A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Study Areas
2.2. Datasets
3. Methods
3.1. UFZ Segmentation
3.2. Multisource Feature Extraction
3.2.1. HSR Image Scene Composition
3.2.2. Image Scene Composition Extraction
3.2.3. Socioeconomic Features from POIs
3.2.4. Morphological Features of Buildings and Trees
3.2.5. Feature Generation
3.3. Graph-Based UFZ Classification
3.3.1. Construction of Mobility Graph
3.3.2. Classification of UFZ Using Graph SAGE
Algorithm 1: Graph SAGE embedding generation (i.e., forward propagation) algorithm |
Input: Mobility graph constructed based on O/D points and UFZs; multisource features: ; the number of layers of the network ; non-linearity ; mean aggregator functions ; neighborhood function Initialization: 1: 2: for k = 1 to K do 3: for do 4: 5: 6: end 7: 8: 9: end Output: Vector representations for all |
Algorithm 2: Proposed graph-based framework for UFZ classification |
Input: Multisource features of UFZs; trajectories between UFZs; number of graph convolution layers = 2; number of epoch T; learning rate = 0.001; dropout=0.2; Adam gradient descent; python =3.7; pyTorch = 1.7.1 1: Extract edge list from trajectories and node embeddings from multisource features; 2: Construct mobility graph 3://Train Graph SAGE model 4: for t = 1 to T do 5: //Graph convolution nodes feature 6: Perform graph learning at adjacent points spatial level by Algorithm 1 7: Batch normalization, dropout, and ReLU 8: Perform graph learning at adjacent points and farther points spatial level by Algorithm 1 9: Batch normalization, dropout, and ReLU 10: Output the graph leaning feature of all nodes 11: Calculate the error term according to Equation (8) and update the weight matrices using Adam gradient descent 12: end for 13: Conduct label prediction for all nodes based on the trained model Output: Predicted label for each UFZ |
4. Results
4.1. Classification Results Using Graph-Based Models
4.1.1. Results of the Zhuhai Dataset
4.1.2. Results of the Singapore Dataset
4.2. Mobility Patterns between Different UFZs
5. Discussion
5.1. Comparisons of Different Feature Combinations
5.2. Comparisions with Existing Methods
5.3. Limitations of the Proposed Framework
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, G.; Wu, J.; Yang, Z. Spatial pattern of urban functions in the Beijing metropolitan region. Habitat Int. 2010, 34, 249–255. [Google Scholar] [CrossRef]
- Cao, S.; Hu, D.; Zhao, W.; Mo, Y.; Yu, C.; Zhang, Y. Monitoring changes in the impervious surfaces of urban functional zones using multisource remote sensing data: A case study of Tianjin, China. GIScience Remote Sens. 2019, 56, 967–987. [Google Scholar] [CrossRef]
- Matsuoka, R.H.; Kaplan, R. People needs in the urban landscape: Analysis of Landscape and Urban Planning contributions. Landsc. Urban Plan. 2008, 84, 7–19. [Google Scholar] [CrossRef]
- Banzhaf, E.; Hofer, R. Monitoring Urban Structure Types as Spatial Indicators with CIR Aerial Photographs for a More Effective Urban Environmental Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 129–138. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Turner, B.L. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Tonne, C.; Halonen, J.I.; Beevers, S.D.; Dajnak, D.; Gulliver, J.; Kelly, F.J.; Wilkinson, P.; Anderson, H.R. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. Int. J. Hyg. Environ. Health 2016, 219, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, Y.; Liu, Q.; Li, L.; Wang, P. A CNN based functional zone classification method for aerial images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5449–5452. [Google Scholar]
