Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Identifications of Six Target Subregions and Extreme Precipitation Events
2.3. Moisture Trajectory Calculations
2.4. Classification of Moisture Sources
3. Results
3.1. Characteristics of the NTP Extreme Precipitation Events
3.2. Moisture Sources and Their Contributions
3.3. Atmospheric Circulation Patterns Prior to Extreme Precipitation Events
- (1)
- Circulation configurations at low atmosphere of 500 hPa
- (2)
- Circulation configurations at high atmosphere
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Lu, C.; Shi, X.; Gao, S. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35, l035867. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.-D.; Yang, S.; Zhang, W. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol. 2012, 110, 423–435. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos. 2012, 117, 17012. [Google Scholar] [CrossRef] [Green Version]
- Hren, M.T.; Bookhagen, B.; Blisniuk, P.M.; Booth, A.L.; Chamberlain, C.P. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett. 2009, 288, 20–32. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, A.; Yang, S.; Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 614–630. [Google Scholar] [CrossRef]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn. 2015, 6, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Lu, M.; Chen, H.; Pan, M.; Hong, Y. Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmos. Res. 2018, 209, 50–58. [Google Scholar] [CrossRef]
- Guan, X.; Yang, L.; Zhang, Y.; Li, J. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob. Planet. chang. 2019, 172, 159–178. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, X.; Brady, E.C.; Otto-Bliesner, B.; Yu, G.; Lu, H.; Cheng, H.; Wang, Y.; Zheng, W.; Ding, Y.; et al. Chinese cave records and the East Asia Summer Monsoon. Quat. Sci. Rev. 2014, 83, 115–128. [Google Scholar] [CrossRef]
- Mölg, T.; Maussion, F.; Yang, W.; Scherer, D. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 2012, 6, 1445–1461. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Kurita, N. The Role of Local Moisture Recycling Evaluated Using Stable Isotope Data from over the Middle of the Tibetan Plateau during the Monsoon Season. J. Hydrometeorol. 2008, 9, 760–775. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Gong, P.; Wang, C. Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Env. Int. 2019, 124, 294–301. [Google Scholar] [CrossRef]
- Pan, C.; Zhu, B.; Gao, J.; Kang, H.; Zhu, T. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim. Dyn. 2018, 52, 181–196. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, X. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method. Atmos. Sci. Lett. 2015, 16, 177–183. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H. Moisture Sources of Semiarid Grassland in China Using the Lagrangian Particle Model FLEXPART. J. Clim. 2014, 27, 2457–2474. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Pang, G.; Wan, G.; Liu, Z. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Sci. Rev. 2019, 190, 353–369. