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Abstract: Recent research has shown the advantages of incorporating multisource geospatial data into
the classification of urban functional zones (UFZs), particularly remote sensing and social sensing data.
However, the effects of combining datasets of varying quality have not been thoroughly analyzed. In
addition, human mobility patterns from social sensing data, which capture signals of human activities,
are often represented by origin-destination pairs, thus ignoring spatial relationships between UFZs
embedded in mobility trajectories. To address the aforementioned issues, this study proposed a
graph-based UFZ classification framework that fuses semantic features from high spatial resolution
(HSR) remote sensing images, points of interest, and GPS trajectory data. The framework involves
three main steps: (1) High-level scene information in HSR remote sensing imageries was extracted
through deep neural networks, and multisource semantic embeddings were constructed based on
physical features and social sensing features from multiple geospatial data sources; (2) UFZ mobility
graph was constructed by spatially joining trajectory information with UFZs to construct topological
connections between functional parcel segments; and (3) UFZ segments and multisource semantic
features were transformed into nodes and embeddings in the mobility graphs, and subsequently
graph-based models were adopted to identify UFZs. The proposed framework was tested on Zhuhai
and Singapore datasets. Results indicated that it outperformed traditional classification methods
with an overall accuracy of 76.7% and 84.5% for Zhuhai and Singapore datasets, respectively. The
proposed framework contributes to literature in heterogeneous data fusion and is generalizable to
other UFZ classification scenarios where human mobility patterns play a role.

Keywords: urban functional zone; graph convolutional network; taxi trajectory; location-based
service data; remote sensing

1. Introduction

Urban functional zones (UFZs), defined as the irregular urban blocks segmented by
roads and carrying meaningful interpretations of urban social functions and economic
activities [1], are widely employed as the basic spatial units for studying spatial and social
structures of the urban environment [2–4] since an ideal UFZ spatial configuration allevi-
ates negative consequences of urbanization, such as traffic congestion, air pollution, and
urban heat island [5,6]. To identify UFZs effectively, accurate recognition of their functional
layouts is critical [7]. For this task, geographic data describing landscape structures, social
sensing data reflecting socioeconomic properties, and the combination of remote and social
sensing data describing human mobility, are required to extract information that captures
both the physical and social characteristics of UFZs [8–10]. In terms of extracting the
physical characteristics of UFZs, which include landscape compositions and urban mor-
phological structures, high spatial resolution (HSR) remote sensing images have provided
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detailed information (e.g., spectrums, textures, shapes, angles) of ground objects useful for
LULC classification in urban areas and thereby the subsequent UFZ classification [8]. More-
over, the physical features extracted from HSR images are useful for identifying objects of
specific land-use types that reflect urban functions, e.g., buildings, forests, and water bodies.
Furthermore, the spatial patterns of various land uses are related to the socioeconomic
characteristics of individual land parcels. Zhang et al. [7] identified UFZs from a collection
of HSR remote sensing images using the convolutional neural network (CNN) model. To
achieve UFZ classification in high spatial resolution, Zhou et al. [11] proposed super object
convolutional neural network (SO–CNN) to classify UFZs from very high resolution (VHR)
remote sensing images. In addition to deep learning methods, Zhang et al. [12] combined
bottom-up classification with top-down feedback to improve the results of functional zone
mapping based on high-resolution remote sensing images.

However, the visual features from HSR images and static physical representations
of individual land use categories do not fully capture urban functions since UFZ is, by
definition, a heterogeneous region containing various land use types and diverse objects.
Therefore, the location-based social sensing data, such as point of interest (POI) data [11,12],
social media check-in data [13,14], mobile phone positioning data [10,15], and GPS trajectory
data [16–18], are often used to infer urban functional regions. By integrating extensive
social sensing data, the development of data mining methods and GIS analysis techniques
enable the discovery of semantic spatial patterns of social functions.

Many attempts have been made to combine heterogeneous data sources for under-
standing the spatial patterns of urban functions. Using POI data and a simplified Place2vec
model, Zhai et al. [19] detected functional regions at a neighborhood scale. Combining POI
data with HSR images, Zhang et al. [20] applied hierarchical semantic cognition methods to
identify UFZs from HSR images based on POI semantics. By extracting semantic features
from topic models, Du et al. [21] realized a large-scale urban functional identification
method combining HSR images and POI data. Based on topic models, Tu et al. [22] also
extracted social semantics from POIs and integrated them with physical semantics from
remote sensing images to perform classifications of urban functional segments at different
scales. Nevertheless, data of POIs are often scarce in suburbs and green space regions
as opposed to other POI types, resulting in data imbalance issues [21]. In addition, POI
data fall short of reflecting dynamic human mobilities since most POIs are names of places
or functions of facilities. New social sensing data sources provide more information that
represents human mobility and economic activities with high spatial and temporal resolu-
tion. Taxi trajectory data [16,23], real-time user data [24,25], and bicycle rental records [26]
were all being integrated with POIs to separate functional semantics for different urban
structures.

Parallel to adopting disparate data sources for features useful for UFZ classification,
recent developments in approaches for UFZ classification explored machine learning
models in natural language processing (NLP) to improve UFZ classification accuracy.
Du et al. [27] employed topic models and SVM to accurately identify urban functions
based on multi-model transportation data, such as POIs, taxi trajectory data, and bicycle
rental records. Xu et al. [28] employed ensemble learning and active learning to balance
the accuracy of functional zone identification using HSR images and social sensing data.
To better understand the correlations between different data sources, Zhang et al. [25]
developed a new cross-correlation mechanism to infer urban functions combining HSR
image, POI, and real-time user (RTU) data.

