Interior and Evolution of the Giant Planets
Abstract
:1. Introduction
2. Constraints on the Giant Planets from Observations
2.1. Gravity Data
Odd Gravitational Harmonics and Differential Rotation
J (×10) | Jupiter | Saturn | Uranus | Neptune |
---|---|---|---|---|
J | 14,696.5735 ± 0.00056 a | 16,290.573 ± 0.0093 b | 3510.68 ± 0.70 c | 3408.43 ± 4.50 d |
J | −0.0450 ± 0.0011 a | 0.059 ± 0.0076 b | – | – |
J | −586.6085 ± 0.0008 a | −935.314 ± 0.0123 b | −34.17 ± 1.30 c | −33.40 ± 2.90 d |
J | −0.0723 ± 0.0014 a | −0.224 ± 0.018 b | – | – |
J | 34.2007 ± 0.00223 a | 86.340 ± 0.029 b | – | – |
J | 0.120 ± 0.004 a | 0.108 ± 0.0406 b | – | – |
J | −2.422 ± 0.007 a | −14.624 ± 0.0683 b | – | – |
J | −0.113 ± 0.012 a | 0.369 ± 0.086 b | – | – |
J | 0.181 ± 0.0216 a | 4.672 ± 0.14 b | – | – |
J | 0.016 ± 0.037 a,* | −0.317 ± 0.1526 b | – | – |
J | 0.062 ± 0.0633 a,* | −0.997 ± 0.224 b | – | – |
Reference radius (km) | 71,492 a | 60,330 b | 25,559 c | 25,225 d |
2.2. Atmospheric Abundances
2.3. Atmospheric Temperatures
2.4. Magnetic Fields
3. Modelling of Giant Planet Interior and Evolution
3.1. Basic Equations
3.2. Equations of State
3.2.1. Hydrogen and Helium
3.2.2. Ices and Rocks
4. Internal Structure of the Giant Planets
4.1. Jupiter and Saturn: Dilute Cores and Non Adiabatic Structures
4.2. Uranus and Neptune: Ice-Rock Mixtures and Non Adiabatic Interiors
5. Implications for Planet Formation and Evolution
5.1. Planet Formation
5.2. Evolution
6. Summary and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruijer, T.S.; Burkhardt, C.; Budde, G.; Thorsten, K. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. USA 2017, 114, 6712. [Google Scholar] [CrossRef] [Green Version]
- Tsiganis, K.; Gomes, R.; Morbidelli, A.; Levison, H.F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 2005, 435, 459. [Google Scholar] [CrossRef]
- Morbidelli, A.; Brasser, R.; Gomes, R.; Levison, H.F.; Tsiganis, K. Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter’s Orbit. Astron. J. 2010, 140, 1391. [Google Scholar] [CrossRef] [Green Version]
- Izidoro, A.; Raymond, S.N.; Pierens, A.; Morbidelli, A.; Winter, O.C.; Nesvorny‘, D. The Asteroid Belt as a Relic from a Chaotic Early Solar System. Astrophys. J. 2016, 833, 40. [Google Scholar] [CrossRef] [Green Version]
- Nesvorný, D.; Roig, F.V.; Deienno, R. The Role of Early Giant-planet Instability in Terrestrial Planet Formation. Astron. J. 2021, 161, 50. [Google Scholar] [CrossRef]
- Militzer, B.; Hubbard, W.B. Ab Initio Equation of State for Hydrogen-Helium Mixtures with Recalibration of the Giant-planet Mass-Radius Relation. Astrophys. J. 2013, 774, 148. [Google Scholar] [CrossRef]
- Brygoo, S.; Loubeyre, P.; Millot, M.; Rygg, J.R.; Celliers, P.M.; Eggert, J.H.; Jeanloz, R.; Collins, G.W. Evidence of hydrogen–helium immiscibility at Jupiter-interior conditions. Nature 2021, 593, 517. [Google Scholar] [CrossRef]
- Bolton, S.J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J.E.P.; DeJong, E.; et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science 2017, 356, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iess, L.; Folkner, W.M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W.B.; Stevenson, D.J.; Anderson, J.D.; et al. Measurement of Jupiter’s asymmetric gravity field. Nature 2018, 555, 220. [Google Scholar] [CrossRef] [PubMed]
- Iess, L.; Militzer, B.; Kaspi, Y.; Nicholson, P.; Durante, D.; Racioppa, P.; Anabtawi, A.; Galanti, E.; Hubbard, W.; Mariani, M.J.; et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 2019, 364, aat2965. [Google Scholar] [CrossRef] [Green Version]
- Wahl, S.M.; Hubbard, W.B.; Militzer, B.; Guillot, T.; Miguel, Y.; Movshovitz, N.; Kaspi, Y.; Helled, R.; Reese, D.; Galanti, E.; et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 2017, 44, 4649. [Google Scholar] [CrossRef]
- Mankovich, C.R.; Fuller, J. A diffuse core in Saturn revealed by ring seismology. Nat. Astron. 2021, 5, 1103. [Google Scholar] [CrossRef]
- Miguel, Y.; Bazot, M.; Guillot, T.; Howard, S.; Galanti, E.; Kaspi, Y.; Hubbard, W.B.; Militzer, B.; Helled, R.; Atreya, S.K.; et al. Jupiter’s inhomogeneous envelope. Astron. Astrophys. 2022, 662, A18. [Google Scholar] [CrossRef]
- Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W.B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S.M.; Iess, L.; et al. A suppression of differential rotation in Jupiter’s deep interior. Nature 2018, 555, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaspi, Y.; Galanti, E.; Hubbard, W.B.; Stevenson, D.J.; Bolton, S.J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, J.E.P.; Cao, H.; et al. Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 2018, 555, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanti, E.; Kaspi, Y.; Miguel, Y.; Guillot, T.; Durante, D.; Racioppa, P.; Iess, L. Saturn’s Deep Atmospheric Flows Revealed by the Cassini Grand Finale Gravity Measurements. Geophys. Res. Lett. 2019, 46, 616. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.M.; Yadav, R.K.; Kulowski, L.; Cao, H.; Bloxham, J.; Connerney, J.E.P.; Kotsiaros, S.; Jorgensen, J.L.; Merayo, J.M.G.; Stevenson, D.J.; et al. A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field. Nature 2018, 561, 76. [Google Scholar] [CrossRef]
- de Pater, I.; Sault, R.J.; Moeckel, C.; Moullet, A.; Wong, M.H.; Goullaud, C.; DeBoer, D.; Butler, B.J.; Bjoraker, G.; Adamkovics, M.; et al. First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection. Astron. J. 2019, 158, 139. [Google Scholar] [CrossRef]
- Guillot, T.; Fortney, J.; Rauscher, E.; Marley, M.S.; Parmentier, V.; Line, M.; Wakeford, H.; Kaspi, Y.; Helled, R.; Ikoma, M.; et al. Keys of a Mission to Uranus or Neptune, the Closest Ice Giants. Bull. Am. Astron. Soc. 2021, 53, 244. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Helled, R.; Roussos, E.; Jones, G.; Charnoz, S.; André, N.; Andrews, D.; Bannister, M.; Bunce, E.; Turrini, D.; et al. Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planet. Space Sci. 2020, 191, 105030. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Helled, R.; Roussos, E.; Jones, G.; Charnoz, S.; André, N.; Lamy, L.; Melin, H.; Nettleman, N.; Turrini, D.; et al. Ice giant system exploration within ESA’s Voyage 2050. Exp. Astron. 2021. [Google Scholar] [CrossRef]
- Campbell, J.K.; Synnott, S.P. Gravity Field of the Jovian System from Pioneer and Voyager Tracking Data; Reports of Planetary Geology and Geophysics Program; NASA: Washington, DC, USA, 1985; pp. 152–154.
- Jacobson, R.A.; Antreasian, P.G.; Bordi, J.J.; Criddle, K.E.; Ionasescu, R.; Jones, J.B.; Mackenzie, R.A.; Meek, M.C.; Parcher, D.; Pelletier, F.J.; et al. The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data. Astron. J. 2006, 132, 2520. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, R.A. The Orbits of the Neptunian Satellites and the Orientation of the Pole of Neptune. Astron. J. 2009, 137, 4322. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, R.A. The Orbits of the Uranian Satellites and Rings, the Gravity Field of the Uranian System, and the Orientation of the Pole of Uranus. Astron. J. 2014, 148, 76. [Google Scholar] [CrossRef]
- Lindal, G.F.; Wood, G.E.; Levy, G.S.; Anderson, J.D.; Sweetnam, D.N.; Hotz, H.B.; Buckles, B.J.; Holmes, D.P.; Doms, P.E.; Eshleman, V.R.; et al. The atmosphere of Jupiter: An analysis of the Voyager radio occultation measurements. J. Geophys. Res. 1981, 86, 8721. [Google Scholar] [CrossRef]
- Lindal, G.F.; Sweetnam, D.N.; Eshleman, V.R. The atmosphere of Saturn—An analysis of the Voyager radio occultation measurements. Astron. J. 1985, 90, 1136. [Google Scholar] [CrossRef]
- Lindal, G.F.; Lyons, J.R.; Sweetnam, D.N.; Eshleman, V.R.; Hinson, D.P.; Tyler, G.L. The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. J. Geophys. Res. Space Phys. 1987, 92, 14987. [Google Scholar] [CrossRef]
- Lindal, G.F. The Atmosphere of Neptune: An Analysis of Radio Occultation Data Acquired with Voyager 2. Astron. J. 1992, 103, 967. [Google Scholar] [CrossRef]
- Gupta, P.; Atreya, S.K.; Steffes, P.G.; Fletcher, L.N.; Guillot, T.; Allison, M.D.; Withers, P.; Helled, R.; Lunine, J.I.; Orton, G.S.; et al. Jupiter’s Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planet. Sci. J. 2022, 3, 159. [Google Scholar] [CrossRef]
- Pearl, J.C.; Conrath, B.J. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 1991, 96, 18921. [Google Scholar] [CrossRef]
- Helled, R.; Fortney, J.J. The interiors of Uranus and Neptune: Current understanding and open questions. Philos. Trans. R. Soc. Lond. Ser. A 2020, 378, 20190474. [Google Scholar] [CrossRef] [PubMed]
