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Abstract: In this study, we compare the data of the advanced geostationary radiation imager (AGRI)
on board the FY-4B and the advanced meteorological imager (AMI) on board the GK-2A, in terms of
overall data, different reflectivity/brightness temperature intervals, different regions, and different
underlying surfaces. The results show that the AGRI and AMI data are generally consistent; the
mean biases for reflectivity channels show a range of 0.50% to 1.69%, with channel VIR004 being
exceptionally good, while brightness temperature (TB) differences in the IR channels ranging from
0.11 to 0.57 K, with channel IR120 being the most accurate. The reflectivity of the AGRI is higher
than that of the AMI in terms of mean bias. The dispersion of the reflectivity difference between
the AGRI and AMI is smaller at the short-wavelength channels than that at the longer-wavelength
channels. The TB data observed by the AGRI are higher than those of AMI at conditions above
310 K. In the case of observing the same target, the difference in infrared brightness temperature due
to the random noise signal is small. The differences between the two sensors can be considerably
reduced by revising mean biases. In the following studies of quantitative product algorithms, the
characteristics of sensor data need to be further analyzed in detail.

Keywords: FY-4B/AGRI; GK-2A/AMI; geostationary meteorological satellite; cross-comparison

1. Introduction

Geostationary satellite data plays an essential role in monitoring wildfires, catastrophic
weather, dust weather, and haze weather, with its advantage of all-weather and high-
timeliness observations [1–4]. Global geostationary satellites are continuously updated.
The new-generation geostationary satellites, the Fengyun-4B (FY-4B) from China and the
Geo-Kompsat-2A (GK-2A) from Korea are both available to serve the China region. The
main payloads, the advanced geostationary radiation imager (AGRI) for the FY-4B and the
advanced meteorological imager (AMI) for the GK-2A, have similar instrument functions
and performances. Combining the same quantitative products from the two satellites
can better satisfy the growing demand for quantitative product applications [5]. Thus,
continuous and long-term observation data are obtained, which is essential for studying
the changes and trends of the Earth’s environment, weather forecasting, and climate
change monitoring. However, since the quantitative products (such as land and sea surface
temperature) highly depend on the radiation response characteristics of instrument channel
data, it is of great significance to improve the application services of the AGRI and AMI
data while analyzing and comparing the differences in radiation response characteristics of
the two instrument data.

The FY-4B satellite was successfully launched on 3 June 2021 [6]; it is the first oper-
ational satellite of the Chinese second-generation geostationary meteorological satellite
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series. It is fixed at 133.0◦E to conduct operational services. The AGRI on board the FY-4B
has 15 channels. Compared with the FY-4A, the FY-4B/AGRI adds a water vapor channel
and adjusts the spectra of some channels to improve refined observations. The spatial
resolution of the AGRI is 0.5–4 km, and the temporal resolution for full-disk observation
is 15 min. The GK-2A is a new-generation Earth observation satellite from Korea; it was
launched on 5 December 2018 and fixed at 128.2◦E [7–9]. The GK-2A satellite carries a new
AMI, whose main parameters are similar to those of the Japanese geostationary meteoro-
logical satellite Himawari-8 [10]. The spectral range of AMI is 0.47–13.3 µm, covering the
visible, short-wave infrared (IR), mid-wave IR, and long-wave IR spectral bands. The AMI
has 16 channels, with maximum spatial resolutions of 500 m at the visible channel and
2 km at the IR channel, and a temporal resolution of 10 min.

Regarding the radiometric calibration of the two remote sensors, Dohyeong et al. [11]
compared the IR channel data of the Himawari-8/Advanced Himawari Imager (AHI) with
that of the GK-2A/AMI. The results indicated that the brightness temperature (TB) data
at each IR channel are quite similar between the Himawari-8/AHI and the GK-2A/AMI,
with mean biases of less than 0.1 K and without noticeable diurnal variation in biases.
Liang et al. [12] compared the consistency of bright temperature data between AHI, VI-
IRS, and MODIS, five AHI bands are found to be low relative to the VIIRS and MODIS.
Yu et al. [13] compared AHI and NPP/VIIRS data and found that they were in good
agreement. The global space-based inter-calibration system has studied the radiometric cal-
ibration of geostationary satellite data through transfer calibration [14,15] and has given the
correction results of radiometric calibration coefficients. However, even if a high-precision
radiometric calibration is completed, the observed values from different remote sensors
are naturally different [16,17], even for the same target. This is due to the coupling effect
between the reflectivity (emissivity) curve of a target and the spectral response function
(SRF) of a channel.