These approaches, which focus more on identifying the categories of UFZs based on
different classification models, fall short of distinguishing the influence of different combi-
nations of metrics on UFZ classification [29–31]. For instance, Tu et al. [32] adopted cluster
analysis to integrate landscape metrics with human activity patterns on the grid level in
Shenzhen, China, which achieved low accuracy on a large scale UFZ classification and failed
to demonstrate the advantages of incorporating human mobility data in UFZ classification.
To generalize the relationships between different features critical for UFZs recognition,
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Xu et al. [28] utilized ensembled models to perform UFZ classification based on multiple
metrics from buildings, landscapes, POIs, and human activities. The functional zone recog-
nition of one district in Beijing demonstrated varying importance of multisource metrics;
however, the study was limited in spatial scale and model generalization ability. Whilst
some research has been carried out on multisource data combinations of UFZ classification,
the effectiveness of different types of data has not been fully understood [2,28,33,34].

Another challenging problem in UFZ classification using multiple data sources is the
integration of human mobility information. Existing studies [17,23,24] utilizing transporta-
tion data have considered only their temporal characteristics when using taxi GPS trajectory
data, and most UFZ classification approaches conveniently downplay or neglect the fact
that both the spatial transitions and time-series changes must be considered together to
properly characterize human mobility. A recent study by Hu et al. [35] applied a graph con-
volutional neural network (GCNN) approach to taxi trajectory data to identify the functions
of road segments when using road segments as the basic study unit. Previous literature has
limited findings on the mobility data fusion and feature extraction for UFZ classification
from the perspective of contextual and topological connections represented by the human
movements between UFZs. Effective incorporation of the spatial relationships between the
urban units using human mobility data on the UFZ level remains a research gap.

This study proposes a graph-based multimodal data-fusion framework for UFZ classi-
fication that leverages remote sensing, social sensing data, and human mobility patterns. It
contributes to UFZ classification literature in three ways. First, the proposed framework
investigates the efficiency of graph-based models for urban functional zone classification.
Second, the contributions of latent features from multisource data are evaluated and the
results demonstrate the combination of remote sensing data and social perception data
that improve the accuracy of model predictions. Third, the evaluations of classification per-
formances reveal that human mobility patterns can improve UFZ classification by mining
the connections between human movements and urban functions. Additionally, the study
shed light on how the classification performances are affected by multiple data sources,
classifiers, and parameters of classification models through the experiments in Zhuhai and
Singapore.

2. Study Areas and Datasets
2.1. Study Areas

We evaluated the proposed UFZ classification framework on two cities: Zhuhai,
Guangdong Province of China, and Singapore. The locations of the two cities are presented
in Figure 1.

Zhuhai (22◦16′N, 113◦34′E), a prefecture-level city with a population of 2.44 million
in 2020, is one of China’s four original special economic zones (SEZs) established in the
1980s. It covers 1724.32 km2, which in addition to its mainland includes 217 islands. Zhuhai
has experienced tremendous changes in urban morphological composition and landscape
structure due to the rapid urbanization since it is granted the SEZ status. The changes
in its urban space are attributed to various human activities, making Zhuhai an ideal
location for UFZ identification. The study site focused on the mainland of Zhuhai, covering
1507.07 km2, with a complex urban functional structure and a diverse range of land cover
patterns. Singapore (1◦29′N, 103◦85′E) is a highly urbanized city-state in South-East Asia,
with a population of 5.45 million. The land reclamation projects increased the land area of
Singapore to 724.2 km2 by 2020. Since the past century, Singapore has been undergoing an
accelerated process of urbanization with rapid land-use/land cover transformations. Our
study region covers the main island area of Singapore, occupying a total area of 692.28 km2,
and contains various urban functional areas. The different morphological compositions
and urbanization processes between the two cities provide good comparisons for UFZ
classification as well as evidence to demonstrate generalizability of our proposed method.
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Figure 1. Geographic locations of study areas.

2.2. Datasets

The corresponding data sources, including HSR remote sensing images, POIs, building
footprints, forest canopy height, OpenStreetMap (OSM) road networks, and trajectory data
were mainly collected from crowdsourced datasets and government websites as described
in Table 1. HSR remote sensing images with three bands (i.e., red, green, and blue) covering
both of the study areas in 2019 were collected from Google Earth, and the spatial resolution
is 0.6 m. These HSR images contain rich geometric, textural, and spectral information of
geographic objects that enables extracting physical features of urban subregions useful
for UFZ classification. The POI data of Zhuhai in 2018 were extracted from Gaode map
(lbs.amap.com/, accessed on 1 December 2020), in which POIs were point features with
information including latitude, longitude, and triple category. The POI data of Singapore
were derived from OSM, google places, and a government website (Data.gov.sg, accessed
on 29 November 2022) in 2019. The 3D building data of Zhuhai were collected from the
3D maps produced by Baidu map. The original datasets include 3D building objects with
attributes of height, shape, and area. The 3D building data of Singapore were collected from
OSM buildings (3dbuildings.com/, accessed on 7 December 2020). The forest canopy height
data were extracted from a raster dataset that measured the global canopy height in 2019
produced by NASA [36]. The vector data of OSM road networks were obtained from OSM
in 2019, including administrative boundaries of Zhuhai and Singapore. Figures 2 and 3
show a section in Zhuhai and in Singapore as examples of data used in this study.

lbs.amap.com/
Data.gov.sg
3dbuildings.com/
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Table 1. Data sources.

Data Used Time Spatial Information Data Source

Zhuhai

OSM data 2019 parcel-based OpenStreetMap
HSR imagery 2019 0.6 m/pixel Google Earth

POI data 2019 point-based Baidu map

Forest canopy height data 2019 30 m/pixel Global Forest Canopy
Height [35]

Building data 2019 parcel-based Baidu map

Taxi GPS data
2019/8/01- point-based Didi taxi dataset2019/8/31

Singapore

OSM data 2020 parcel-based OpenStreetMap
HSR imagery 2020 0.6 m/pixel Google Earth

POI data 2020 point-based Data.gov

Forest canopy height data 2019 30 m/pixel Global Forest Canopy
Height [36]

Building data 2020 parcel-based OpenStreetMap

Mobility data 2020/9/01- point-based CITYDATA2020/9/30
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Figure 2. HSR image, road network, building data, forest canopy height, and POIs in Zhuhai.
 