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, Y.; Wang, B.; Yao, T.; Yang, K.; Zhang, X.; Zhai, J.; Ma, N. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Xiong, J.; Yong, Z.; Wang, Z.; Cheng, W.; Li, Y.; Zhang, H.; Ye, C.; Yang, Y. Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water 2019, 24, 1453. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380, 49–59. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0, in ERA Report Series; ECMWF: Reading, UK, 2011; p. 23. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present; Copernicus Climate Change Service (C3S), Climate Data Store (CDS): Brussels, Belgium, 2018. [Google Scholar]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, C.; Chen, B.; Dai, W. Consistency Evaluation of Precipitable Water Vapor Derived From ERA5, ERA-Interim, GNSS, and Radiosondes Over China. Radio Sci. 2019, 54, 561–571. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, M.; Wernli, H. The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev. 2015, 8, 2569–2586. [Google Scholar] [CrossRef] [Green Version]
- Wernli, B.H.; Davies, H.C. A lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Q. J. R. Meteorol. Soc. 1997, 123, 467–489. [Google Scholar] [CrossRef]
- Huang, W.; He, X.; Yang, Z.; Qiu, T.; Wright, J.S.; Wang, B.; Lin, D. Moisture Sources for Wintertime Extreme Precipitation Events Over South China During 1979–2013. J. Geophys. Res. Atmos. 2018, 123, 6690–6712. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. 2008, 113, 8503. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Tang, H. Water Recycling between the Land Surface and Atmosphere on the Northern Tibetan Plateau—A Case Study at Flat Observation Sites. Arct. Antarct. Alp. Res. 2007, 39, 694–698. [Google Scholar]
- Chen, B.; Zhang, W.; Yang, S.; Xu, X. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Clim. Dyn. 2019, 53, 6891–6907. [Google Scholar] [CrossRef]
- Zongxing, L.; Yan, G.; Yamin, W.; Yanhui, P.; Jianguo, L.; Aifang, C.; Tingting, W.; Chuntan, H.; Yaoxuan, S.; Theakstone, W.H. Can monsoon moisture arrive in the Qilian Mountains in summer? Quat. Int. 2015, 358, 113–125. [Google Scholar] [CrossRef]
Target Region | Occurrence Time | Duration (Days) | Precipitation (mm) | External Moisture Contribution Rate (%) | ||
---|---|---|---|---|---|---|
SAM (S2) | Westerly (S3) | Easterly (S4) | ||||
R1 | 3–4 Jun. 2010 | 2 | 15.02 | 24.8 | 53 | 0 |
21–22 Jul. 2010 | 2 | 14.37 | 59.5 | 21 | 0 | |
28–30 Jul. 2010 | 3 | 43.95 | 77.9 | 10.6 | 0.1 | |
17–18 Sep. 2010 | 2 | 14.87 | 26.9 | 49.6 | 0.2 | |
17–18 Sep. 2012 | 2 | 21.76 | 30.3 | 43.6 | 0 | |
12–14 Aug. 2013 | 3 | 26.28 | 44.9 | 37.4 | 0 | |
15–16 Aug. 2014 | 2 | 14.89 | 26.1 | 61.1 | 0 | |
2–5 Sep. 2014 | 4 | 23.98 | 74.1 | 14.4 | 0 | |
24–25 Jun. 2015 | 2 | 16.68 | 30.7 | 42.7 | 0.1 | |
22 Sep. 2015 | 1 | 9.11 | 92.2 | 1.4 | 1.3 | |
R2 | 26–28 Jul. 2010 | 3 | 21.85 | 20.1 | 40.8 | 8.2 |
13–16 Aug. 2011 | 4 | 29.29 | 48.7 | 29.6 | 1.6 | |
3–4 Aug. 2012 | 2 | 12.48 | 18.8 | 53.2 | 0.3 | |
15–17 Jun. 2013 | 3 | 26.49 | 65 | 22.9 | 0.5 | |
3–5 Sep. 2014 | 3 | 27.3 | 76.2 | 12.7 | 0.8 | |