In terms of methods to compare the differences in remote sensor data, Chen [18],
Tang [19], and Hu et al. [20] used the simultaneous sub-satellite observation data from
polar-orbiting satellites to analyze the differences in TB data, observation time, etc. Hewi-
son [21] and Huang [22] analyzed the differences in data from different remote sensors by
using indicators such as mean bias (Bias), root mean square error (RMSE), and correlation
coefficient (R). Referring to these mature data preprocessing methods and mathematical
indicators, we evaluate the differences in the radiation response characteristics between the
AGRI and AMI in this study by using the near-simultaneous and co-located observation
data from the FY-4B and GK-2A. Based on the analysis of the overall samples and the consis-
tency of the eight matched channels of the AGRI and AMI, the consistency and dispersion
of the two sensor data are further analyzed in the three aspects of reflectivity/TB intervals,
spatial area, and the underlying surface. We will start with a general cross-comparison of
comprehensive data and deduct possible bias corrections. We will also compare the results
for different areas in China, as well as a focused study on different underlying surfaces.

2. Instrument and Channel Descriptions

The AGRI is carried on board the FY-4B geostationary meteorological satellite and
has six solar reflectance bands and nine IR bands, with spatial resolutions of 500 m for
one channel, 1000 m for two channels, 2000 m for four channels, and 4000 m for eight
channels. The AMI has six reflectivity channels with spatial resolutions of 500 m for one
channel, 1000 m for three channels, and 2000 m for two channels. In addition, the AMI
has 10 IR channels with a spatial resolution of 2000 m. The instrument parameters of the
FY-4B/AGRI and GK-2A/AMI are shown in Table 1.

Considering the remote sensing observation data required for typical quantitative
products, such as fire detection, we mainly focused on eight typical channels in this study,
as shown in Table 2. Among them, VIR004, NR008, NR013, NR016, IR038 (H), IR038 (L),
IR108, and IR120 represent the bands with central wavelengths of 0.47 µm, 0.83/0.86 µm,
1.37/1.38 µm, 1.61/1.63 µm, 3.75 H/3.8 µm, 3.75 L/3.8 µm, 10.8/10.5 µm, 12.0/12.3 µm,
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respectively. The SRF of each channel is shown in Figure 1. By analyzing the SRFs, it
can be found that the wavelength positions of the two sensors are similar. However, the
wavelength centers and bandwidths are slightly different. When the spectral curves of the
ground objects are coupled, the reflectivity or TB at the same channel displays differences.

Table 1. Instrument parameters of the AGRI and AMI.

Index FY-4B/AGRI
(China)

GK-2A/AMI
(Republic of Korea)

Spatial resolution 0.5–4 km 0.5–2 km
Temporal resolution 15 min (full-disk) 10 min (full-disk)

Number of bands 15 16

Table 2. Central wavelengths and resolution of FY-4B/AGRI and GK-2A/AMI matched channels.

Channel Name
FY-4B/AGRI GK-2A/AMI

Center Wavelengths Resolution Center Wavelengths Resolution

VIR004 0.47 µm 1 km 0.47 µm 1 km
NR008 0.83 µm 1 km 0.86 µm 1 km
NR013 1.37 µm 2 km 1.38 µm 2 km
NR016 1.61 µm 2 km 1.63 µm 2 km

IR038 (H) 3.75 H µm 2 km 3.80 µm 2 km
IR038 (L) 3.75 L µm 4 km 3.80 µm 2 km

IR108 10.8 µm 4 km 10.5 µm 2 km
IR120 12.0 µm 4 km 12.3 µm 2 km
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Figure 1. Spectral response functions of the (a) reflectivity channels and (b) IR channels corresponding
to the FY-4B/AGRI and GK-2A/AMI.

3. Cross-Comparison Method
3.1. Data Processing

Considering the differences in observation time and spatial resolution of the two
remote sensor data and in order to effectively compare the matched sample points, the
AGRI and AMI channel data need to be processed, including spatial resolution matching,
uniformity control, and noise suppression.

• In terms of spatial resolution matching, the original channel images are uniformly
projected onto a 0.02◦ grid with equal latitudes and longitudes by using the nearest-
neighbor interpolation method, and the differences in data are quantitatively compared
at this resolution.

• For uniformity control, if the standard deviations of the TB values at a point and its
eight adjacent points exceed 3 K, or the standard deviations of the reflectivity at the
above points exceed 0.1, the data at the point and its eight adjacent points are removed.