2 

 
 

Figure 3. HSR image, road network, building data, forest canopy height, and POIs in Singapore.

Data.gov
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Trajectory data, such as taxi GPS trajectory data and location-based service data,
reveal the socioeconomic activities that people engage in since these activities lead to
commuting between different locations [23,37], and it was suggested that taxi trips account
for a significant portion of urban residents’ mobility [38]. To map the patterns of mobility
across different urban zones, the GPS trajectory dataset generated by 9,075 taxis in Zhuhai
between 1 August 2019 and 31 August 2019 was used to extract the pick-up and drop-off
locations (i.e., O/D points) for trips. The original dataset includes information of taxi
ID, longitude, latitude, timestamp, direction, speed, and the number of passengers. The
crowdsourced mobility data in Singapore were obtained from CITYDATA citydata.ai/
(accessed on 1 June 2021). The trajectory dataset includes 368,135 trip hops obtained from
5000 location-based service devices in September 2020.

3. Methods

In this paper, a graph-based analysis framework is proposed to classify UFZ by in-
tegrating multisource data. As shown in Figure 4, the proposed framework consists of
four components, UFZ segmentation, multisource feature fusion, mobility graph construc-
tion, and graph-based classification. First, the spatial units for UFZ identification were
segmented using OSM road networks. Then, multisource feature vectors describing the
physical and socioeconomic characteristics of UFZs were developed from HSR images,
POIs, building footprints, and forest canopy height maps. Next, the UFZs, along with
multisource features, were converted into nodes with semantic embeddings of directed
graphs based on the trajectory information extracted from mobility data. In the last step,
the Graph SAGE model was introduced to identify the categories of UFZs based on the
geo-semantic embeddings and mobility connections.

 

3 

 
 

Figure 4. The proposed UFZ classification framework.

citydata.ai/
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3.1. UFZ Segmentation

In urban functional identification analysis, the traffic analysis zones (TAZs) based on
road network are commonly adopted as the basic research unit [37,39,40]. In this study, the
TAZs segmented from multilevel road networks form the initial UFZs. UFZ segmentation
was conducted using the OSM road network of two study areas dividing the study areas
into multiple TAZs. We used the primary, secondary, and tertiary roads from OSM as the
main road networks primarily since they offer the appropriate resolution for delineating
functional zones that avoided smaller or tiny zones that do not carry meaningful activities
with respect to common urban functions.

The original OSM road network in vector format was projected onto the HSR images
and subsequently transformed into raster image patches with the same resolution as the
HSR images. Morphological operations, including dilation and thinning, were applied
to eliminate the overpasses and outlying roads in the raster road network. The binary
road network in a raster format was then converted into the (vector) polygons by creating
multipart features based on the connectivity between pixels. The boundaries of TAZs
obtained from morphological operations do not correspond exactly to the road centerlines.
The skeleton road network obtained after morphological operations divided the study areas
with a buffer distance from the road centerlines, which facilitated the analysis of mobility
connections between UFZs based on the origin/destination (O/D) points extracted from
taxi trajectories or other mobile devices.

3.2. Multisource Feature Extraction

The UFZ classification differs from land use/land cover (LULC) classification since
UFZs are heterogeneous zones composed of multiple objects with different LULC types [22].
As a result, the spatial distribution of ground components and their types plays significant
roles in UFZ recognition. In addition to these physical attributes, socioeconomic attributes
are equally essential, given that UFZs are defined with human activities which are a major
consideration. To capture the physical and socioeconomic attributes, the multisource data
introduced in Section 2.2 are employed, and semantic features were extracted and then
integrated to characterize UFZs.

3.2.1. HSR Image Scene Composition

UFZs are composed of heterogenous ground objects, such as buildings, playgrounds,
and green lands. To classify UFZs, the physical characteristics of images at the pixel level
are commonly used [20,21,28,41]. Nevertheless, pixel-level features often fail to represent
the socioeconomic functions of an urban zone since the UFZ is composed of various
socio-economic information bearing objects—a residential UFZ may include residential
buildings, roads, and green land, and a public service UFZ may include functional buildings,
playgrounds, and green land. In this study, rather than pixel-level features, we opted for
describing UFZs through scene composition. Here, a scene refers to a square image patch
representative of a ground object and the composition refers to the proportions of individual
ground objects within the UFZ. Scene composition is adopted since the socioeconomic
functions of UFZ can be inferred through the occurrences of ground objects. Specific steps
to extract scene composition are described in the next section.

3.2.2. Image Scene Composition Extraction

To obtain the scene composition, a CNN-based method, which uses the hierarchical
deep architecture of CNN to automatically learn high-level features of remote sensing
images, is generally used. In this study, we adopted Resnet-50, a widely used CNN-based
method that achieved high accuracy in the scene classification task in several benchmark
remote sensing scene classification datasets [42–44].

The extraction of image scene composition features was realized by the following steps
(Figure 5). First, we generated the datasets of image scenes with a size of 256 × 256 clipped
from each UFZ. A total of 32,203 image scenes were randomly selected from Zhuhai and
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Singapore image datasets. Second, we labeled the image scenes with 11 classes, including
agriculture, bare land, commercial buildings, forest, functional buildings, green land,
industrial, playground, residential, road, and water, based on the categories from the land
use maps of Zhuhai and Singapore obtained from the global land cover dataset [45]. The
sample dataset was divided into a training set, a validation set, and a test set by the ratio of
6:1:3. Third, Resnet-50, which was pretrained on ImageNet and later fine-tuned with the
sample data to reach 88.7% classification accuracy on our test set, was employed to predict
the classes of all the image scenes generated within UFZs. The number of scenes for each
land use class was counted for each UFZ, the percentages of each scene class are considered
as the features of image scene composition. After classifying the HSR image patches based
on deep learning features, the image scene composition of each UFZ can be represented by
a vector with 11 elements, with each one reflecting the percentage of a land use category
within the UFZ. For r-th UFZ, the feature vector of scene distribution is represented as:

sr = c1,r, c2,r, c3,r, . . . , c11,r, r ∈ 1, 2, 3, . . . , n (1)

where c1,r, c2,r, c3,r, ... indicates the percentage of different classes of land use appearing in
r-th UFZ and n is the total number of UFZs. 