- Hu, S.; He, Z.; Wu, L.; Yin, L.; Xu, Y.; Cui, H. A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data. Comput. Environ. Urban Syst. 2020, 80, 674. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Z.; Du, Y.; Liang, F.; Yi, J.; Ma, T.; Pei, T. Quantify city-level dynamic functions across China using social media and POIs data. Comput. Environ. Urban Syst. 2021, 85, 101552. [Google Scholar] [CrossRef]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Tang, W.; Chakeri, A.; Krim, H. Discovering Urban Functional Zones by Latent Fusion of Users GPS Data and Points of Interests. arXiv 2020, arXiv:2004.09720. [Google Scholar]
- Yuan, N.J.; Zheng, Y.; Xie, X. Discovering Functional Zones in a City Using Human Movements and Points of Interest. In Spatial Analysis and Location Modeling in Urban and Regional Systems; Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 33–62. [Google Scholar]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Cao, J.; Wei, T.; Qingquan, L.; Zhou, M.; Cao, R. Exploring the distribution and dynamics of functional regions using mobile phone data and social media data. In Proceedings of the 14th International Conference on Computers in Urban Planning and Urban Management, Boston, MA, USA, 7–10 July 2015. [Google Scholar]
- Tu, W.; Cao, J.; Yue, Y.; Shaw, S.-L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns. International J. Geogr. Inf. Sci. 2017, 31, 2331–2358. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Zhang, X.; Wan, Z. Identification of urban functional regions in Chengdu based on taxi trajectory time series data. ISPRS Int. J. Geo-Inf. 2020, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Mou, X.; Cai, F.; Zhang, X.; Chen, J.; Zhu, R. Urban Function Identification Based on POI and Taxi Trajectory Data. In Proceedings of the 2019 3rd International Conference on Big Data Research, New York, NY, USA, 20–22 November 2019; pp. 152–156. [Google Scholar]
- Liu, H.; Xu, Y.; Tang, J.; Deng, M.; Huang, J.; Yang, W.; Wu, F. Recognizing urban functional zones by a hierarchical fusion method considering landscape features and human activities. Trans. GIS 2020, 24, 1359–1381. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, X.; Shi, Y.; Han, Y.; Peng, Z.-R.; Gu, C. Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Comput. Environ. Urban Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Du, S.; Du, S.; Liu, B.; Zhang, X.; Zheng, Z. Large-scale urban functional zone mapping by integrating remote sensing images and open social data. GIScience Remote Sens. 2020, 57, 411–430. [Google Scholar] [CrossRef]
- Tu, W.; Zhang, Y.; Li, Q.; Mai, K.; Cao, J. Scale Effect on Fusing Remote Sensing and Human Sensing to Portray Urban Functions. IEEE Geosci. Remote Sens. Lett. 2021, 18, 38–42. [Google Scholar] [CrossRef]
- Yuan, N.J.; Zheng, Y.; Xie, X.; Wang, Y.; Zheng, K.; Xiong, H. Discovering urban functional zones using latent activity trajectories. IEEE Trans. Knowl. Data Eng. 2015, 27, 712–725. [Google Scholar] [CrossRef]