STDT < 3 K or STDR < 0.1 (1)

where STDT and STDR represent the standard deviations of the TB data and the
reflectivity data within a spatial window of 3 × 3, respectively.

• Regarding noise suppression, since the spatial positioning of the two sensors is difficult
to be entirely consistent, there are some positioning biases, which may cause the
uncertainty of comparison. In order to reduce the comparison uncertainty due to
spatial positioning bias, we need to smooth the 0.02◦ grid data by taking the average
value of the values at a point and its eight adjacent points as the data at this point.

T = T′mean or α = α′mean (2)

where T represents the smoothed TB data, T′mean the average of the TB data within
the spatial window of 3 × 3, α the smoothed reflectivity data, and α′mean the average
of the reflectivity data within the spatial window of 3 × 3.

3.2. Statistical Analysis

In this study, the statistical indicators, Bias, RMSE, and R, are selected for statistical
analysis. Among them, the mean bias is used to examine the systematic differences between
the two remote sensor data, the RMSE is applied to evaluate the dispersion of the data,
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and the R is utilized to investigate the consistency of the data. The statistical indicators are
calculated as follows (Equations (3)–(5)).

Bias =
∑(MAGRI −MAMI)

n
(3)

RMSE =

√
1
n ∑(MAGRI −MAMI)

2 (4)

R =
Cov(MAGRI, MAMI)√

D(MAGRI)·
√

D(MAMI)
(5)

where MAGRI represents the channel data of the FY-4B/AGRI, MAMI the channel data of the
GK-2A/AMI, n the number of AGRI and AMI matched sample points, and Cov(MAGRI, MAMI)
the covariance of MAGRI and MAMI. In addition, D(MAGRI) and D(MAMI) denote the vari-
ances of MAGRI and MAMI, respectively.

4. Results and Discussion
4.1. Comparative Analysis of the Overall Data

The data at each channel of the AGRI and AMI are compared and statistically analyzed
by using the above cross-comparison method. AGRI data and AMI data from 8 March and
23 March 2022 (the time is from 4:30 to 6:30 UTC) were analyzed in the domain (14◦N to
54◦N and 70◦E to 135◦E). Figure 2 shows the scatter plot of the data at each channel of the
AGRI and AMI. It can be found that the distribution of the matched points is relatively
clustered, and the dynamic range covered by the sample points is wide, which can basically
reflect the radiation response of the remote sensors to the energy reflected/emitted from
the main object.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 18 

 

 

between the two remote sensor data, the RMSE is applied to evaluate the dispersion of the 

data, and the R is utilized to investigate the consistency of the data. The statistical indica-

tors are calculated as follows (Equations (3)–(5)). 

Bias =
∑(MAGRI−MAMI)

𝑛
  (3) 

RMSE = √
1

n
∑(MAGRI − MAMI)

2 (4) 

𝑅 =
Cov(MAGRI, MAMI)

√D(MAGRI). √D(MAMI)
 (5) 

where MAGRI represents the channel data of the FY-4B/AGRI, MAMI the channel data of 

the GK-2A/AMI, n the number of AGRI and AMI matched sample points, and 

Cov (MAGRI, MAMI)  the covariance of MAGRI  and MAMI . In addition, D(MAGRI)  and 

D(MAMI) denote the variances of MAGRI and MAMI, respectively. 

4. Results and Discussion 

4.1. Comparative Analysis of the Overall Data 

The data at each channel of the AGRI and AMI are compared and statistically ana-

lyzed by using the above cross-comparison method. AGRI data and AMI data from 8 

March and 23 March 2022 (the time is from 4:30 to 6:30 UTC) were analyzed in the domain 

(14°N to 54°N and 70°E to 135°E). Figure 2 shows the scatter plot of the data at each chan-

nel of the AGRI and AMI. It can be found that the distribution of the matched points is 

relatively clustered, and the dynamic range covered by the sample points is wide, which 

can basically reflect the radiation response of the remote sensors to the energy re-

flected/emitted from the main object. 

 

 

Figure 2. Cont.



Remote Sens. 2023, 15, 779 6 of 17
Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 18 

 

 

 

 

Figure 2. Scatter plot of the data at each channel of the AGRI and AMI. The different colors indicate 

the aggregation of data points. For (a) VIR004, (b) NR008, (c) NR013, (d) NR016, (e) IR038 (H), (f) 

IR038 (L), (g) IR108, and (h) IR120. 