4 

 
 

 
 
 

 
 

Figure 5. Procedures for extracting image scene compositions for UFZs.

3.2.3. Socioeconomic Features from POIs

POI categories can be viewed as virtual words that reflect socioeconomic properties.
Therefore, the number and distribution of POIs in each UFZ indicate the land use patterns
and socioeconomic functions. The original POI data collected in Zhuhai include 23 classes
of POIs that are not entirely mutually disjoint, resulting in duplication and ambiguity.
Therefore, we reclassified level-1 POIs into 14 categories by merging or splitting some of
their classes, as displayed in Table 2. For example, places such as schools and hospitals
represent specific social functions; therefore, they were divided into independent classes.
Transportation service, road facility, and pass facility have similar functions, and then they
were merged into the category of public services. Correspondingly, the POIs in Singapore
were reclassified into 11 classes by integrating categories with similar functions, as shown
in Table 3.

The socioeconomic characteristics of UFZ are described through the spatial distribution
of different categories of POIs. To minimize the biases caused by unbalanced data volumes
between POI categories, the POI feature vector is constructed using the frequency density
of i-th POI category, defined as:

vi,r =
POIi, r

Arear
, i ∈ {1, 2, . . . , m}, r ∈ {1, 2, . . . , n} (2)
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where vi,r is the frequency density of i-th POI category in r-th UFZ, POIi,r represents the
number of POI points of i-th POI category within r-th UFZ, and Arear is the total area of
r-th UFZ. While m is the total number of POI categories (i.e., Zhuhai has 14 POI classes and
Singapore has 11 POI classes) and n is the total number of UFZs. The POI feature vector of
r-th UFZ is denoted as follows:

pr = (v1,r, v2,r, . . . , vm,n) (3)

Table 2. Statistics of segmented UFZs and POIs of Zhuhai data.

Zhuhai Data Attribute Count

UFZs Initial segmented UFZs 1276

POIs

Category 14
Company 14,228
Factory 379
Food and beverage 19,231
Government agencies and
public organizations 4277

Health facilities 3375
Hospital 101
Living services 33,122
Public services 749
Recreational services 2184
Residence 17,697
School 354
Scientific institutions and
educational services 4689

Shops 30,775
Transportation facilities 15,450
Total counts 146,611

Table 3. Statistics of segmented UFZs and POIs of Singapore data.

Singapore data Attribute Count

UFZs Initial segmented UFZs 886

Category 11
Company 1599
Industry 607

Food and beverage 1599
Government agencies and

public organizations 1759

Health facilities 1600
POIs Living services 1597

Recreational services 2032
Residence 3206

Scientific institutions and
educational services 638

Shops 1600
Transportation facilities 2913

Total counts 19,150

3.2.4. Morphological Features of Buildings and Trees

The building features are calculated based on the building footprints with 2D and
3D information. The metrics used in our studies are presented in Table 4. For building
metrics, nine indicators are used to describe the structures of buildings in UFZ parcels based
on their physical properties, including three 2D metrics—area, perimeter, and building
structure ratio—and one 3D metric—height. Building structure ratio is calculated by
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dividing the building area by the perimeter. These metrics are included as they tend to
exhibit different levels of variations, e.g., commercial UFZs tend to exhibit high variations
whereas residential UFZs tend to exhibit less variations. In addition, commercial UFZs tend
to have more complex building shapes. Building heights, which reflect 3D characteristics
of the buildings, can potentially contribute to UFZ classification since they may reflect the
different activities that take place within, e.g., commercial buildings tend to be higher while
residential buildings tend to be of similar heights. Along with other metrics considered in
this study, they account for important urban morphological attributes indicative of varying
activity intensities.

Table 4. Morphological indices of buildings and tree height.

Morphological Index Description

2D metrics

Building area

ba_density Building density in
one UFZ

ba_mean Mean of building area

ba_std Standard deviation of
building area

Building perimeter
be_mean Mean of building

perimeter

be_std Standard deviation of
building perimeter

Building bsr_mean Mean of building
structure ratio

structural ratio bsr_std
Standard deviation of

building structure
ratio

3D metrics

Building height
bh_mean Mean of building

height

bh_std Standard deviation of
building height

Tree height
th_mean Mean of tree height

th_std Standard deviation of
tree height

In addition to the 2D and 3D metrics of buildings, tree canopy height is included as a
metric in this study as its variations reflect the morphology of urban green space, which
helps differentiate green spaces and agricultural UFZs from others. Accordingly, the mean
value and standard deviation (std) value of tree canopy height are regarded as significant
indicators for UFZ classification. The feature vector of 2D and 3D metrics for r-th UFZ is
shown as:

mr = ba_ensityr, ba_meanr, ba_stdr, be_meanr, be_stdr, bsr_meanr, bsr_stdr,
bhmeanr, bhstdr, thmeanr, thstdr, r ∈ {1, 2, . . . , n} (4)

3.2.5. Feature Generation

The feature vectors described from Sections 3.2.1–3.2.3 form the complete set of features
for distinguishing individual UFZs. In this study, these feature vectors were concatenated
in order that the full set of semantic features of each UFZ can be readily used in the
proposed graph-based approach. The concatenated semantic feature vector for r-th UFZ is
represented as:

xr = {sr, pr, mr}, r ∈ {1, 2, . . . , n} (5)
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3.3. Graph-Based UFZ Classification

To utilize trajectory information, it is required to first construct the corresponding
mobility graph before the second, which is to classify individual zones using a combination
of the features mentioned in the preceding section and the constructed graph.

3.3.1. Construction of Mobility Graph

Graph theory is widely used in analyzing the spatial distributions of remote sensing
image units and modeling GIS data-based transportation networks. Specifically, studies
in human mobilities have shown that trajectories, which lead naturally to graph-based
models, are one of the indicators for human activities associated with the socioeconomic
characteristics of UFZs [26,37,46]. Transforming UFZs to mobility graphs is a critical step
in the graph-based classification framework. Following the calculations of multisource
features for initial UFZs, we integrated the trajectory information with topological linkages
of UFZs to capture the contextual information for classifying UFZs.

