Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements
Abstract
:1. Introduction
2. Materials
2.1. Study Area and Time Range
2.2. Data Collection
2.2.1. Satellite Imagery
2.2.2. Ancillary Datasets
2.2.3. Air Temperature Observations
2.3. Software Tools and Programming Languages
3. Methods
3.1. Local Climate Zones (LCZ) Mapping
3.1.1. Construction of Train and Test Datasets
3.1.2. Random Forest (RF) Classification
3.1.3. Post-Processing and Accuracy Assessment
3.1.4. Classification Improvement
3.2. Land Surface Temperature (LST) Analysis
3.3. Air Temperature Analysis
3.3.1. Time Series Cleaning
3.3.2. Correlation between Air Temperature and LST
3.3.3. Analysis of Air Temperature per LCZ
4. Results
4.1. LCZ Map
4.2. LST per LCZ
4.3. Correlation between LST and Air Temperature
4.4. Air Temperature per LCZ
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2020 Revision. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 3 October 2022).
- European Environment Agency. Urban Sustainability: How Can Cities Become Sustainable? Available online: https://www.eea.europa.eu/themes/sustainability-transitions/urban-environment (accessed on 3 October 2022).
- Gurney, K.R.; Romero-Lankao, P.; Seto, K.C.; Hutyra, L.R.; Duren, R.; Kennedy, C.; Grimm, N.B.; Ehleringer, J.R.; Marcotullio, P.; Hughes, S.; et al. Climate change: Track urban emissions on a human scale. Nature 2015, 525, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Agoston, P.; Minx, J.C.; Canadell, J.G.; Andrew, R.M.; Le Quéré, C.; Peters, G.P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Urban infrastructure choices structure climate solutions. Nature Clim. Change 2016, 6, 1054–1056. [Google Scholar] [CrossRef]
- Gasparini, P.; Di Ruocco, A.; Russo, R. Natural Hazards Impacting on Future Cities. In Resilience and Sustainability in Relation to Natural Disasters: A Challenge for Future Cities; Gasparini, P., Manfredi, G., Asprone, D., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2015; pp. 1–30. [Google Scholar] [CrossRef]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. Int. J. Climatol. 2019, 39, 3013–3030. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; McAlpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Glob. Planet. Change 2015, 128, 103–119. [Google Scholar] [CrossRef]
- NASA. ARSET Satellite Remote Sensing for Urban Heat Islands. Available online: https://appliedsciences.nasa.gov/join-mission/training/english/arset-satellite-remote-sensing-urban-heat-islands (accessed on 5 October 2022).
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 2010, 37, L09705. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Tang, X.; Zhang, Y.; Li, W. City clusters in China: Air and surface water pollution. Front. Ecol. Environ. 2006, 4, 353–361. [Google Scholar] [CrossRef]
- de Almeida, C.R.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to investigate surface urban heat islands in Texas. GISci. Remote Sens. 2020, 57, 1083–1101. [Google Scholar] [CrossRef]
- Long, N.; Gardes, T.; Hidalgo, J.; Masson, V.; Schoetter, R. Influence of the urban morphology on the urban heat island intensity: An approach based on the Local Climate Zone classification. PeerJ 2018, 6, e27208v1. [Google Scholar] [CrossRef]
- WUDAPT. World Urban Database. Available online: http://www.wudapt.org (accessed on 6 October 2022).
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale. Remote Sens. 2013, 5, 2348–2367. [Google Scholar] [CrossRef] [Green Version]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land surface temperature and surface air temperature in complex terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.J.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Wu, J.; Zhang, C.; Wu, X.; Li, Q.; Liu, L.; Bi, C.; Zhang, H.; Lafortezza, R.; Chen, X. Estimating the cooling effect magnitude of urban vegetation in different climate zones using multi-source remote sensing. Urban Clim. 2022, 43, 101155. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Thomas, G.; Sherin, A.P.; Ansar, S.; Zachariah, E.J. Analysis of Urban Heat Island in Kochi, India, Using a Modified Local Climate Zone Classification. Procedia Environ. Sci. 2014, 21, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Zhu, W.; Lű, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Shen, S.; Leptoukh, G.G. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett. 2011, 6, 045206. [Google Scholar] [CrossRef]
- Lotfian, M.; Ingensand, J.; Brovelli, M.A. A Framework for Classifying Participant Motivation that Considers the Typology of Citizen Science Projects. ISPRS Int. J. Geo-Inf. 2020, 9, 704. [Google Scholar] [CrossRef]
- Zumwald, M.; Knüsel, B.; Bresch, D.N.; Knutti, R. Mapping urban temperature using crowd-sensing data and machine learning. Urban Clim. 2021, 35, 100739. [Google Scholar] [CrossRef]
- Meier, F.; Fenner, D.; Grassmann, T.; Otto, M.; Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim. 2017, 19, 170–191. [Google Scholar] [CrossRef]
- Napoly, A.; Grassmann, T.; Meier, F.; Fenner, D. Development and Application of a Statistically-Based Quality Control for Crowdsourced Air Temperature Data. Front. Earth Sci. 2018, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Oxoli, D.; Ronchetti, G.; Minghini, M.; Molinari, M.E.; Lotfian, M.; Sona, G.; Brovelli, M.A. Measuring Urban Land Cover Influence on Air Temperature through Multiple Geo-Data—The Case of Milan, Italy. ISPRS Int. J. Geo-Inf. 2018, 7, 421. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Population on 1 January by Age Groups and Sex—Cities and Grater Cities. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/urb_cpop1 (accessed on 16 October 2022).