- Xu, S.; Qing, L.; Han, L.; Liu, M.; Peng, Y.; Shen, L. A new remote sensing images and point-of-interest fused (RPF) model for sensing urban functional regions. Remote Sens. 2020, 12, 1032. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Q.; Tu, W.; Mai, K.; Yao, Y.; Chen, Y. Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Comput. Environ. Urban Syst. 2019, 78, 101374. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Zhang, F.; Liu, R.; Du, Z. Identifying urban functional zones using public bicycle rental records and point-of-interest data. ISPRS Int. J. Geo-Inf. 2018, 7, 459. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Zhang, X.; Li, W.; Zhang, F.; Liu, R. A multi-modal transportation data-driven approach to identify urban functional zones: An exploration based on Hangzhou City, China. Trans. GIS 2019, 24, 123–141. [Google Scholar] [CrossRef]
- Xu, N.; Luo, J.; Wu, T.; Dong, W.; Liu, W.; Zhou, N. Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning. Remote Sens. 2021, 13, 373. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, X.; Tao, F.; Zhou, T. Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories. Remote Sens. 2020, 12, 2449. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, H.; Wen, J.; Sun, Z. Urban Region Function Mining Service Based on Social Media Text Analysis. In Proceedings of the 2020 International Conference on Service Science (ICSS), Xining, China, 24–26 August 2020; pp. 170–177. [Google Scholar]
- Cao, K.; Guo, H.; Zhang, Y. Comparison of approaches for urban functional zones classification based on multi-source geospatial data: A case study in Yuzhong District, Chongqing, China. Sustainability 2019, 11, 660. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Hu, Z.; Li, L.; Cao, J.; Jiang, J.; Li, Q.; Li, Q. Portraying urban functional zones by coupling remote sensing imagery and human sensing data. Remote Sens. 2018, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Huang, Z.; Wang, Y.; Wan, L.; Liu, Y.; Zhang, Y.; Shan, X. An SOE-Based Learning Framework Using Multisource Big Data for Identifying Urban Functional Zones. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7336–7348. [Google Scholar] [CrossRef]
- Sanlang, S.; Cao, S.; Du, M.; Mo, Y.; Chen, Q.; He, W. Integrating aerial lidar and very-high-resolution images for urban functional zone mapping. Remote Sens. 2021, 13, 2573. [Google Scholar] [CrossRef]
- Hu, S.; Gao, S.; Wu, L.; Xu, Y.; Zhang, Z.; Cui, H.; Gong, X. Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Comput. Environ. Urban Syst. 2021, 87, 101619. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 186–194. [Google Scholar]
- Zhou, Z.; Yu, J.; Guo, Z.; Liu, Y. Visual exploration of urban functions via spatio-temporal taxi OD data. J. Vis. Lang. Comput. 2018, 48, 169–177. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Song, J.; Lin, T.; Li, X.; Prishchepov, A.V. Mapping Urban Functional Zones by Integrating Very High Spatial Resolution Remote Sensing Imagery and Points of Interest: A Case Study of Xiamen, China. Remote Sens. 2018, 10, 1737. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Tao, C.; Li, H.; Qi, J.; Li, Y. A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data. Remote Sens. Environ. 2022, 270, 112830. [Google Scholar] [CrossRef]
- Li, L.; Li, D. Scene Classification of Remote Sensing Images Based on ResNet. Springer: Singapore, 2020; pp. 343–351. [Google Scholar]
- Wang, M.; Zhang, X.; Niu, X.; Wang, F.; Zhang, X. Scene Classification of High-Resolution Remotely Sensed Image Based on ResNet. J. Geovisualization Spat. Anal. 2019, 3, 16. [Google Scholar] [CrossRef]
- Jin, P.; Xia, G.S.; Hu, F.; Lu, Q.; Zhang, L. AID++: An Updated Version of AID on Scene Classification. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4721–4724. [Google Scholar]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar]