The preprocessing of trajectory data includes extracting O/D points, cleaning outlier
data points, and recording effective trips between corresponding origin and destination
points. The statistics of preprocessed trajectory data are shown in Table 5. First, we locate
O/D points in UFZs. The directions of trajectories from origin points to destination points
represent the human movements between UFZs. Next, the UFZs are treated as nodes in a
graph with multisource features and the directions of trajectories between UFZs represent
the connections between UFZ nodes. The UFZ nodes are connected based on adjacency and
directions of trajectories to form a mobility network from Figure 6a to Figure 6b. Finally,
we use a mobility network to construct a directed graph G = (V, E), consisting of a set
of nodes V that are connected by edges E. Nodes V refer to UFZs and edges E refer to
mobility connections between UFZs. Each UFZ node in the mobility graph is deemed
as a node vi and each trajectory as an edge ei,j, with the direction of edge from the start
node vi to the end node vj of each trajectory. Each node v has a feature vector xv, which is
summarized in a vector matrix X ∈ Rn×d, where n represents the number of nodes (i.e., the
number of UFZs) and d is the dimension of the feature vector (i.e., the number of features),
each row xv ∈ Rd is the semantic feature vector for node v, as shown in Figure 6c. The
adjacency matrix of graph G is defined as A ∈ Rn×n.

It should be noted that, while the graph G includes all UFZs as nodes, it is entirely
possible that some nodes do not serve as an origin or a destination, i.e., no one boarded
or alighted on these UFZs. In Figure 6c, these UFZs were presented by the hollow nodes.
For these nodes, their labels or types will not participate in the Graph SAGE classification
process described in the next section; rather, their classification will be based only on
non-mobility features described in Section 3.2.

Table 5. Statistics of trajectory data used in our study.

Data Source Attributes Count

Zhuhai
taxi GPS dataset

Taxis 4390
Effective days 30
Pick-up points 44,654
Drop-off points 42,718

Trajectories 17,955

Singapore
mobility dataset

Mobile devices 4738
Effective days 30
Leaving points 368,135
Arriving points 368,135

Trajectories 21,647
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(a) (b) (c) 

 
Figure 6. UFZ mobility graph generation: (a) UFZs contain O/D points and effective trajectories;
(b) mobility network constructed based on UFZ points and movements; (c) mobility graphs with
multisource feature embeddings transformed from mobility network.

3.3.2. Classification of UFZ Using Graph SAGE

To take advantage of the topological connections and the human movement informa-
tion built in the graph for UFZ classification, this study considered a graph convolution
approach to aggregate the spatial context information of each UFZ. The approach contains
two convolutional layers and a so f tmax layer that was used as the final classifier. The
Adam algorithm was adopted to optimize the loss and predicted labels for nodes in the
graphs. The algorithm used back propagation according to the difference between the
predicted label and the ground truth label, and optimized the network weight until the
weight parameter with the best prediction result was obtained. The training set and test
set split randomly from the input graph at first and the attribute of each node is with the
same dimensions as the feature vector. Spatial context information of each node was first
extracted through two layers of graph convolutional layers. The dimension of the extracted
feature was further reduced to six through a fully connected layer to match the number of
categories. Then, the model prediction was obtained by applying so f tmax on top of it and
selecting the category with the largest probability.

In this study, the UFZs are regarded as graph entities and trajectories are transformed
into directed edges. Following the construction of a directed graph based on the mobility
features, two graph structures, graph convolutional networks (GCN) and Graph SAGE
(SAmple and aggreGatE), were employed to identify the categories of nodes or UFZ
categories.

GCN, a two-layer model, operates directly on a graph and induces embedding vectors
of nodes based on the properties of their adjacent neighbors [47]. In the graph-based model,
the graph semantic feature matrix X and the adjacency matrix A are taken as inputs for the
multilayer GCN computation. The output for the first layer of GCN is represented as:

H(1) = σ
(

ÃXW0

)
, (6)

where W0 ∈ Rm×n is a weight matrix of trainable parameters at the first layer and σ is an
activation function, e.g., a rectified linear unit (ReLU) σ(x) = max(0, x). We can aggregate
high order neighborhood information by stacking multiple GCN layers:

H(l+1) = σ
(

ÃL(l)Wl

)
, (7)

where l denotes the layer number and H(0) = X. When multiple GCN layers are stacked
together, information about larger neighborhoods is captured, which reveals the spatial
dependencies among UFZs. However, the simple GCN layers cannot reveal the hidden
connections between nodes. To deeply discover the relationships between nodes and edges
in a graph, we introduced Graph SAGE for classifying UFZs based on constructed mobility
graphs. Developed from the structure of simple GCN layers, Graph SAGE is a general
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inductive framework that efficiently generates node embeddings for previously unseen
data by leveraging node feature information (e.g., text attributes) [48]. The aggregation
process of Graph SAGE is illustrated in Figure 7.

 

4 

 
 

 
 
 

 
 Figure 7. Graph SAGE aggregation process.

Rather than training a unique embedding vector for each node, a set of aggregator
functions is trained that learns to aggregate feature information from a node’s immediate
neighborhood. The data away from a given node are aggregated by each aggregator
function from a set of search depths. Graph SAGE generates embeddings for previously
unseen nodes by applying learned aggregation functions at test or inference time. The
forward propagation rule for Graph SAGE is expressed as Algorithm 1.