Table 3 shows the statistical results of the data at each matched channel, i.e., the linear 

regression equations, mean biases, RMSE values, and R values. The results suggest that 

the R values at each channel are above 0.96, and the slopes of the fitting lines are between 

1.0012 and 1.1585, close to 1, indicating that the observation data of the AGRI and AMI 

are in good agreement. 

The data at channel VIR004 have the smallest mean bias and RMSE among the solar 

reflectivity channels, namely the mean bias of 0.50% and the RMSE of 0.76% (less than 

1%). The data at channel NR016 have the largest mean bias of 1.69% and RMSE value of 

1.88%. The reflectivity of the AGRI is higher than that of the AMI in terms of mean bias. 

The dispersion of the reflectivity difference between the AGRI and AMI is smaller at the 

short-wavelength channels than that at the longer-wavelength channels. 

Except for channel IR120, the mean biases at IR channels are less than 0, indicating 

that the observed TB values of the AGRI are systematically lower than those of the AMI 

by about 0.5 K. The RMSE values at IR channels are between 0.87 K and 1.08 K, which are 

reasonable since the radiometric calibration accuracy is between 0.5 K and 0.7 K. When 

the AGRI and AMI observe the same target, the TB difference caused by the random noise 

signal is small. The spectral corrections of the two remote sensors were not performed. 

Correcting the SRF difference mainly uses the convolution of the ground radiation spec-

trum with SRF. It is difficult to quantitatively estimate the effect of the spectral response 

on the observed values when the ground target is unknown. Thus, it may be the one rea-

son for the discrepancies. 
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the aggregation of data points. For (a) VIR004, (b) NR008, (c) NR013, (d) NR016, (e) IR038 (H),
(f) IR038 (L), (g) IR108, and (h) IR120.

Table 3 shows the statistical results of the data at each matched channel, i.e., the linear
regression equations, mean biases, RMSE values, and R values. The results suggest that
the R values at each channel are above 0.96, and the slopes of the fitting lines are between
1.0012 and 1.1585, close to 1, indicating that the observation data of the AGRI and AMI are
in good agreement.

Table 3. Comparison of the data at the matched channels between the FY-4B/AGRI and GK-2A/AMI.
“Bias” denotes the mean bias, “RMSE” represents the root mean square error, and “R” indicates the
correlation coefficient.

Channel Name Linear Regression Equation Bias RMSE R

VIR004 AGRI = 1.0676 × AMI − 0.0030 0.50% 0.76% 0.9880
NR008 AGRI = 1.0015 × AMI + 0.0060 0.62% 1.04% 0.9932
NR013 AGRI = 1.1053 × AMI + 0.0106 1.13% 1.16% 0.9635
NR016 AGRI = 1.1585 × AMI + 0.0082 1.69% 1.88% 0.9982

IR038 (H) AGRI = 1.0012 × AMI − 0.7851 −0.42 K 0.87 K 0.9971
IR038 (L) AGRI = 1.0095 × AMI − 3.3593 −0.54 K 0.92 K 0.9972

IR108 AGRI = 1.0060 × AMI − 2.3216 −0.57 K 1.08 K 0.9938
IR120 AGRI = 1.0343 × AMI − 9.8259 0.11 K 1.07 K 0.9915

The data at channel VIR004 have the smallest mean bias and RMSE among the solar
reflectivity channels, namely the mean bias of 0.50% and the RMSE of 0.76% (less than
1%). The data at channel NR016 have the largest mean bias of 1.69% and RMSE value of
1.88%. The reflectivity of the AGRI is higher than that of the AMI in terms of mean bias.
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The dispersion of the reflectivity difference between the AGRI and AMI is smaller at the
short-wavelength channels than that at the longer-wavelength channels.

Except for channel IR120, the mean biases at IR channels are less than 0, indicating that
the observed TB values of the AGRI are systematically lower than those of the AMI by about
0.5 K. The RMSE values at IR channels are between 0.87 K and 1.08 K, which are reasonable
since the radiometric calibration accuracy is between 0.5 K and 0.7 K. When the AGRI and
AMI observe the same target, the TB difference caused by the random noise signal is small.
The spectral corrections of the two remote sensors were not performed. Correcting the SRF
difference mainly uses the convolution of the ground radiation spectrum with SRF. It is
difficult to quantitatively estimate the effect of the spectral response on the observed values
when the ground target is unknown. Thus, it may be the one reason for the discrepancies.