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Zeitsch. 1884, 1, 5–226. [Google Scholar]
- Aeronautica Militare. Tabelle Climatiche 1971–2000 della Stazione Meteorologica di Milano Linate dall’Atlante Climatico 1971–2000 del Servizio Meteorologico dell’Aeronautica Militare. Available online: http://www.meteoam.it/ (accessed on 16 October 2022).
- Pichierri, M.; Bonafoni, S.; Biondi, R. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan. Remote Sens. Environ. 2012, 127, 130–138. [Google Scholar] [CrossRef]
- Bacci, P.; Maugeri, M. The urban heat island of Milan. Nuovo Cim. C 1992, 15, 417–424. [Google Scholar] [CrossRef]
- ISPRA. Consumo di Suolo. Available online: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo (accessed on 17 October 2022).
- García, D.H. Analysis and precision of the Terrestrial Surface Temperature using Landsat 8 and Sentinel 3 images: Study applied to the city of Granada (Spain). Sustain. Cities Soc. 2021, 71, 102980. [Google Scholar] [CrossRef]
- Regione Lombardia. Database Topografico Regionale (DBTR). Available online: http://www.geoportale.regione.lombardia.it/download-dati (accessed on 19 October 2022).
- QuickMapServices Plugin. GitHub Repository. Available online: https://github.com/nextgis/quickmapservices (accessed on 2 November 2022).
- Open Data Regione Lombardia. Dati Sensori Meteo. Available online: https://www.dati.lombardia.it/browse?q=Dati%20sensori%20meteo&sortBy=relevance (accessed on 19 October 2022).
- Netatmo. Official Home Page. Available online: https://www.netatmo.com/en-us (accessed on 19 October 2022).
- Python Documentation. Patatmo. Available online: https://nobodyinperson.gitlab.io/python3-patatmo/ (accessed on 19 October 2022).
- Python Documentation. Pandas. Available online: https://pandas.pydata.org/docs/ (accessed on 20 October 2022).
- Python Documentation. Fiona. Available online: https://fiona.readthedocs.io/en/latest/ (accessed on 20 October 2022).
- R Documentation. Raster. Available online: https://www.rdocumentation.org/packages/raster/versions/3.6-3 (accessed on 20 October 2022).
- R Documentation. RandomForest. Available online: https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.1/topics/randomForest (accessed on 20 October 2022).
- Lotfian, M. Urban Climate Modelling, Case Study of Milan City. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2016. Available online: http://hdl.handle.net/10589/125023 (accessed on 14 November 2022).
- Horning, N. Random Forests: An Algorithm for Image Classification and Generation of Continuous Fields Data Sets. In Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan, 9–11 December 2010. [Google Scholar]
- Fung, K.Y.; Yang, Z.-L.; Niyogi, D. Improving the local climate zone classification with building height, imperviousness, and machine learning for urban models. Computat. Urban Sci. 2022, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- CloudMasking Plugin. GitHub Repository. Available online: https://github.com/SMByC/CloudMasking (accessed on 1 November 2022).
- Cook, M.; Schott, J.R.; Mandel, J.; Raqueno, N. Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Lucas, H.; Shmueli, G. Too Big to Fail: Large Samples and the p-Value Problem. Inf. Syst. Res. 2013, 24, 906–917. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar] [CrossRef]
- Jin, M.S.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- do Nascimento, A.C.L.; Galvani, E.; Gobo, J.P.A.; Wollmann, C.A. Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil. Atmosphere 2022, 13, 491. [Google Scholar] [CrossRef]
- Iqbal, B.; Ali, M. Estimation of spatio-temporal air temperature from satellite based LST under semi-arid to arid environment in Peshawar Basin, Northwest Pakistan. Adv. Space Res. 2022, 70, 961–975. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. Building Height. 2012. Available online: https://land.copernicus.eu/local/urban-atlas/building-height-2012 (accessed on 1 November 2022).