Algorithm 1: Graph SAGE embedding generation (i.e., forward propagation) algorithm

Input: Mobility graph G = (V, E) constructed based on O/D points and UFZs; multisource
features: x = {x1, x2, ..., xv, , ∀v ∈ V}; the number of layers of the network K; non-linearity σ;
mean aggregator functions AGG; neighborhood function N : v→ 2v

Initialization:
1: h0 ← xv, ∀v ∈ V
2: for k = 1 to K do
3: for v ∈ V do
4: hk

N(v) ← AGG
({

hk−1
v , ∀u ∈ N(v)

})
5: hk

v ← σ
(

WkCONCAT
(

hk−1
v , hk

N(v)

))
6: end
7: hk

v ← hk
v/‖hk

v‖2, ∀v ∈ V
8: zv ← hk

v, ∀v ∈ V
9: end
Output: Vector representations for all v ∈ V

From Algorithm 1, K is the number of layers of the network, ∀u is the eigenvector of
the node u,

{
hk−1

v , ∀u ∈ N(v)
}

denotes the embeddings of the neighbor u of the node V

in the k− 1 layer, and hk
v represents the characteristics of all neighbors of node v at the k

level. For each iteration, the nodes collect information from their local neighbors, and as
the process continues, the nodes acquire progressively more information from the farther
reaches of the graph. Therefore, the extraction of long-range contextual linkages occurs.
The output of multilayer Graph SAGE is HK. The cross-entropy error is utilized to punish
the disparity between the network output and the labels of the original labeled samples,
specifically:

Lclassi f ication = −1
c

C

∑
i=1

yi ∗ log
(

so f tmax
(

FC
(

HK
)))

(8)

where yi is the labeled examples set, C denotes the number of classes, and HK is the output
of Graph SAGE with K layers. The detailed procedures of Graph SAGE classification
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are shown in Algorithm 2. We considered feature matrix X as the inputs and trained the
multilayer network using the UFZ mobility graph G as in Algorithm 2. We used two Graph
SAGE convolutional layers to obtain the hidden relationships between UFZs. The number
of epochs is set to 1000, while the learning rate is set to 0.001 and dropout to 0.2. The
Graph SAGE model was constructed and trained through iterations. The output was the
predicted label vectors for UFZs. In this study, we split the origin datasets by 7:3 for training
and testing, respectively. We examined the impacts of different feature combinations on
functional zone classification by combining different features as the inputs for various
classification models.

Algorithm 2: Proposed graph-based framework for UFZ classification

Input: Multisource features of UFZs; trajectories between UFZs; number of graph convolution
layers = 2; number of epoch T; learning rate = 0.001; dropout=0.2; Adam gradient descent; python
=3.7; pyTorch = 1.7.1

1: Extract edge list from trajectories and node embeddings from multisource features;
2: Construct mobility graph G = (V, E)
3://Train Graph SAGE model
4: for t = 1 to T do
5: //Graph convolution nodes feature
6: Perform graph learning at adjacent points spatial level by Algorithm 1
7: Batch normalization, dropout, and ReLU
8: Perform graph learning at adjacent points and farther points spatial level by Algorithm 1
9: Batch normalization, dropout, and ReLU
10: Output the graph leaning feature of all nodes
11: Calculate the error term according to Equation (8) and update the weight matrices using

Adam gradient descent
12: end for
13: Conduct label prediction for all nodes based on the trained model
Output: Predicted label for each UFZ

4. Results
4.1. Classification Results Using Graph-Based Models
4.1.1. Results of the Zhuhai Dataset

The proposed graph-based classification framework combines urban scenes, building
objects, canopy height, and socioeconomic attributes to construct semantic features of
functional zones. The spatial heterogeneity of ground objects and the variations in urban
morphology reflect the distinct social functions of each urban subregion in different cities.
We defined six types of functional zones in our study: Agriculture zones, commercial zones,
industrial zones, public service zones, green space zones, and residential zones, which were
set by referencing existing UFZ classification systems and published papers [7,8,11,13,21].
The classified UFZ map in Zhuhai is presented in Figure 8a.

The proportion of scene distribution of each UFZ is extracted based on the deep
learning features of HSR remote sensing imageries. The socioeconomic characteristics are
described through the spatial joining between POI densities and urban zones. Aside from
the 2D physical features of buildings, the 3D morphological indices are calculated based
on building objects and tree canopies. The integrated multisource features are applied to
the graph-based model for UFZ classification in Zhuhai. The confusion matrix obtained
by the proposed method using multisource features is shown in Table 6. The overall
classification accuracy of our method is around 75.79% when using combined features
on Zhuhai dataset. The commercial zones and public service zones have relatively lower
producer’s accuracy compared to other UFZ categories. Some public service zones in the
test set are mistakenly classified into residential and commercial zones. The public service
zones where administrative agencies and scientific institutions are located may include
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residential buildings and POIs for food and beverage or living services, which makes this
type of UFZ difficult to be distinguished from others.

 

5 

 
 

 
 

Figure 8. UFZ classification maps based on Graph SAGE model: (a) The UFZ map of Zhuhai; (b) the
UFZ map of Singapore.

Table 6. Confusion matrix for the test dataset in Zhuhai using Graph SAGE model.

Actual
Predicted

A C I P G R
Producer’s
Accuracy

A 25 0 0 1 1 1 89.29%
C 0 29 1 9 0 6 64.44%
I 0 0 53 7 2 2 82.81%
P 0 4 5 57 7 17 63.33%
G 1 0 3 10 45 0 76.27%
R 0 2 1 11 1 79 84.04%

User’s accuracy 96.15% 82.86% 84.13% 60.00% 80.36% 75.24% OA=75.79%

A: Agriculture zone; C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space zone; R: Residential zone; and
OA: Overall accuracy.

Figure 9 zooms into the UFZs in Zhuhai which are misclassified by our proposed
method. Most misclassifications are found in the central urban areas in the eastern part of
Zhuhai. In correspondence to the confusion matrix, the model is not good at recognizing
between public service zone and other UFZs; however, it performs well in most residential
and agricultural zones.

