 2021, 13, 1303. [Google Scholar] [CrossRef]
- Liang, X.-M.; Ignatov, A.; Kramar, M.; Yu, F.-F. Preliminary Inter-Comparison between AHI, VIIRS and MODIS Clear-Sky Ocean Radiances for Accurate SST Retrievals. Remote Sens. 2016, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.-F.; Wu, X.-Q. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands. Remote Sens. 2016, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D.-A. Radiometric consistency assessment of hyperspectral infrared sounders. Atmos. Meas. Tech. 2015, 8, 4831–4844. [Google Scholar] [CrossRef] [Green Version]
- He, X.-W.; Xu, N.; Feng, X.-H.; Hu, X.-Q.; Xu, H.-L.; Peng, Y. Assessing Radiometric Calibration of FY-4A/AGRI Thermal Infrared Channels Using CrIS and IASI. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Xie, L.-N.; Wu, S.; Chen, J.; Zheng, W.; Yan, H.; Xu, Z.-M. Cross-Comparison of channel parameters between FY-3E/MERSI-LL and Himawari-8/AHI in China. Int. J. Remote Sens. 2022, 43, 4663–4681. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Zhang, Y.; Lin, Y.; Li, X.-M.; Dou, C.-Y.; Jia, G.-S.; Si, Y.-D.; Zhang, L.-J. Evaluation of the Radiometric Calibration of FY4A-AGRI Thermal Infrared Data Using Lake Qinghai. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8040–8050. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.-L. Comparison Analysis between MWRI and AMSR-E Brightness Temperature Data over the Polar Region Ice Sheet. Remote Sens. Technol. Appl. 2014, 29, 752–760. [Google Scholar] [CrossRef]
- Tang, X.-T.; Chen, H.-H.; Guan, L.; Li, L.-L. Inter-calibration of FY-3B/MWRI and GCOM-W1/AMSR-2 brightness temperature over the Arctic. J. Remote Sens. 2020, 24, 1032–1044. [Google Scholar] [CrossRef]
- Hu, T.-X.; Zhao, T.-J.; Shi, J.-C.; Gu, J.-Z. Inter-calibration of AMSR-E and AMSR2 Brightness Temperature. Remote Sens. Technol. Appl. 2016, 31, 919–924. [Google Scholar] [CrossRef]
- Hewison, T.-J.; Wu, X.-Q.; Yu, F.-F.; Tahara, Y.; Hu, X.-Q.; Kim, D.; Koenig, M. GSICS inter-calibration of infrared channels of geostationary imagers using Metop/IASI. IEEEE Geosci. Remote Sens. 2013, 51, 1160–1170. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, R.-M.; Xiang, J.-Y.; Qin, G.-H. Spatial and temporal applicability of three precipitation products in the Yalong River basin. J. China Hydrol. 2020, 40, 14–21. [Google Scholar] [CrossRef]
Index | FY-4B/AGRI (China) | GK-2A/AMI (Republic of Korea) |
---|---|---|
Spatial resolution | 0.5–4 km | 0.5–2 km |
Temporal resolution | 15 min (full-disk) | 10 min (full-disk) |
Number of bands | 15 | 16 |
Channel Name | FY-4B/AGRI | GK-2A/AMI | ||
---|---|---|---|---|
Center Wavelengths | Resolution | Center Wavelengths | Resolution | |
VIR004 | 0.47 µm | 1 km | 0.47 µm | 1 km |
NR008 | 0.83 µm | 1 km | 0.86 µm | 1 km |
NR013 | 1.37 µm | 2 km | 1.38 µm | 2 km |
NR016 | 1.61 µm | 2 km | 1.63 µm | 2 km |
IR038 (H) | 3.75 H µm | 2 km | 3.80 µm | 2 km |
IR038 (L) | 3.75 L µm | 4 km | 3.80 µm | 2 km |
IR108 | 10.8 µm | 4 km | 10.5 µm | 2 km |
IR120 | 12.0 µm | 4 km | 12.3 µm | 2 km |
Channel Name | Linear Regression Equation | Bias | RMSE | R |
---|---|---|---|---|
VIR004 | AGRI = 1.0676 × AMI − 0.0030 | 0.50% | 0.76% | 0.9880 |
NR008 | AGRI = 1.0015 × AMI + 0.0060 | 0.62% | 1.04% | 0.9932 |
NR013 | AGRI = 1.1053 × AMI + 0.0106 | 1.13% | 1.16% | 0.9635 |
NR016 | AGRI = 1.1585 × AMI + 0.0082 | 1.69% | 1.88% | 0.9982 |
IR038 (H) | AGRI = 1.0012 × AMI − 0.7851 | −0.42 K | 0.87 K | 0.9971 |
IR038 (L) | AGRI = 1.0095 × AMI − 3.3593 | −0.54 K | 0.92 K | 0.9972 |
IR108 | AGRI = 1.0060 × AMI − 2.3216 | −0.57 K | 1.08 K | 0.9938 |
IR120 | AGRI = 1.0343 × AMI − 9.8259 | 0.11 K | 1.07 K | 0.9915 |
Code | Region | Latitudes | Longitudes |
---|---|---|---|
A | Northeast China | 50.89°N–42.19°N | 117.72°E–125.98°E |
B | Northwest China | 37.84°N–30.26°N | 103.45°E–111.37°E |
C | Huang-Huai region | 37.06°N–28.81°N | 112.93°E–122.63°E |
D | South China | 26.33°N–19.15°N | 105.69°E–112.59°E |
E | Southwest China | 28.50°N–20.51°N | 94.57°E–102.68°E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Wu, S.; Wu, R.; Chen, J.; Xu, Z.; Cao, L. Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China. Remote Sens. 2023, 15, 779. https://doi.org/10.3390/rs15030779
Xie L, Wu S, Wu R, Chen J, Xu Z, Cao L. Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China. Remote Sensing. 2023; 15(3):779. https://doi.org/10.3390/rs15030779
Chicago/Turabian StyleXie, Lianni, Shuang Wu, Ronghua Wu, Jie Chen, Zuomin Xu, and Lei Cao. 2023. "Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China" Remote Sensing 15, no. 3: 779. https://doi.org/10.3390/rs15030779
APA StyleXie, L., Wu, S., Wu, R., Chen, J., Xu, Z., & Cao, L. (2023). Cross-Comparison of Radiation Response Characteristics between the FY-4B/AGRI and GK-2A/AMI in China. Remote Sensing, 15(3), 779. https://doi.org/10.3390/rs15030779