- Kaspi, Y. Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 2013, 40, 676. [Google Scholar] [CrossRef] [Green Version]
- Galanti, E.; Kaspi, Y. Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. Mon. Not. R. Astron. Soc. 2021, 501, 2352. [Google Scholar] [CrossRef]
- Kaspi, Y.; Showman, A.P.; Hubbard, W.B.; Aharonson, O.; Helled, R. Atmospheric confinement of jet streams on Uranus and Neptune. Nature 2013, 497, 344. [Google Scholar] [CrossRef] [Green Version]
- Soyuer, D.; Soubiran, F.; Helled, R. Constraining the depth of the winds on Uranus and Neptune via Ohmic dissipation. Mon. Not. R. Astron. Soc. 2020, 498, 621. [Google Scholar] [CrossRef]
- Soyuer, D.; Neuenschwander, B.; Helled, R. Zonal Winds of Uranus and Neptune: Gravitational Harmonics, Dynamic Self-gravity, Shape, and Rotation. arXiv 2022, arXiv:2210.17389. [Google Scholar] [CrossRef]
- Durante, D.; Parisi, M.; Serra, D.; Zannoni, M.; Notaro, V.; Racioppa, P.; Buccino, D.R.; Lari, G.; Gomez Casajus, L.; Iess, L.; et al. Jupiter’s Gravity Field Halfway Through the Juno Mission. Geophys. Res. Lett. 2020, 47, e2019GL086572. [Google Scholar] [CrossRef]
- Cavalié, T.; Venot, O.; Miguel, Y.; Fletcher, L.N.; Wurz, P.; Mousis, O.; Bounaceur, R.; Hue, V.; Leconte, J.; Dobrijevic, M.; et al. The Deep Composition of Uranus and Neptune from In Situ Exploration and Thermochemical Modeling. Space Sci. Rev. 2020, 216, 58. [Google Scholar] [CrossRef]
- Guillot, T.; Fletcher, L.N.; Helled, R.; Ikoma, M.; Line, M.R.; Parmentier, V. Giant Planets from the Inside-Out. arXiv 2022, arXiv:2205.04100. [Google Scholar]
- Guillot, T.; Hueso, R. The composition of Jupiter: Sign of a (relatively) late formation in a chemically evolved protosolar disc. Mon. Not. R. Astron. Soc. 2006, 367, L47. [Google Scholar] [CrossRef] [Green Version]
- Bosman, A.D.; Cridland, A.J.; Miguel, Y. Jupiter formed as a pebble pile around the N2 ice line. Astron. Astrophys. 2019, 632, L11. [Google Scholar] [CrossRef] [Green Version]
- Öberg, K.I.; Wordsworth, R. Jupiter’s Composition Suggests its Core Assembled Exterior to the N2 Snowline. Astron. J. 2019, 158, 194. [Google Scholar] [CrossRef] [Green Version]
- Mousis, O.; Lunine, J.I.; Aguichine, A. The Nature and Composition of Jupiter’s Building Blocks Derived from the Water Abundance Measurements by the Juno Spacecraft. Astrophys. J. Lett. 2021, 918, L23. [Google Scholar] [CrossRef]
- Helled, R.; Stevenson, D.J.; Lunine, J.I.; Bolton, S.J.; Nettelmann, N.; Atreya, S.; Guillot, T.; Militzer, B.; Miguel, Y.; Hubbard, W.B. Revelations on Jupiter’s formation, evolution and interior: Challenges from Juno results. Icarus 2022, 378, 114937. [Google Scholar] [CrossRef]
- Aguichine, A.; Mousis, O.; Lunine, J.I. The Possible Formation of Jupiter from Supersolar Gas. Planet. Sci. J. 2022, 3, 141. [Google Scholar] [CrossRef]
- Niemann, H.B.; Atreya, S.K.; Carignan, G.R.; Donahue, T.M.; Haberman, J.A.; Harpold, D.N.; Hartle, R.E.; Hunten, D.M.; Kasprzak, W.T.; Mahaffy, P.R.; et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. Space Phys. 1998, 103, 22831. [Google Scholar] [CrossRef]
- von Zahn, U.; Hunten, D.M.; Lehmacher, G. Helium in Jupiter’s atmosphere: Results from the Galileo probe helium interferometer experiment. J. Geophys. Res. Space Phys. 1998, 103, 22815. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, T.T.; Guerlet, S. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations. Icarus 2018, 307, 161. [Google Scholar] [CrossRef]
- Atreya, S.K.; Crida, A.; Guillot, T.; Li, C.; Lunine, J.I.; Madhusudhan, N.; Mousis, O.; Wong, M.H. The Origin and Evolution of Saturn: A Post-Cassini Perspective. arXiv 2022, arXiv:2205.06914. [Google Scholar]
- Conrath, B.; Gautier, D.; Hanel, R.; Lindal, G.; Marten, A. The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. Space Phys. 1987, 92, 15003. [Google Scholar] [CrossRef]
- Atreya, S.K.; Hofstadter, M.H.; In, J.H.; Mousis, O.; Reh, K.; Wong, M.H. Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants. Space Sci. Rev. 2020, 216, 18. [Google Scholar] [CrossRef]
- Gautier, D.; Conrath, B.J.; Owen, T.; de Pater, I.; Atreya, S.K. The troposphere of Neptune. Neptune Triton 1995, 547, 611. Available online: https://ui.adsabs.harvard.edu/abs/1995netr.conf..547G (accessed on 23 December 2022).