4.1.2. Results of the Singapore Dataset

We evaluated the generalizability of the proposed method using the Singapore dataset.
For Singapore, 886 UFZs with ground truth labels were obtained using the semi-supervised
sampling method with the land use maps in 2019. The image, building, tree, and POI
features are extracted to construct the vector of semantic features. The location-based
service data are transformed into trajectories to establish the mobility graph. Results of
the UFZ classification map are presented in Figure 8b, and quantitative evaluations are
presented in Table 7. The overall accuracy of Graph SAGE reaches 84.5%, with a producer’s
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accuracy of about 58% for commercial zones, 93% for industrial zones, 89% for public
service zones, 61% for green space zones, and 92% for residential zones.

 

5 

 
 

 
 

Figure 9. Misclassification map in Zhuhai using Graph SAGE model.

Table 7. Confusion matrix for test dataset in Singapore using Graph SAGE model.

Actual
Predicted

C I P G R
Producer’s
Accuracy

C 21 3 6 1 5 58.33%
I 0 37 0 1 2 92.50%
P 3 0 25 0 0 89.29%
G 3 1 1 14 4 60.87%
R 3 5 1 2 127 92.03%

User’s accuracy 70.00% 80.43% 75.76% 77.78% 92.03% OA=84.53%

C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space zone; R: Residential zone; and OA: Overall
accuracy.

The precisely classified numbers in the confusion matrix and evaluation metrics in the
Singapore dataset demonstrated that the proposed model is suited for distinguishing the
industrial and residential zones in Singapore; however, it has lower efficiency in identifying
commercial and green space zones (Table 7). Figure 10 shows the mistakenly classified UFZs
of our proposed method in Singapore. According to Figure 10, several commercial, public
service, and residential zones were misclassified using the graph-based model. The mixed
functions in one building or a community are the main reason for the misclassification. In
Singapore, many shopping malls are located close to or within residential zones. Moreover,
the high coverage of greenness in this city results in the complex mixture of green space
with residential or public service regions, making it challenging for the model to accurately
distinguish between these zones based on semantic features sharing similar patterns.
Nevertheless, the experiments in Singapore demonstrate that the proposed method is
applicable for UFZ identification based on mobility data.
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Figure 10. Misclassification map in Singapore using Graph SAGE model.

4.2. Mobility Patterns between Different UFZs

Figure 11 illustrates a sample of human trajectories in Zhuhai and Singapore. For
Zhuhai, we selected three taxis with the highest frequency of movements during the 30 days
and plotted their movements between UFZs. The directions of movements mostly point to
the central urban areas that contain more O/D points. Taxis 2 and 3 seemed to drive across
the city, while Taxi 1 mainly moved around the eastern part of the city. For Singapore, we
selected top seven devices with the highest frequency of movements. Figure 12 shows
that the mobility of mobile device users is more consistent spatially as the O/D points
and directions of trajectory are concentrated on two or three specific UFZs. The difference
between the spatial patterns of trajectories of Zhuhai and of Singapore is due to the nature
of the datasets we collected from the two cities; a taxi driver more commonly drives a long
distance and travels to more diverse locations in a city than a white-collar or a student with
mobile devices.
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Figure 11. Sampled taxi trajectories in Zhuhai.
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Figure 12. Sampled mobile trajectories in Singapore.

Based on the identified UFZ categories, we analyzed the mobility patterns within
different UFZs. Figure 13 shows the flow of taxis from an origin UFZ to a destination UFZ.
The movements between public service, commercial, and residential zones account for over
80% of total trajectories in Zhuhai among which the public service zone contributes to most
taxi trajectories. In the Singapore trajectory dataset, the movements between residential
zones account for a considerable proportion of total trajectories (Figure 14). The flow
between the different UFZs indicates that after leaving a residential zone, people are more
likely to travel to another residential zone, and the second highest possibility is to a green
space zone. For most people leaving commercial zones, public service zones, green space
zones or industrial zones, the highest possibility is to travel back to residential zones.
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Figure 13. Sankey diagram of mobility flow between UFZs in Zhuhai.
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Figure 14. Sankey diagram of mobility flow between UFZs in Singapore.

5. Discussion

This section first discusses the performance of the proposed graph-based framework
with different combinations of features, and the contributions of features on the UFZ
classification are thus evaluated. Second, the proposed framework is compared with
existing methods to validate its effectiveness. Third, the limitations of the proposed
framework are discussed.

5.1. Comparisons of Different Feature Combinations

Tables 8 and 9 show the classification accuracies produced by various combinations of
multisource semantic features in Zhuhai and Singapore. Overall, the accuracy improves
as more features are considered, notably for public service zones and residential zones.
When only POI data were adopted in the classification, the accuracy of agricultural zones,
commercial zones, and public service zones was relatively low, which can be attributed
to the low densities of POIs in these zones. For other categories, it can be observed that
POI data contribute significantly to identifying UFZs. However, the incorporation of social
sensing data requires caution since the data tend to be biased toward specific categories
which are often clustered in specific zones. For example, in Zhuhai, the number of living
service POIs is approximately forty-four times the number of public service POIs, which
causes great imbalances between different UFZs.

In terms of 2D/3D morphological indices, it is observed that the integration of 2D/3D
building information improves the classification accuracy in commercial zones while
adding tree canopy 3D metrics contributes positively to the classification accuracy of
industrial zones. The improvements can be attributed to the variations in 3D morphological
landscapes of different UFZs.

In terms of physical features from HSR images, by comparing the first four rows
and the last five rows in Tables 8 and 9, it can be seen that incorporating HSR features
significantly increases the accuracies of UFZ classification. The results indicate that deep-
learned features extracted from HSR images contribute to the identification of UFZs with
heterogeneous urban scene information.
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The proposed graph-based framework achieved an OA of 75.8% in Zhuhai and an
OA of 84.5% in Singapore with all metrics, which demonstrated that human movements
between different urban zones contributed to distinguishing spatial patterns of physical
landscapes within UFZs.

Table 8. UFZ classification results in Zhuhai based on different feature combinations.