- Wang, M.; Yang, S.; Sun, Y.; Gao, J. Human mobility prediction from region functions with taxi trajectories. PLoS ONE 2017, 12, e0188735. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Mao, C.; Luo, Y. Graph Convolutional Networks for Text Classification. Proc. AAAI Conf. Artif. Intell. 2019, 33, 7370–7377. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035. [Google Scholar]
Data Used | Time | Spatial Information | Data Source | |
---|---|---|---|---|
Zhuhai | OSM data | 2019 | parcel-based | OpenStreetMap |
HSR imagery | 2019 | 0.6 m/pixel | Google Earth | |
POI data | 2019 | point-based | Baidu map | |
Forest canopy height data | 2019 | 30 m/pixel | Global Forest Canopy Height [35] | |
Building data | 2019 | parcel-based | Baidu map | |
Taxi GPS data | 2019/8/01- | point-based | Didi taxi dataset | |
2019/8/31 | ||||
Singapore | OSM data | 2020 | parcel-based | OpenStreetMap |
HSR imagery | 2020 | 0.6 m/pixel | Google Earth | |
POI data | 2020 | point-based | Data.gov | |
Forest canopy height data | 2019 | 30 m/pixel | Global Forest Canopy Height [36] | |
Building data | 2020 | parcel-based | OpenStreetMap | |
Mobility data | 2020/9/01- | point-based | CITYDATA | |
2020/9/30 |
Zhuhai Data | Attribute | Count |
---|---|---|
UFZs | Initial segmented UFZs | 1276 |
POIs | Category | 14 |
Company | 14,228 | |
Factory | 379 | |
Food and beverage | 19,231 | |
Government agencies and public organizations | 4277 | |
Health facilities | 3375 | |
Hospital | 101 | |
Living services | 33,122 | |
Public services | 749 | |
Recreational services | 2184 | |
Residence | 17,697 | |
School | 354 | |
Scientific institutions and educational services | 4689 | |
Shops | 30,775 | |
Transportation facilities | 15,450 | |
Total counts | 146,611 |
Singapore data | Attribute | Count |
---|---|---|
UFZs | Initial segmented UFZs | 886 |
Category | 11 | |
Company | 1599 | |
Industry | 607 | |
Food and beverage | 1599 | |
Government agencies and public organizations | 1759 | |
Health facilities | 1600 | |
POIs | Living services | 1597 |
Recreational services | 2032 | |
Residence | 3206 | |
Scientific institutions and educational services | 638 | |
Shops | 1600 | |
Transportation facilities | 2913 | |
Total counts | 19,150 |
Morphological Index | Description | ||
---|---|---|---|
2D metrics | Building area | ba_density | Building density in one UFZ |
ba_mean | Mean of building area | ||
ba_std | Standard deviation of building area | ||
Building perimeter | be_mean | Mean of building perimeter | |
be_std | Standard deviation of building perimeter | ||
Building | bsr_mean | Mean of building structure ratio | |
structural ratio | bsr_std | Standard deviation of building structure ratio | |
3D metrics | Building height | bh_mean | Mean of building height |
bh_std | Standard deviation of building height | ||
Tree height | th_mean | Mean of tree height | |
th_std | Standard deviation of tree height |
Data Source | Attributes | Count |
---|---|---|
Zhuhai taxi GPS dataset | Taxis | 4390 |
Effective days | 30 | |
Pick-up points | 44,654 | |
Drop-off points | 42,718 | |
Trajectories | 17,955 | |
Singapore mobility dataset | Mobile devices | 4738 |
Effective days | 30 | |
Leaving points | 368,135 | |
Arriving points | 368,135 | |
Trajectories | 21,647 |
Predicted | A | C | I | P | G | R | Producer’s Accuracy | |
---|---|---|---|---|---|---|---|---|
Actual | ||||||||
A | 25 | 0 | 0 | 1 | 1 | 1 | 89.29% | |
C | 0 | 29 | 1 | 9 | 0 | 6 | 64.44% | |
I | 0 | 0 | 53 | 7 | 2 | 2 | 82.81% | |