- Li, C.; Ingersoll, A.; Bolton, S.; Levin, S.; Janssen, M.; Atreya, S.; Lunine, J.; Steffes, P.; Brown, S.; Zhang, Z.; et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 2020, 4, 609. [Google Scholar] [CrossRef] [Green Version]
- Sromovsky, L.A.; Fry, P.M.; Kim, J.H. Methane on Uranus: The case for a compact CH 4 cloud layer at low latitudes and a severe CH 4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 2011, 215, 292. [Google Scholar] [CrossRef] [Green Version]
- Karkoschka, E.; Tomasko, M.G. The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 2011, 211, 780. [Google Scholar] [CrossRef]
- Irwin, P.G.; Toledo, D.; Braude, A.S.; Bacon, R.; Weilbacher, P.M.; Teanby, N.A.; Orton, G.S.; Fletcher, L.N. Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune’s atmosphere from VLT/MUSE Narrow Field Mode Observations. Icarus 2019, 331, 69. [Google Scholar] [CrossRef]
- Irwin, P.G.; Dobinson, J.; James, A.; Toledo, D.; Teanby, N.A.; Fletcher, L.N.; Pérez-Hoyos, S.; Orton, G.S. Latitudinal variation of methane mole fraction above clouds in Neptune’s atmosphere from VLT/MUSE-NFM: Limb-darkening reanalysis. Icarus 2021, 357, 114277. [Google Scholar] [CrossRef]
- Seiff, A.; Kirk, D.B.; Knight, T.C.; Young, R.E.; Mihalov, J.D.; Young, L.A.; Milos, F.S.; Atkinson, D.; Schubert, G.; Blanchard, R.C.; et al. Thermal structure of Jupiter’s atmosphere near the edge of a 5-?m hot spot in the north equatorial belt. J. Geophys. Res. 1998, 103, 22857. [Google Scholar] [CrossRef]
- Connerney, J.E.P.; Kotsiaros, S.; Oliversen, R.J.; Espley, J.R.; Joergensen, J.L.; Joergensen, P.S.; Merayo, J.M.G.; Herceg, M.; Bloxham, J.; Moore, K.M.; et al. A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits. Geophys. Res. Lett. 2018, 45, 2590. [Google Scholar] [CrossRef] [Green Version]
- Connerney, J.E.P.; Timmins, S.; Oliversen, R.J.; Espley, J.R.; Joergensen, J.L.; Kotsiaros, S.; Joergensen, P.S.; Merayo, J.M.G.; Herceg, M.; Bloxham, J.; et al. A New Model of Jupiter’s Magnetic Field at the Completion of Juno’s Prime Mission. J. Geophys. Res. Planets 2022, 127, e07055. [Google Scholar] [CrossRef]
- Cao, H.; Dougherty, M.K.; Hunt, G.J.; Provan, G.; Cowley, S.W.; Bunce, E.J.; Stevenson, D.J.; Kellock, S. The landscape of Saturn’s internal magnetic field from the Cassini Grand Finale. Icarus 2020, 344, 113541. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Cao, H.; Bloxham, J. A Dynamo Simulation Generating Saturn-Like Small Magnetic Dipole Tilts. Geophys. Res. Lett. 2022, 49, e97280. [Google Scholar] [CrossRef]
- Ness, N.F.; Acuna, M.H.; Behannon, K.W.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M. Magnetic Fields at Uranus. Science 1986, 233, 85. [Google Scholar] [CrossRef] [PubMed]
- Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.; Lepping, R.P.; Neubauer, F.M. Magnetic Fields at Neptune. Science 1989, 246, 1473. [Google Scholar] [CrossRef]
- Soderlund, K.M.; Stanley, S. The underexplored frontier of ice giant dynamos. Philos. Trans. R. Soc. Lond. Ser. A 2020, 378, 20190479. [Google Scholar] [CrossRef]
- Stanley, S.; Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 2004, 428, 151. [Google Scholar] [CrossRef]
- Soderlund, K.M.; Heimpel, M.H.; King, E.M.; Aurnou, J.M. Turbulent models of ice giant internal dynamics: Dynamos, heat transfer, and zonal flows. Icarus 2013, 224, 97. [Google Scholar] [CrossRef]
- Ledoux, P. Stellar Models with Convection and with Discontinuity of the Mean Molecular Weight. Astrophys. J. 1947, 105, 305. [Google Scholar] [CrossRef]
- Rosenblum, E.; Garaud, P.; Traxler, A.; Stellmach, S. Turbulent Mixing and Layer Formation in Double-diffusive Convection: Three-dimensional Numerical Simulations and Theory. Astrophys. J. 2011, 731, 66. [Google Scholar] [CrossRef] [Green Version]
- Guillot, T. Condensation of Methane, Ammonia, and Water and the Inhibition of Convection in Giant Planets. Science 1995, 269, 1697. [Google Scholar] [CrossRef] [PubMed]
- Leconte, J.; Selsis, F.; Hersant, F.; Guillot, T. Condensation-inhibited convection in hydrogen-rich atmospheres. Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 2017, 598, A98. [Google Scholar] [CrossRef]
- Vazan, A.; Helled, R.; Kovetz, A.; Podolak, M. Convection and Mixing in Giant Planet Evolution. Astrophys. J. 2015, 803, 32. [Google Scholar] [CrossRef] [Green Version]
- Saumon, D.; Guillot, T. Shock Compression of Deuterium and the Interiors of Jupiter and Saturn. Astrophys. J. 2004, 609, 1170. [Google Scholar] [CrossRef] [Green Version]