Figure 3 displays the statistical results of the reflectivity/TB frequency at each channel
of the FY-4B/AGRI and GK-2A/AMI. The results indicate that the frequency at each
channel of the two remote sensors shows a similar dynamic distribution, with relatively
consistent trends. However, there are some channels with certain offsets. Specifically,
channels VIR004, NR008, IR108, and IR120 have the closest frequency distributions, with
small offsets, suggesting that the data from the AGRI and AMI have a good consistency.
Compared with the AMI data, the distribution of the AGRI pixels at channels NR013 and
NR016 shows a rightward shift, indicating that the observations of the AGRI are higher
than those of the AMI, which is consistent with the results in Table 3. The distribution
differences of channel NR013 are relatively significant, with the peak of AGRI at 0.02, and
AMI at 0.0. This indicates that the reflectance of AMI is low and most of the data are close
to 0. This is consistent with the properties of the water vapor absorption channel (1.37 µm),
the signal from the bottom of the atmosphere to the land surface has no reflected energy
entering the incoming pupil of the remote sensor because the energy is absorbed by water
vapor. The peak of AGRI appears around 0.02, it is possible that the dark current meter
value of the instrument is not cleanly rejected. There is also a case that the AMI’s dark
current meter value is deducted too much. So the cause of this phenomenon may be caused
by the difference in the values of the dark current meter.

The distribution of the AGRI pixels at channels IR038 (H) and IR038 (L) shows a
leftward shift compared with the AMI data, especially for the TB at the middle part of the
dynamic range. The frequency distribution has a high consistency at the two ends of the
dynamic range. This result suggests that the observations of the AGRI are lower than those
of the AMI in the middle part of the dynamic range, and they are relatively consistent at the
two ends of the dynamic range. Therefore, the statistical results of frequency distribution
indicate that the differences in the observations between the two remote sensors vary with
the reflected/emitted energy intervals. A more detailed analysis will be carried out in the
following section.

The violin plot is used to analyze the bias distribution of the AGRI and AMI sample
data (AGRI data minus AMI data), as shown in Figure 4. Overall, the bias distribution
for each channel data shows a single-peaked feature (except for channel NR016), and
it is relatively concentrated. The reflectance biases for the shortwave channels (VIR004
and NR008) are smaller than those for the longwave channels (NR013 and NR016), and
biases are greater than 0. For the IR channels, most of the biases are less than 0 (except for
IR120). The biases are mainly distributed between the 10th and 90th percentiles, and the
median values of the biases for each channel data are 0.44%, 0.59%, 1.1%, 1.62%, −0.48 K,
−0.59 K, −0.57 K, and 0.08 K. Since the median is a robust estimation, it is more robust to
outlier noise in the sample. The median and mean values of the mean biases are relatively
consistent, indicating that there are few extreme samples, and the samples of the AGRI and
AMI have a relatively high matching degree.
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In terms of the reflectivity channels, the biases for channel VIR004 data between−0.2%
and 1.2% account for 80% of the total number, and 80% of the biases for channel NR008
data are between −0.39% and 1.71%. Similarly, the bias ranges for the data at channels
NR013 and NR016 are 0.83–1.47% and 0.70–2.81%, respectively. For the IR channels, the
distribution pattern of the biases is relatively similar for each channel, with the main range
being from −1.77 to 1.49 K. This result indicates that the radiometric response performance
of IR channels is relatively consistent.

The overall results of the sample confirm that the channel settings of the two remote
sensors are highly similar. For the same observed target, the same result should be observed
theoretically. Meanwhile, the good consistency of the observations from the AGRI and AMI
also indicates that the radiometric calibration accuracy of the two remote sensors is high,
and the systematic biases caused by the radiometric calibration are not large.

4.2. Comparative Analysis of Different Reflectivity or Brightness Temperature Data

After analyzing the overall differences between the samples, we further investigated
the differences between the AGRI and AMI data in different reflectivity/TB intervals in
this section.

As shown in Figure 5, the distribution of the biases for different reflectivity/TB
intervals at the AGRI and AMI channels indicates that at the solar reflectivity channels, the
biases of the reflectivity data are mainly distributed in the range of 0–0.3. Except for channel
NR013, the biases for different reflectivity intervals at the remaining channels are mostly
greater than 0 and tend to increase with the reflectivity. The bias distributions at channels
VIR004 and NR008 are relatively close, with ranges being from 0.25% to 1.53% and 0.45%
to 1.06%, respectively, which are noticeably smaller than those at channel NR016 (biases of
0.88–2.77%). In addition, the biases of the data at channel NR013 show a large difference
compared with the others, mainly because channel NR013 is a water vapor absorption
channel. Except for the target high clouds, which are brighter, other targets exhibit lower
brightness due to the solar radiation absorption of atmospheric water vapor. Channel
NR013 data is mainly concentrated between 0 and 0.05. Since the sample size with the
range of 0.05–0.3 is extremely small, it is not statistically significant and not analyzed here.