- Colombi, A.; De Michele, C.; Pepe, M.; Rampini, A.; Michele, C.D. Estimation of daily mean air temperature from MODIS LST in Alpine areas. EARSeL eProc. 2007, 6, 38–46. [Google Scholar]
- Wang, Y.; Zhan, Q.; Ouyang, W. Impact of Urban Climate Landscape Patterns on Land Surface Temperature in Wuhan, China. Sustainability 2017, 9, 1700. [Google Scholar] [CrossRef] [Green Version]
- Tse, J.W.P.; Yeung, P.S.; Fung, J.-C.-H.; Ren, C.; Wang, R.; Wong, M.-M.-F.; Cai, M. Investigation of the meteorological effects of urbanization in recent decades: A case study of major cities in Pearl River Delta. Urban Clim. 2018, 26, 174–187. [Google Scholar] [CrossRef]
- Das, M.; Das, A. Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST)—A case study of Sriniketan–Santiniketan Planning Area (SSPA), West Bengal, India. Urban Clim. 2020, 32, 100591. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on local climate zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Mushore, T.D.; Dube, T.; Manjowe, M.; Gumindoga, W.; Chemura, A.; Rousta, I.; Odindi, J.; Mutanga, O. Remotely sensed retrieval of Local Climate Zones and their linkages to land surface temperature in Harare metropolitan city, Zimbabwe. Urban Clim. 2019, 27, 259–271. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Li, N.; Wang, B.; Yao, Y.; Chen, L.; Zhang, Z. Thermal Contribution of the Local Climate Zone and Its Spatial Distribution Effect on Land Surface Temperature in Different Macroclimate Cities. Remote Sens. 2022, 14, 4029. [Google Scholar] [CrossRef]
Acquisition Date and Time | |
---|---|
For LCZ Mapping | For LST Mapping |
19 May 2021 10:10 a.m. (spring) | 5 September 2020 10:10 a.m. (summer) |
6 July 2021 10:10 a.m. (summer) | 6 July 2021 10:10 a.m. (summer) |
24 September 2021 10:10 a.m. (autumn) | 9 July 2021 10:10 a.m. (summer) |
5 December 2021 10:10 a.m. (winter) | 17 July 2022 10:10 a.m. (summer) |
16 March 2021 10:10 a.m. (additional image) |
Class ID and Name | Class Definition |
---|---|
2—Compact Mid-Rise | Dense mix of mid-rise buildings (3–9 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials. |
3—Compact Low-Rise | Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials. |
5—Open Mid-Rise | Open arrangement of mid-rise buildings (3–9 stories). Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials. |
6—Open Low-Rise | Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious land cover (low plants, scattered trees). Wood, brick, stone, tile and concrete construction materials. |
8—Large Low-Rise | Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Steel, concrete, metal, and stone construction materials. |
102—Scattered Trees | Lightly wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is natural forest, tree cultivation or urban park. |
104—Low Plants | Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function is natural grassland, agriculture, or urban park. |
107—Water | Large, open water bodies such as seas and lakes, or small bodies such as rivers, reservoirs, and lagoons. |
Class | Before Improvement | After Improvement | ||||
---|---|---|---|---|---|---|
PA (%) | UA (%) | OA (%) | PA (%) | UA (%) | OA (%) | |
2—Compact Mid-Rise | 98.7 | 94.5 | 94.9 | 97.9 | 95.7 | 94.0 |
3—Compact Low-Rise | 60.6 | 91.7 | 82.8 | 89.6 | ||
5—Open Mid-Rise | 62.1 | 86.3 | 82.5 | 94.4 | ||
6—Open Low-Rise | 94.1 | 80.8 | 90.9 | 85.9 | ||
8—Large Low-Rise | 98.0 | 96.7 | 97.7 | 95.1 | ||
102—Scattered Trees | 99.6 | 96.5 | 99.0 | 95.3 | ||
104—Low Plants | 98.6 | 99.3 | 99.2 | 98.5 | ||
107—Water | 100.0 | 99.5 | 99.4 | 99.6 |