- Miguel, Y.; Guillot, T.; Fayon, L. Jupiter internal structure: The effect of different equations of state. Astron. Astrophys. 2016, 596, A114. [Google Scholar] [CrossRef] [Green Version]
- Howard, S.; Guillot, T. Accounting for non-ideal mixing effects in the hydrogen-helium equation of state. Astron. Astrophys. 2022; submitted for publication. [Google Scholar]
- Saumon, D.; Chabrier, G.; van Horn, H.M. An Equation of State for Low-Mass Stars and Giant Planets. Astrophys. J. Suppl. Ser. 1995, 99, 713. [Google Scholar] [CrossRef]
- Sano, T.; Ozaki, N.; Sakaiya, T.; Shigemori, K.; Ikoma, M.; Kimura, T.; Miyanishi, K.; Endo, T.; Shiroshita, A.; Takahashi, H.; et al. Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa. Phys. Rev. B 2011, 83, 054117. [Google Scholar] [CrossRef] [Green Version]
- Loubeyre, P.; Brygoo, S.; Eggert, J.; Celliers, P.M.; Spaulding, D.K.; Rygg, J.R.; Boehly, T.R.; Collins, G.W.; Jeanloz, R. Extended data set for the equation of state of warm dense hydrogen isotopes. Phys. Rev. B 2012, 86, 144115. [Google Scholar] [CrossRef]
- Becker, A.; Lorenzen, W.; Fortney, J.J.; Nettelmann, N.; Schottler, M.; Redmer, R. Ab Initio Equations of State for Hydrogen (H-REOS.3) and Helium (He-REOS.3) and their Implications for the Interior of Brown Dwarfs. Astrophys. J. Suppl. Ser. 2014, 215, 21. [Google Scholar] [CrossRef]
- Collins, G.W.; da Silva, L.B.; Celliers, P.; Gold, D.M.; Foord, M.E.; Wallace, R.J.; Ng, A.; Weber, S.V.; Budil, K.S.; Cauble, R. Measurements of the Equation of State of Deuterium at the Fluid Insulator-Metal Transition. Science 1998, 281, 1178. [Google Scholar] [CrossRef] [PubMed]
- Boriskov, G.V.; Bykov, A.I.; Il’Kaev, R.I.; Selemir, V.D.; Simakov, G.V.; Trunin, R.F.; Urlin, V.D.; Fortov, V.E.; Shuikin, A.N. Shock-wave compression of solid deuterium at a pressure of 120 GPa. Physics 2003, 48, 553. [Google Scholar] [CrossRef]
- Hicks, D.G.; Boehly, T.R.; Celliers, P.M.; Eggert, J.H.; Moon, S.J.; Meyerhofer, D.D.; Collins, G.W. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa. Phys. Rev. B 2009, 79, 014112. [Google Scholar] [CrossRef]
- Chabrier, G.; Mazevet, S.; Soubiran, F. A New Equation of State for Dense Hydrogen-Helium Mixtures. Astrophys. J. 2019, 872, 51. [Google Scholar] [CrossRef] [Green Version]
- Mazevet, S.; Licari, A.; Soubiran, F. Benchmarking the ab initio hydrogen equation of state for the interior structure of Jupiter. Astron. Astrophys. 2022, 664, A112. [Google Scholar] [CrossRef]
- Militzer, B. Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium. Phys. Rev. B 2009, 79, 155105. [Google Scholar] [CrossRef] [Green Version]
- Salpeter, E.E. On Convection and Gravitational Layering in Jupiter and in Stars of Low Mass. Astrophys. J. Lett. 1973, 181, L83. [Google Scholar] [CrossRef]
- Stevenson, D.J. Solubility of helium in metallic hydrogen. J. Phys. F Met. Phys. 1979, 9, 791. [Google Scholar] [CrossRef]
- Morales, M.A.; Hamel, S.; Caspersen, K.; Schwegler, E. Hydrogen-helium demixing from first principles: From diamond anvil cells to planetary interiors. Phys. Rev. B 2013, 87, 174105. [Google Scholar] [CrossRef] [Green Version]
- French, M.; Mattsson, T.R.; Nettelmann, N.; Redmer, R. Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 2009, 79, 054107. [Google Scholar] [CrossRef] [Green Version]
- Redmer, R.; Mattsson, T.R.; Nettelmann, N.; French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 2011, 211, 798. [Google Scholar] [CrossRef]
- Mazevet, S.; Licari, A.; Chabrier, G.; Potekhin, A.Y. Ab initio based equation of state of dense water for planetary and exoplanetary modeling. Astron. Astrophys. 2019, 621, A128. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.F.; Militzer, B. Solubility of Water Ice in Metallic Hydrogen: Consequences for Core Erosion in Gas Giant Planets. Astrophys. J. 2012, 745, 54. [Google Scholar] [CrossRef]
- Wilson, H.F.; Militzer, B. Rocky Core Solubility in Jupiter and Giant Exoplanets. Phys. Rev. Lett. 2012, 108, 111101. [Google Scholar] [CrossRef] [Green Version]
- Mazevet, S.; Musella, R.; Guyot, F. The fate of planetary cores in giant and ice-giant planets. Astron. Astrophys. 2019, 631, L4. [Google Scholar] [CrossRef]
- Nisr, C.; Chen, H.; Leinenweber, K.; Chizmeshya, A.; Prakapenka, V.B.; Prescher, C.; Shim, S.H.; Tkachev, S.N.; Meng, Y.; Liu, Z.; et al. Large H2O solubility in dense silica and its implications for the interiors of water-rich planets. Proc. Natl. Acad. Sci. USA 2020, 117, 9747. [Google Scholar] [CrossRef]