Study
Area

Feature
Combination A C I P G R OA Kappa F1-Score

Zhuhai

POI 0.18 0.22 0.72 0.41 0.69 0.67 53.1% 0.413 0.513
POI + Tree 0.92 0.64 0.81 0.57 0.70 0.76 71.7% 0.651 0.717

POI + Building 0.94 0.64 0.80 0.56 0.71 0.74 71.3% 0.645 0.701
POI + Building +

Tree 0.82 0.64 0.91 0.54 0.76 0.80 73.7% 0.674 0.734

Image 0.89 0.71 0.88 0.38 0.54 0.83 67.6% 0.601 0.666
Image + POI 0.96 0.58 0.86 0.52 0.73 0.84 72.9% 0.665 0.724

Image + POI + Tree 0.86 0.71 0.83 0.58 0.78 0.79 73.9% 0.677 0.741
Image + POI +

Building 0.96 0.76 0.77 0.62 0.71 0.78 73.9% 0.678 0.744

Image + POI +
Building + Tree 0.89 0.64 0.83 0.63 0.76 0.84 75.8% 0.722 0.776

Table 9. UFZ classification results in Singapore based on different feature combinations.

Study
Area

Feature
Combination C I P G R OA Kappa F1-Score

Singapore

POI 0.72 0.42 0.61 0.25 0.94 74.4% 0.605 0.732
POI + Tree 0.61 0.65 0.64 0.15 0.92 74.8% 0.568 0.728

POI + Building 0.72 0.47 0.71 0.30 0.97 78.2% 0.656 0.765
POI + Building +

Tree 0.75 0.68 0.82 0.15 0.98 81.1% 0.715 0.797

Image 0.33 0.85 0.61 0.40 0.85 71.8% 0.566 0.710
Image + POI 0.61 0.72 0.71 0.65 0.96 82.4% 0.733 0.825

Image + POI + Tree 0.58 0.78 0.82 0.55 0.93 82.1% 0.728 0.818
Image + POI +

Building 0.69 0.75 0.82 0.60 0.91 82.4% 0.734 0.825

Image + POI +
Building + Tree 0.58 0.93 0.89 0.61 0.92 84.5% 0.763 0.843

5.2. Comparisions with Existing Methods

As shown in Table 10, we compared our graph-based models with traditional ma-
chine learning methods, which only utilized multisource semantic features but without
mobility data for the classification. All experiments were conducted with Python language.
Among all the presented traditional methods, Random Forest achieves the highest OA
(73.1%) in Zhuhai, which is 2.7% lower than the Graph SAGE. According to Figure 15, the
comparisons between classification accuracies of different models show that the proposed
graph-based classification framework enhanced the performance of UFZ classification, and
the higher OA testify that the information from human mobility data in the graph-based
model contributes to identifying urban functions. The Graph SAGE model outperforms
traditional classification models of random forest (RF), support vector machine (SVM), gra-
dient boosting decision tree (GBDT), and feedforward neural network (FNN). In addition,
comparisons are made between Graph SAGE and simple GCN, and it is found that OA by
the Graph SAGE is 12% higher than GCN, which implies that the mobility graphs provide
useful information for distinguishing between UFZ parcels when the inductive learning
was integrated into the convolutional networks.



Remote Sens. 2023, 15, 730 21 of 24

Table 10. Overall accuracy of UFZ classification results using different models.

Study Area
Model

RF GBDT SVM FNN GCN Graph
SAGE

Zhuhai 0.731 0.722 0.683 0.644 0.657 0.758
Singapore 0.811 0.812 0.78 0.748 0.726 0.845
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Figure 15. Overall accuracy of different models.

5.3. Limitations of the Proposed Framework

Although overall satisfactory results were achieved, limitations still exist in our pro-
posed framework. First, we only constructed mobility graphs based on the spatial informa-
tion extracted from the taxi trajectory data. The temporal features of mobility data should
be considered in quantifying the mobility characteristics of UFZs. Second, the network
structures of deep convolutional networks and graph convolutional models used in our
study can be improved as more up-to-date deep learning network structures are introduced
in UFZ classification tasks. The model tuning and structure adjustment should be further
explored. The approaches to transforming the geographical objects into graph entities need
systematic analysis with a large volume of geospatial datasets. Third, feature selection was
not considered in our experiment. The identification of critical features that influence the
UFZ mapping can be performed to extend our understanding of the influential factors on
urban functional dynamics from the aspects of urban landscapes, socioeconomic attributes,
and human activities. Fourth, the computational complexity of the proposed graph-based
method is larger than common deep learning models and traditional machine learning
methods.

6. Conclusions

This paper proposes the UFZ mapping framework based on graph-based classification.
The physical features and social properties of functional zones are portrayed using multi-
source data, and a mobility graph is established to represent the mobility patterns of human
movements. The graph-based models are used to classify UFZs based on a directed graph
with semantic features. The experimental results in Zhuhai and Singapore demonstrate the
effectiveness of the proposed graph-based classification method.

Specifically, this study contributes to three aspects. First, this paper demonstrates
the efficiency of the proposed graph-based UFZ classification method, with an accuracy
of 75.8% in Zhuhai and 84.5% in Singapore using multisource metrics. The proposed
graph-based framework successfully exploits multisource features and achieves higher
classification accuracies than traditional classification methods.

Second, trajectories reflecting human mobility patterns were introduced and applied
to UFZ classifications. The functional zones are converted into a traffic network, and
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each UFZ is assigned with initial embeddings generated from multisource features. In
contrast to existing studies applying undirected graphs to distinguish urban functions, our
method integrated topological connections of urban blocks and human movements on the
identification of UFZs. The evaluations prove that human mobility patterns can assist in
identifying the functions of different urban zones.

Finally, the research framework can be easily generalized and applied to other classifi-
cation scenarios. The experiments can be performed in other study areas and on datasets
with only a portion of data sources. Furthermore, we can transfer the method to scenar-
ios that utilize remote sensing images and social media data to achieve satisfactory UFZ
classification results.

Our future work will include three aspects. First, we will incorporate temporal features
of mobility data in the mobility graph to assist in identifying UFZs. Second, we will further
explore the percentages of different functions within UFZ in order that the actual function
of UFZ can be reflected more accurately. Third, we will establish an end-to-end framework
that includes automatic feature selection.
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