10–11 Jul. 2015 | 2 | 14.63 | 42.8 | 23.8 | 0.9 | |
1–5 Aug. 2015 | 5 | 30.79 | 19.3 | 45.6 | 4.3 | |
22–23 Sep. 2015 | 2 | 19.06 | 78.5 | 8.3 | 1.9 | |
28–30 Jun. 2017 | 3 | 19.11 | 66.3 | 19.4 | 0.2 | |
22–23 Aug. 2018 | 2 | 19.31 | 35.2 | 31.6 | 1.1 | |
R3 | 25 Jul.–1 Aug. 2010 | 7 | 48.14 | 16.9 | 37.1 | 5.3 |
15 Jul. 2011 | 1 | 8.91 | 8.2 | 15.3 | 4.9 | |
13–16 Aug. 2011 | 4 | 27.05 | 49.2 | 19.9 | 3.4 | |
16–17 Jun. 2013 | 2 | 23.11 | 78.8 | 9.9 | 0.4 | |
16–20 Jul. 2014 | 5 | 34.64 | 33.8 | 27.4 | 3.3 | |
15–16 Jul. 2016 | 2 | 18.08 | 26.9 | 21.5 | 0.6 | |
1 Aug. 2016 | 1 | 9.43 | 10.8 | 33.8 | 1.8 | |
8–9 Aug. 2016 | 2 | 17.49 | 7.9 | 32 | 3.9 | |
20–21 Aug. 2016 | 2 | 15.19 | 30.8 | 29.6 | 6.3 | |
28–30 Jun. 2017 | 3 | 19.96 | 37.8 | 24.6 | 1.4 | |
R4 | 7 Jun. 2011 | 1 | 8.97 | 4.7 | 33.7 | 11.2 |
16 Aug. 2011 | 1 | 8.24 | 26.5 | 15.4 | 25.5 | |
19 Jul. 2012 | 1 | 9.87 | 3.6 | 21.4 | 16.7 | |
16–18 Jun. 2013 | 3 | 23.14 | 52.4 | 17.2 | 7.1 | |
25 Aug. 2013 | 1 | 8.3 | 17 | 2.1 | 17 | |
25–26 Jun. 2015 | 2 | 14.5 | 41 | 11.8 | 5.4 | |
30 Jun.–1 Jul. 2015 | 2 | 15.97 | 20.6 | 35.8 | 7.9 | |
22 Jul. 2016 | 1 | 7.96 | 3.8 | 17.5 | 8.3 | |
9 Aug. 2016 | 1 | 9.7 | 12.8 | 35.9 | 17.4 | |
13 Aug. 2018 | 1 | 8.8 | 24.9 | 13.7 | 12.5 | |
R5 | 6 Jun. 2010 | 1 | 10.14 | 0.9 | 3.2 | 25.5 |
26–29 Jun. 2010 | 4 | 29.34 | 24.7 | 16 | 7.3 | |
19–20 Jun. 2011 | 2 | 14.64 | 15.4 | 11.8 | 7.9 | |
15 Jun. 2011 | 1 | 9.93 | 27 | 17.8 | 9.2 | |
4 Jun. 2012 | 1 | 9.61 | 10.8 | 19.7 | 20.8 | |
26 Aug. 2013 | 1 | 8.92 | 18.3 | 15.2 | 6.8 | |
23–25 Jul. 2013 | 3 | 22.01 | 17 | 1.4 | 16.2 | |
23–26 Jun. 2014 | 4 | 27.83 | 23.1 | 10.9 | 20.4 | |
1–3 Jul. 2015 | 3 | 23 | 16.6 | 17.8 | 26.7 | |
30 Jun.–2 Jul. 2018 | 3 | 22.9 | 29.7 | 14.5 | 16.9 | |
R6 | 20–21 Jun. 2011 | 2 | 27.37 | 16.9 | 9.7 | 33.9 |
7 Jul. 2013 | 1 | 18.35 | 18.2 | 3.6 | 25.1 | |
6 Aug. 2013 | 1 | 14.65 | 5.2 | 7 | 6.4 | |
27 Jun. 2014 | 1 | 14.07 | 10.3 | 3.9 | 58.9 | |
13 Sep. 2014 | 1 | 14.19 | 17.2 | 4.1 | 39.1 | |
19 Jun. 2015 | 1 | 14.94 | 4 | 1.5 | 62.6 | |
17 Jul. 2016 | 1 | 14.18 | 17.3 | 5.7 | 19.3 | |
24 Aug. 2016 | 1 | 14.56 | 1.1 | 0.1 | 55.3 | |
6 Aug. 2017 | 1 | 15.17 | 4.1 | 4.9 | 34.7 | |
1 Jul. 2018 | 1 | 20.81 | 15.3 | 5.7 | 35.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, K.; Huang, W.; Qiu, T.; Wang, B. Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau. Remote Sens. 2023, 15, 735. https://doi.org/10.3390/rs15030735
Wang Y, Yang K, Huang W, Qiu T, Wang B. Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau. Remote Sensing. 2023; 15(3):735. https://doi.org/10.3390/rs15030735
Chicago/Turabian StyleWang, Yan, Kun Yang, Wenyu Huang, Tianpei Qiu, and Binbin Wang. 2023. "Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau" Remote Sensing 15, no. 3: 735. https://doi.org/10.3390/rs15030735
APA StyleWang, Y., Yang, K., Huang, W., Qiu, T., & Wang, B. (2023). Dominant Contribution of South Asia Monsoon to External Moisture for Extreme Precipitation Events in Northern Tibetan Plateau. Remote Sensing, 15(3), 735. https://doi.org/10.3390/rs15030735