- Kim, T.; Chariton, S.; Prakapenka, V.; Pakhomova, A.; Liermann, H.P.; Liu, Z.; Lee, Y.; Speziale, S.; Shim, S.-H.; Lee, Y. Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets. Nat. Astron. 2021, 5, 815. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; Shi, J.; Pan, S.; Huang, T.; Lu, X.; Sun, J.; Wang, H.-T.; Xing, D.; Sun, J. Superionic Silica-Water and Silica-Hydrogen Compounds in the Deep Interiors of Uranus and Neptune. Phys. Rev. Lett. 2022, 128, 035702. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, T.; González-Cataldo, F.; Stewart, S.T.; Militzer, B. Miscibility of rock and ice in the interiors of water worlds. Sci. Rep. 2022, 12, 13055. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus 1996, 124, 62. [Google Scholar] [CrossRef] [Green Version]
- Mousis, O.; Marboeuf, U.; Lunine, J.I.; Alibert, Y.; Fletcher, L.N.; Orton, G.S.; Pauzat, F.; Ellinger, Y. Determination of the Minimum Masses of Heavy Elements in the Envelopes of Jupiter and Saturn. Astrophys. J. 2009, 696, 1348. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, M.; Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 2012, 544, A32. [Google Scholar] [CrossRef]
- Bitsch, B.; Lambrechts, M.; Johansen, A. The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 2015, 582, A112. [Google Scholar] [CrossRef]
- Johansen, A.; Lambrechts, M. Forming Planets via Pebble Accretion. Annu. Rev. Earth Planet. Sci. 2017, 45, 359. [Google Scholar] [CrossRef]
- Alibert, Y.; Venturini, J.; Helled, R.; Ataiee, S.; Burn, R.; Senecal, L.; Schönbächler, M.; Benz, W.; Mayer, L.; Mordasini, C.; et al. The formation of Jupiter by hybrid pebble-planetesimal accretion. Nat. Astron. 2018, 2, 873. [Google Scholar] [CrossRef] [Green Version]
- Debras, F.; Chabrier, G. New Models of Jupiter in the Context of Juno and Galileo. Astrophys. J. 2019, 872, 100. [Google Scholar] [CrossRef] [Green Version]
- Ni, D. Understanding Jupiter’s deep interior: The effect of a dilute core. Astron. Astrophys. 2019, 632, A76. [Google Scholar] [CrossRef]
- Militzer, B.; Hubbard, W.B.; Wahl, S.; Lunine, J.I.; Galanti, E.; Kaspi, Y.; Bolton, S.J.; Miguel, Y.; Guillot, T.; Moore, K.; et al. Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core. Planet. Sci. J. 2022, 3, 185. [Google Scholar] [CrossRef]
- Nettelmann, N.; Movshovitz, N.; Ni, D.; Fortney, J.J.; Galanti, E.; Kaspi, Y.; Helled, R.; Mankovich, C.R.; Bolton, S. Theory of Figures to the Seventh Order and the Interiors of Jupiter and Saturn. Planet. Sci. J. 2021, 2, 241. [Google Scholar] [CrossRef]
- Fuller, J.; Lai, D.; Storch, N.I. Non-radial oscillations in rotating giant planets with solid cores: Application to Saturn and its rings. Icarus 2014, 231, 34. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J. Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn. Icarus 2014, 242, 283. [Google Scholar] [CrossRef] [Green Version]
- Mankovich, C.; Marley, M.S.; Fortney, J.J.; Movshovitz, N. Cassini Ring Seismology as a Probe of Saturn’s Interior. I. Rigid Rotation. Astrophys. J. 2019, 871, 1. [Google Scholar] [CrossRef] [Green Version]
- Militzer, B.; Wahl, S.; Hubbard, W.B. Models of Saturn’s Interior Constructed with an Accelerated Concentric Maclaurin Spheroid Method. Astrophys. J. 2019, 879, 78. [Google Scholar] [CrossRef]
- Ni, D. Understanding Saturn’s interior from the Cassini Grand Finale gravity measurements. Astron. Astrophys. 2020, 639, A10. [Google Scholar] [CrossRef]
- Helled, R.; Anderson, J.D.; Podolak, M.; Schubert, G. Interior Models of Uranus and Neptune. Astrophys. J. 2011, 726, 15. [Google Scholar] [CrossRef] [Green Version]
- Nettelmann, N.; Helled, R.; Fortney, J.J.; Redmer, R. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 2013, 77, 143. [Google Scholar] [CrossRef] [Green Version]
- Podolak, M.; Helled, R.; Schubert, G. Effect of non-adiabatic thermal profiles on the inferred compositions of Uranus and Neptune. Mon. Not. R. Astron. Soc. 2019, 487, 2653. [Google Scholar] [CrossRef]
- Nettelmann, N.; Holst, B.; Kietzmann, A.; French, M.; Redmer, R.; Blaschke, D. Ab Initio Equation of State Data for Hydrogen, Helium, and Water and the Internal Structure of Jupiter. Astrophys. J. 2008, 683, 1217. [Google Scholar] [CrossRef] [Green Version]
- Nettelmann, N.; Becker, A.; Holst, B.; Redmer, R. Jupiter Models with Improved Ab Initio Hydrogen Equation of State (H-REOS.2). Astrophys. J. 2012, 750, 52. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, W.B.; Militzer, B. A Preliminary Jupiter Model. Astrophys. J. 2016, 820, 80. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.J.; Bodenheimer, P.; Lissauer, J.J.; D’Angelo, G. Mixing of Condensable Constituents with H-He during the Formation and Evolution of Jupiter. Planet. Sci. J. 2022, 3, 74. [Google Scholar] [CrossRef]