At IR channels, the TB data are mainly distributed in the range of 275–315 K, and the
bias distribution of the TB displays different characteristics from that of the reflectivity.
The bias distribution characteristics of the reflectivity are similar at channels IR038 (H),
IR038 (L), and IR108, showing that the mean biases fluctuate with the TB variation, with
small dispersion. The mean biases are relatively small for the TB data of 275–305 K and
larger for the TB data of about 290 K (biases ranging from −0.98 to 0.28 K). The mean biases
of the data at channel IR120 are distributed from −0.68 to 1.02 K, which decrease and then
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increase with the increasing TB. The biases of the TB of 270–290 K are negative, and those
of the TB of 290–310 K are positive, suggesting that the TB observed by the AGRI is lower
than that observed by the AMI under lower-temperature conditions and higher than that
observed by the AMI under higher-temperature conditions.
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Figure 6 presents the RMSE distribution for different reflectivity/TB intervals. For solar
reflectivity channels, the RMSE increases with the reflectivity except for channel NR013.
However, there are statistical anomalies in individual intervals due to their excessively few
samples. The matched points at channel VIR004 are mainly distributed in the reflectivity
range of 0.06–0.15, accounting for 82.97% of the total matched points. The RMSE value
is small for the reflectivity of about 0.06, which is 0.37%. At channel NR008, the RMSE
is relatively small for the reflectivity of about 0.03, which is 0.49%, and the RMSE is
relatively large for the reflectivity of about 0.27, which is 1.43%. At channel NR016, a small
RMSE of 0.90% appears for the reflectivity of about 0.03, accounting for 46.75% of the total
matched points.

Regarding the IR channels, the RMSE values at channels IR038 (H) and IR038 (L)
increase and then decrease with the increasing TB, and the RMSE values of the TB of
270–320 K are 0.52–1.06 K at channel IR038 (H) and 0.40–1.16 K at channel IR038 (L). The
RMSE values at channels IR108 and IR120 show a weak change trend in different TB
intervals, which is about 1 K for the TB of 270–305 K.
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For the solar reflectivity channels, the mean biases gradually increase with the reflec-
tivity, which can be appropriately revised by the linear regression equations in Table 3.
The RMSE increase indicates the gradual increase in random errors in the signal. This
phenomenon is in accordance with the hardware characteristic of the photosensitive com-
ponents of remote sensors in solar reflectivity bands, i.e., the random errors in the response
signal gradually increase as the incident energy increases and finally reaches the equilib-
rium value.

At the IR channels, the mean biases fluctuate somewhat with the increasing TB.
However, the fluctuation amplitude is small relative to the total mean bias, which can be
appropriately revised by the mean biases in Table 3. The RMSE values fluctuate with the
increasing TB. Similarly, the fluctuation amplitude is small relative to the total RMSE.

4.3. Comparative Analysis in Different Regions
4.3.1. Study Regions

In order to carefully analyze the influences of different regions on the consistency of
the AGRI and AMI channel data, we divide the China region into five typical representative
regions in this study according to geographical locations. These five study regions are
Northeast China (A), Northwest China (B), the Huang-Huai region (C), South China (D),
and Southwest China (E), as shown in Figure 7. The detailed latitudes and longitudes of
the study regions are shown in Table 4.
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Table 4. Latitudes and longitudes of the study regions.

Code Region Latitudes Longitudes

A Northeast China 50.89◦N–42.19◦N 117.72◦E–125.98◦E
B Northwest China 37.84◦N–30.26◦N 103.45◦E–111.37◦E
C Huang-Huai region 37.06◦N–28.81◦N 112.93◦E–122.63◦E
D South China 26.33◦N–19.15◦N 105.69◦E–112.59◦E
E Southwest China 28.50◦N–20.51◦N 94.57◦E–102.68◦E
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4.3.2. Comparative Analysis in Different Regions