P | 0 | 4 | 5 | 57 | 7 | 17 | 63.33% | |
G | 1 | 0 | 3 | 10 | 45 | 0 | 76.27% | |
R | 0 | 2 | 1 | 11 | 1 | 79 | 84.04% | |
User’s accuracy | 96.15% | 82.86% | 84.13% | 60.00% | 80.36% | 75.24% | OA=75.79% | |
A: Agriculture zone; C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space zone; R: Residential zone; and OA: Overall accuracy. |
Predicted | C | I | P | G | R | Producer’s Accuracy | |
---|---|---|---|---|---|---|---|
Actual | |||||||
C | 21 | 3 | 6 | 1 | 5 | 58.33% | |
I | 0 | 37 | 0 | 1 | 2 | 92.50% | |
P | 3 | 0 | 25 | 0 | 0 | 89.29% | |
G | 3 | 1 | 1 | 14 | 4 | 60.87% | |
R | 3 | 5 | 1 | 2 | 127 | 92.03% | |
User’s accuracy | 70.00% | 80.43% | 75.76% | 77.78% | 92.03% | OA=84.53% | |
C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space zone; R: Residential zone; and OA: Overall accuracy. |
Study Area | Feature Combination | A | C | I | P | G | R | OA | Kappa | F1-Score |
---|---|---|---|---|---|---|---|---|---|---|
Zhuhai | POI | 0.18 | 0.22 | 0.72 | 0.41 | 0.69 | 0.67 | 53.1% | 0.413 | 0.513 |
POI + Tree | 0.92 | 0.64 | 0.81 | 0.57 | 0.70 | 0.76 | 71.7% | 0.651 | 0.717 | |
POI + Building | 0.94 | 0.64 | 0.80 | 0.56 | 0.71 | 0.74 | 71.3% | 0.645 | 0.701 | |
POI + Building + Tree | 0.82 | 0.64 | 0.91 | 0.54 | 0.76 | 0.80 | 73.7% | 0.674 | 0.734 | |
Image | 0.89 | 0.71 | 0.88 | 0.38 | 0.54 | 0.83 | 67.6% | 0.601 | 0.666 | |
Image + POI | 0.96 | 0.58 | 0.86 | 0.52 | 0.73 | 0.84 | 72.9% | 0.665 | 0.724 | |
Image + POI + Tree | 0.86 | 0.71 | 0.83 | 0.58 | 0.78 | 0.79 | 73.9% | 0.677 | 0.741 | |
Image + POI + Building | 0.96 | 0.76 | 0.77 | 0.62 | 0.71 | 0.78 | 73.9% | 0.678 | 0.744 | |
Image + POI + Building + Tree | 0.89 | 0.64 | 0.83 | 0.63 | 0.76 | 0.84 | 75.8% | 0.722 | 0.776 |
Study Area | Feature Combination | C | I | P | G | R | OA | Kappa | F1-Score |
---|---|---|---|---|---|---|---|---|---|
Singapore | POI | 0.72 | 0.42 | 0.61 | 0.25 | 0.94 | 74.4% | 0.605 | 0.732 |
POI + Tree | 0.61 | 0.65 | 0.64 | 0.15 | 0.92 | 74.8% | 0.568 | 0.728 | |
POI + Building | 0.72 | 0.47 | 0.71 | 0.30 | 0.97 | 78.2% | 0.656 | 0.765 | |
POI + Building + Tree | 0.75 | 0.68 | 0.82 | 0.15 | 0.98 | 81.1% | 0.715 | 0.797 | |
Image | 0.33 | 0.85 | 0.61 | 0.40 | 0.85 | 71.8% | 0.566 | 0.710 | |
Image + POI | 0.61 | 0.72 | 0.71 | 0.65 | 0.96 | 82.4% | 0.733 | 0.825 | |
Image + POI + Tree | 0.58 | 0.78 | 0.82 | 0.55 | 0.93 | 82.1% | 0.728 | 0.818 | |
Image + POI + Building | 0.69 | 0.75 | 0.82 | 0.60 | 0.91 | 82.4% | 0.734 | 0.825 | |
Image + POI + Building + Tree | 0.58 | 0.93 | 0.89 | 0.61 | 0.92 | 84.5% | 0.763 | 0.843 |
Model | RF | GBDT | SVM | FNN | GCN | Graph SAGE | |
---|---|---|---|---|---|---|---|
Study Area | |||||||
Zhuhai | 0.731 | 0.722 | 0.683 | 0.644 | 0.657 | 0.758 | |
Singapore | 0.811 | 0.812 | 0.78 | 0.748 | 0.726 | 0.845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Feng, C.-C.; Guo, Z. A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns. Remote Sens. 2023, 15, 730. https://doi.org/10.3390/rs15030730
Wang J, Feng C-C, Guo Z. A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns. Remote Sensing. 2023; 15(3):730. https://doi.org/10.3390/rs15030730
Chicago/Turabian StyleWang, Jifei, Chen-Chieh Feng, and Zhou Guo. 2023. "A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns" Remote Sensing 15, no. 3: 730. https://doi.org/10.3390/rs15030730
APA StyleWang, J., Feng, C. -C., & Guo, Z. (2023). A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns. Remote Sensing, 15(3), 730. https://doi.org/10.3390/rs15030730