- Stevenson, D.J.; Salpeter, E.E. The dynamics and helium distribution in hydrogen-helium fluid planets. Astrophys. J. Suppl. Ser. 1977, 35, 239. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Chabrier, G. A new vision of giant planet interiors: Impact of double diffusive convection. Astron. Astrophys. 2012, 540, A20. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Chabrier, G. Layered convection as the origin of Saturn’s luminosity anomaly. Nat. Geosci. 2013, 6, 347. [Google Scholar] [CrossRef] [Green Version]
- Duer, K.; Galanti, E.; Kaspi, Y. Analysis of Jupiter’s Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements. Astrophys. J. Lett. 2019, 879, L22. [Google Scholar] [CrossRef] [Green Version]
- Duer, K.; Galanti, E.; Kaspi, Y. The Range of Jupiter’s Flow Structures that Fit the Juno Asymmetric Gravity Measurements. J. Geophys. Res. Planets 2020, 125, e06292. [Google Scholar] [CrossRef]
- Fortney, J.J.; Ikoma, M.; Nettelmann, N.; Guillot, T.; Marley, M.S. Self-consistent Model Atmospheres and the Cooling of the Solar System’s Giant Planets. Astrophys. J. 2011, 729, 32. [Google Scholar] [CrossRef] [Green Version]
- Scheibe, L.; Nettelmann, N.; Redmer, R. Thermal evolution of Uranus and Neptune. I. Adiabatic models. Astron. Astrophys. 2019, 632, A70. [Google Scholar] [CrossRef]
- Marley, M.S.; Gómez, P.; Podolak, M. Monte Carlo interior models for Uranus and Neptune. J. Geophys. Res. Space Phys. 1995, 100, 23349. [Google Scholar] [CrossRef]
- Podolak, M.; Podolak, J.I.; Marley, M.S. Further investigations of random models of Uranus and Neptune. Planet. Space Sci. 2000, 48, 143. [Google Scholar] [CrossRef] [Green Version]
- Vazan, A.; Helled, R. Explaining the low luminosity of Uranus: A self-consistent thermal and structural evolution. Astron. Astrophys. 2020, 633, A50. [Google Scholar] [CrossRef] [Green Version]
- Scheibe, L.; Nettelmann, N.; Redmer, R. Thermal evolution of Uranus and Neptune. II. Deep thermal boundary layer. Astron. Astrophys. 2021, 650, A200. [Google Scholar] [CrossRef]
- Stanley, S.; Bloxham, J. Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 2006, 184, 556. [Google Scholar] [CrossRef]
- Stixrude, L.; Baroni, S.; Grasselli, F. Thermal and Tidal Evolution of Uranus with a Growing Frozen Core. Planet. Sci. J. 2021, 2, 222. [Google Scholar] [CrossRef]
- Guillot, T. Uranus and Neptune are key to understand planets with hydrogen atmospheres. Exp. Astron. 2021, 1–23. [Google Scholar] [CrossRef]
- Movshovitz, N.; Fortney, J.J. The Promise and Limitations of Precision Gravity: Application to the Interior Structure of Uranus and Neptune. Planet. Sci. J. 2022, 3, 88. [Google Scholar] [CrossRef]
- Podolak, J.I.; Malamud, U.; Podolak, M. Random models for exploring planet compositions I: Uranus as an example. Icarus 2022, 382, 115017. [Google Scholar] [CrossRef]
- Teanby, N.A.; Irwin, P.G.J.; Moses, J.I.; Helled, R. Neptune and Uranus: Ice or rock giants? Philos. Trans. R. Soc. Lond. Ser. A 2020, 378, 20190489. [Google Scholar] [CrossRef] [PubMed]
- Bierson, C.J.; Nimmo, F. Using the density of Kuiper Belt Objects to constrain their composition and formation history. Icarus 2019, 326, 10. [Google Scholar] [CrossRef]
- Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. 2003, 591, 1220. [Google Scholar] [CrossRef]
- Lichtenberg, T.; Golabek, G.J.; Burn, R.; Meyer, M.R.; Alibert, Y.; Gerya, T.V.; Mordasini, C. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 2019, 3, 307. [Google Scholar] [CrossRef] [Green Version]
- Vazan, A.; Sari, R.; Kessel, R. A New Perspective on the Interiors of Ice-rich Planets: Ice-Rock Mixture Instead of Ice on Top of Rock. Astrophys. J. 2022, 926, 150. [Google Scholar] [CrossRef]
- Bailey, E.; Stevenson, D.J. Thermodynamically Governed Interior Models of Uranus and Neptune. Planet. Sci. J. 2021, 2, 64. [Google Scholar] [CrossRef]
- Alibert, Y.; Mordasini, C.; Benz, W.; Winisdoerffer, C. Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 2005, 434, 343. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, M.; Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 2014, 572, A107. [Google Scholar] [CrossRef] [Green Version]
- Podolak, M.; Pollack, J.B.; Reynolds, R.T. Interactions of planetesimals with protoplanetary atmospheres. Icarus 1988, 73, 163. [Google Scholar] [CrossRef]
- Hori, Y.; Ikoma, M. Gas giant formation with small cores triggered by envelope pollution by icy planetesimals. Mon. Not. R. Astron. Soc. 2011, 416, 1419. [Google Scholar] [CrossRef] [Green Version]