LST Mean (°C) | LST Standard Deviation (°C) | |
---|---|---|
Artificial classes (classes 2, 3, 5, 6, and 8) | 47.1 | 3.3 |
Natural classes (classes 102, 104, and 107) | 40.3 | 7.3 |
LST Mean (°C) | LST Standard Deviation (°C) | |
---|---|---|
2—Compact Mid-Rise | 47.1 | 3.3 |
3—Compact Low-Rise | 48.5 | 3.7 |
5—Open Mid-Rise | 45.9 | 4.2 |
6—Open Low-Rise | 47.3 | 4.3 |
8—Large Low-Rise | 48.5 | 4.4 |
Classes | 2 and 3 | 2 and 5 | 2 and 6 | 2 and 8 | 3 and 5 | 3 and 6 | 3 and 8 | 5 and 6 | 5 and 8 | 6 and 8 |
---|---|---|---|---|---|---|---|---|---|---|
Cohen’s d | 0.40 (S) | 0.32 (S) | 0.06 (VS) | 0.34 (S) | 0.65 (M) | 0.27 (S) | 0.02 (VS) | 0.35 (S) | 0.61 (M) | 0.28 (S) |
CIs (°C) | 1.38–1.43 | 1.19–1.23 | 0.24–0.27 | 1.45–1.49 | 2.59–2.65 | 1.12–1.16 | 0.04–0.09 | 1.46–1.49 | 2.67–2.70 | 1.19–1.23 |
Class | Number of Stations |
---|---|
2—Compact Mid-Rise | 49 |
3—Compact Low-Rise | 57 |
5—Open Mid-Rise | 95 |
6—Open Low-Rise | 189 |
8—Large Low-Rise | 44 |
102—Scattered Trees | 5 |
104—Low Plants | 8 |
107—Water | 0 |
Classes | 2 and 3 | 2 and 5 | 2 and 6 | 2 and 8 | 3 and 5 | 3 and 6 | 3 and 8 | 5 and 6 | 5 and 8 | 6 and 8 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.56 | 0.30 | 0.96 | 0.33 | 0.27 | 0.38 | 0.23 | 0.65 | 0.03 | 0.62 |
(t-test) 2 | NO | OK | NO | OK | OK | NO | OK | NO | OK | NO |
Cohen’s d 3 | 0.51 (M) | 0.28 (S) | 0.75 (M) | 0.27 (S) | 0.24 (S) | 0.30 (S) | 0.18 (VS/S) | 0.52 (M) | 0.03 (VS) | 0.47 (S/M) |
Classes | 2 and 3 | 2 and 5 | 2 and 6 | 2 and 8 | 3 and 5 | 3 and 6 | 3 and 8 | 5 and 6 | 5 and 8 | 6 and 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Autumn | 1 | 0.80 | 0.61 | 1.29 | 0.91 | 0.19 | 0.48 | 0.11 | 0.68 | 0.30 | 0.38 |
(t-test) 2 | NO | NO | NO | NO | OK | NO | OK | NO | OK | NO | |
Cohen’s d 3 | 0.74 (M) | 0.65 (M) | 1.17 (L) | 0.93 (L) | 0.18 (VS) | 0.42 (S) | 0.09 (VS) | 0.62 (M) | 0.30 (S) | 0.34 (S) | |
Winter | 1.01 | 0.80 | 1.62 | 1.02 | 0.21 | 0.61 | 0.01 | 0.83 | 0.22 | 0.60 | |
(t-test) | NO | NO | NO | NO | OK | NO | OK | NO | OK | NO | |
Cohen’s d | 0.96 (L) | 0.85 (L) | 1.55 (VL) | 1.02 (L) | 0.21 (S) | 0.56 (M) | 0.01 (N) | 0.80 (L) | 0.23 (S) | 0.57 (M) | |
Spring | 0.48 | 0.19 | 0.83 | 0.55 | 0.29 | 0.35 | 0.07 | 0.63 | 0.36 | 0.28 | |
(t-test) | NO | OK | NO | NO | NO | NO | OK | NO | OK | OK | |
Cohen’s d | 0.47 (S/M) | 0.21 (S) | 0.78 (M) | 0.54 (M) | 0.30 (S) | 0.33 (S) | 0.07 (VS) | 0.62 (M) | 0.37 (S) | 0.26 (S) | |
Summer | 0.68 | 0.41 | 1.03 | 0.59 | 0.28 | 0.35 | 0.09 | 0.63 | 0.18 | 0.44 | |
(t-test) | NO | NO | NO | NO | NO | NO | OK | NO | OK | NO | |
Cohen’s d | 0.79 (M/L) | 0.47 (S) | 1.09 (L) | 0.66 (M) | 0.32 (S) | 0.37 (S) | 0.10 (VS) | 0.67 (M) | 0.21 (S) | 0.46 (S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puche, M.; Vavassori, A.; Brovelli, M.A. Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements. Remote Sens. 2023, 15, 733. https://doi.org/10.3390/rs15030733
Puche M, Vavassori A, Brovelli MA. Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements. Remote Sensing. 2023; 15(3):733. https://doi.org/10.3390/rs15030733
Chicago/Turabian StylePuche, Mathilde, Alberto Vavassori, and Maria Antonia Brovelli. 2023. "Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements" Remote Sensing 15, no. 3: 733. https://doi.org/10.3390/rs15030733
APA StylePuche, M., Vavassori, A., & Brovelli, M. A. (2023). Insights into the Effect of Urban Morphology and Land Cover on Land Surface and Air Temperatures in the Metropolitan City of Milan (Italy) Using Satellite Imagery and In Situ Measurements. Remote Sensing, 15(3), 733. https://doi.org/10.3390/rs15030733