Figure 8 displays the bias comparisons of the AGRI and AMI channel data in different
regions. The results indicate that for the solar reflectivity channels, the mean biases of
the reflectivity in each region are greater than 0. Among them, the mean biases of the
reflectivity at channel NR016 are higher than those of the other three channels in each region,
which is consistent with the bias distribution of the reflectivity of the overall samples. In
terms of data dispersion in different regions, channels VIR004 and NR013 have a relatively
concentrated data distribution, while the data distributions for channels NR008 and NR016
are relatively dispersed. The mean biases of the reflectivity at channels VIR004 and NR008
in the five study regions show a decreasing trend, followed by A, B, C, D, and E. The mean
bias of the reflectivity at channel NR016 reaches a maximum value of 2.6% in region B and
a minimum value of 1.5% in region E. Generally, the mean bias of the reflectivity at the
three solar reflectivity channels is smaller in region E than that in the other regions. The
mean bias of the reflectivity at channel NR013 varies less with regions, showing sensitivity
to regions. Except for channel NR013, the mean biases at each channel are higher in region
A than those in the other regions (except for channel NR016), and the mean biases at each
channel are lower in region E than those in the other regions.
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Figure 8. Comparative analysis of the biases of the (a) reflectivity and (b) TB at the AGRI and AMI
channels in different regions.

In terms of the two IR channels, IR038 (H) and IR038 (L), the mean biases of the
TB are relatively close in different regions, with the largest in region A, similar values in
regions B and C, and the smallest in regions D and E. The mean biases of the TB at channel
IR108 are between −0.3 K and −0.7 K in different regions, which are not sensitive to the
region. Comparatively, the mean biases at channel IR120 are positive in regions B, D, and
E (0.3–0.5 K), and they are negative in regions A (about −0.4 K) and C (about −0.02 K). The
mean biases of the TB at the split-window channels, IR108 and IR120, vary with regions,
and the difference in the TB biases between channels IR108 and IR120 varies greatly.

The comparison results of the RMSE of the reflectivity and TB at each channel are
shown in Figure 9. The results indicate that the RMSE values at the reflectivity channels are
small in region D, ranging from 0.37% to 1.98%, while those are relatively large in regions
A and E, ranging from 0.84% to 2.14%. For the RMSE comparison at the IR channels, the
RMSE values are between 0.68 K and 1.33 K in different regions. The RMSE values of the
TB in regions B and C are relatively small, ranging from 0.68 to 1.15 K, while the RMSE
values of the TB in region E are larger, with values of 0.98–1.33 K.

The RMSE indicates the dispersion degree of the data and includes the contribution
of the mean bias. Thus, the RMSE values at channel NR016 are higher in all regions.
In subsequent quantitative applications, at the channels with higher RMSE values, the
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correction of mean bias is beneficial to reduce the influence caused by the inconsistency of
radiation response characteristics between the two remote sensors.
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Figure 9. Comparative analysis of RMSE values of the (a) reflectivity and (b) TB at the AGRI and
AMI channels in different regions.

4.4. Comparative Analysis of Different Underlying Surfaces

Since different underlying surfaces have different effects on the observations at each
channel, we further analyze the influences of different underlying surfaces on the consis-
tency of the AGRI and AMI data. In this study, four underlying surface types, forest, water,
cropland, and cloud, are selected for the comparative analysis according to the global land
cover product with a fine classification system at 30 m in 2020 (GLC_FCS30-2020).

The comparisons of the reflectivity biases of AGRI and AMI data in different underly-
ing surfaces (Figure 10) indicate that at all solar reflectivity channels, the mean biases of
the reflectivity are greater than 0, indicating that the reflectivity observations of AGRI are
generally higher than those of the AMI. On the water surface, the mean reflectivity biases
are small and concentrated at all solar reflectivity channels, indicating that the reflectivity
observations of the AGRI and AMI are relatively consistent on the water surface. In the
cloud region, the mean reflectivity biases are large and scattered at all channels, which
suggests that the observations of the cloud reflectivity from the AGRI are higher than those
of the AMI. It should be noted that the average reflectivity from the AGRI is higher than
that of the AMI at channel NR016 in forest and cropland regions, with an average value of
2.5%. The reflectivity of vegetation in the NIR band is higher than that in the visible band.
The situation that the mean reflectivity bias of vegetation in the NIR band is markedly
larger than that in the visible band requires further research on the influence of the coupling
of the channel spectral response and reflectivity curve on the observations.

At the IR channels IR038 (H) and IR038 (L), the mean TB biases are about 1.5 K when
the observed target is a cloud system, indicating that the TB observations of the AGRI are
higher than those of the AMI in these two IR channels. However, on the water surface, the
TB of the AGRI at the two IR channels is about 1.5 K lower than that of the AMI. The mean
TB biases at the two split-window channels IR108 and IR120 vary little with the different
underlying surfaces, ranging from −0.5 to 0.2 K. In the comparison of IR038 data in cloud
areas, some factors can lead to poor results. The height of the cloud top is unknown, and
the cloud position will be slightly different when the same cloud is observed from different
observation angles (satellite zenith angle and satellite azimuth angle). This factor leads to
cloud pixels on the same latitude and longitude grid points that are not exactly matched,
thus making the comparison data more scattered and increasing the value of the STD.