- Brouwers, M.G.; Vazan, A.; Ormel, C.W. How cores grow by pebble accretion. I. Direct core growth. Astron. Astrophys. 2018, 611, A65. [Google Scholar] [CrossRef] [Green Version]
- Lozovsky, M.; Helled, R.; Rosenberg, E.D.; Bodenheimer, P. Jupiter?s Formation and Its Primordial Internal Structure. Astrophys. J. 2017, 836, 227. [Google Scholar] [CrossRef]
- Bodenheimer, P.; Stevenson, D.J.; Lissauer, J.J.; D’Angelo. New Formation Models for the Kepler-36 System. Astrophys. J. 2018, 868, 138. [Google Scholar] [CrossRef]
- Venturini, J.; Helled, R. Jupiter’s heavy-element enrichment expected from formation models. Astron. Astrophys. 2020, 634, A31. [Google Scholar] [CrossRef] [Green Version]
- Valletta, C.; Helled, R. Giant planet formation models with a self-consistent treatment of heavy-element. Astrophys. J. 2020, 900, 133. [Google Scholar] [CrossRef]
- Ormel, C.W.; Vazan, A.; Brouwers, M.G. How planets grow by pebble accretion. III. Emergence of an interior composition gradient. Astron. Astrophys. 2021, 647, A175. [Google Scholar] [CrossRef]
- Helled, R.; Stevenson, D. The Fuzziness of Giant Planets? Cores. Astrophys. J.L. 2017, 840, L4. [Google Scholar] [CrossRef]
- Valletta, C.; Helled, R. Possible In Situ Formation of Uranus and Neptune via Pebble Accretion. Astrophys. J. 2022, 931, 21. [Google Scholar] [CrossRef]
- Humphries, J.; Vazan, A.; Bonavita, M.; Helled, R.; Nayakshin, S. Constraining the initial planetary population in the gravitational instability model. Mon. Not. R. Astron. Soc. 2019, 488, 4873. [Google Scholar] [CrossRef] [Green Version]
- Fortney, J.J.; Nettelmann, N. The Interior Structure, Composition, and Evolution of Giant Planets. Space Sci. Rev. 2010, 152, 423. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, W.B.; Nellis, W.J.; Mitchell, A.C.; Holmes, N.C.; Limaye, S.S.; McCandless, P.C. Interior Structure of Neptune: Comparison with Uranus. Science 1991, 253, 648. [Google Scholar] [CrossRef] [Green Version]
- Vazan, A.; Helled, R.; Podolak, M.; Kovetz, A. The Evolution and Internal Structure of Jupiter and Saturn with Compositional Gradients. Astrophys. J. 2016, 829, 118. [Google Scholar] [CrossRef]
- Mankovich, C.; Fortney, J.J.; Moore, K.L. Bayesian Evolution Models for Jupiter with Helium Rain and Double-diffusive Convection. Astrophys. J. 2016, 832, 113. [Google Scholar] [CrossRef] [Green Version]
- Vazan, A.; Helled, R.; Guillot, T. Jupiter’s evolution with primordial composition gradients. Astron. Astrophys. 2018, 610, L14. [Google Scholar] [CrossRef] [Green Version]
- Nettelmann, N.; Wang, K.; Fortney, J.J.; Hamel, S.; Yellamilli, S.; Bethkenhagen, M.; Redmer, R. Uranus evolution models with simple thermal boundary layers. Icarus 2016, 275, 107. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.J. Interiors of the Giant Planets. Annu. Rev. Earth Planet. Sci. 1982, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Helled, R.; Cumming, A. The challenge of forming a fuzzy core in Jupiter. Astron. Astrophys. 2020, 638, A121. [Google Scholar] [CrossRef]
- Mankovich, C.R.; Fortney, J.J. Evidence for a Dichotomy in the Interior Structures of Jupiter and Saturn from Helium Phase Separation. Astrophys. J. 2020, 889, 51. [Google Scholar] [CrossRef] [Green Version]
- Fortney, J.J.; Hubbard, W.B. Phase separation in giant planets: Inhomogeneous evolution of Saturn. Icarus 2003, 164, 228. [Google Scholar] [CrossRef]
- Kurosaki, K.; Ikoma, M. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres. Astron. J. 2017, 153, 260. [Google Scholar] [CrossRef] [Green Version]
- Markham, S.; Stevenson, D. Constraining the Effect of Convective Inhibition on the Thermal Evolution of Uranus and Neptune. Planet. Sci. J. 2021, 2, 146. [Google Scholar] [CrossRef]
- Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; et al. Ice Giant Mission Study Team. Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planet. Space Sci. 2019, 177, 104680. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel, Y.; Vazan, A. Interior and Evolution of the Giant Planets. Remote Sens. 2023, 15, 681. https://doi.org/10.3390/rs15030681
Miguel Y, Vazan A. Interior and Evolution of the Giant Planets. Remote Sensing. 2023; 15(3):681. https://doi.org/10.3390/rs15030681
Chicago/Turabian StyleMiguel, Yamila, and Allona Vazan. 2023. "Interior and Evolution of the Giant Planets" Remote Sensing 15, no. 3: 681. https://doi.org/10.3390/rs15030681
APA StyleMiguel, Y., & Vazan, A. (2023). Interior and Evolution of the Giant Planets. Remote Sensing, 15(3), 681. https://doi.org/10.3390/rs15030681