The comparisons of the RMSE of AGRI and AMI data in different underlying surfaces
(Figure 11) show that at all solar reflectivity channels, the reflectivity RMSE values in
different underlying surfaces range from 0.42% to 2.65%. The reflectivity RMSE is smaller
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on the water surface but larger in the cloud region, which is because the reflectivity of
the water surface is low and uniform, while clouds have high reflectivity and complex
structure texture. The reflectivity RMSE values in the forest and cropland regions are
similar, about 1% at channels VIR004, NR008, and NR013 and approximately 2.5% at
channel NR016. Combined with Figure 10a, it can be seen that the reflectivity RMSE values
at channel NR016 contain the contribution of mean biases, and these biases are relatively
concentrated. Therefore, the difference in the observations between the two remote sensors
on the vegetation surface can be reduced by revising mean biases.
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For the IR channels, the two split-window channels, IR108 and IR120, have relatively
consistent observations when the underlying surface is water, and the RMSE values of the
TB are about 0.5 K. The RMSE values of the TB are about 0.9–1.2 K when the underlying
surface is a non-water region. The RMSE values of the TB at channels IR038 (H) and
IR038 (L) are about 1.8 K when the observed target is a cloud system, obviously higher than
those at the two split-window channels. Combined with Figure 10b, it can be found that the
data aggregation at the four IR channels is similar. Thus, the RMSE values at two channels
IR038 (H) and IR038 (L) can be reduced to the same level as those of the split-window
channels by revising mean biases. The RMSE at channels IR038 (H) and IR038 (L) on
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the water surface can reach 1.2 K. Referring to Figure 10b, the RMSE values at channels
IR038 (H) and IR038 (L) are mainly contributed by the mean biases, and the dispersion
degree of the data itself is lower than that at the split-window channels. Therefore, the
difference in the observations between the two remote sensors can be considerably reduced
by using the method of revising mean biases.

5. Conclusions

In order to improve the application services of geostationary meteorological satellites
in China, we analyzed the relevant channel data of the FY-4B/AGRI and GK-2A/AMI for
typical applications, such as fire point identification, and we evaluated the differences in
the radiation response characteristics of the two remote sensors for the reflectivity and TB.

In general, the observations of the AGRI and AMI are in good agreement, with R
values of more than 0.96 and RMSE values of less than 1.88%/1.08 K. The radiometric
calibration accuracy of the two remote sensors is high, and the systematic bias caused
by the radiometric calibration is not large. The reflectivity of the AGRI is higher than
that of the AMI in terms of mean bias, reflectivities from the shortwave channels show
a range of 0.50% to 1.69%, with channel VIR004 being exceptionally good with values
of 0.50%. The dispersion of the reflectivity difference between the AGRI and AMI at the
short-wavelength (0.41–0.96 µm) channels is smaller than that at the longer-wavelength
(1.35–1.68 µm) channels. The mean biases in the IR channels range from 0.11 to 0.57 K, with
channel IR120 being the most accurate with 0.11 K. The TB data observed by the AGRI are
higher than those of AMI at conditions above 310 K. The mean biases of the NR013 channel
are large (about 1.5%) and scattered when the observed target is a cloud; this is due to the
fact that the NR013 channel contains information about the absorption of water vapor in
the clouds, which are constantly changing. In the case of observing the same target, the
difference in the TB due to the random noise signal is small.

Using multiple geostationary satellite products can improve the capability of quanti-
tative remote sensing services. In this research, the differences in the radiation response
characteristics of the two remote sensors are analyzed by comparing the FY-4B/AGRI and
GK-2A/AMI data. The results indicate that these differences present different character-
istics with changes in spatial regions, underlying surface types, and reflected/emitted
energy. The analysis suggests that the data differences between the two remote sensors can
be remarkably reduced by revising mean biases. However, considering the demand for
refined services, in the subsequent development and improvement of quantitative product
algorithms, and the fusion of multi-source quantitative products, it is necessary to further
analyze and investigate data characteristics in detail for specific situations of applications,
such as regions and underlying surface types. In particular, the effect of differences in the
SRFs combined with the spectral curve of a specific target on quantitative products needs
to be studied.
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