Hot Exoplanetary Atmospheres in 3D
Abstract
:1. Introduction
2. Giant Exoplanet Observations
3. From Uniform Constraint Assumption to 3D Atmospheres
3.1. Phase Curve
3.2. Transiting Planets
4. Updates on 3D Global Climate Models
5. Interpretation of the Data: Retrieval Analysis
6. Ways Forwards
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCM | Global climate model |
JWST | James Webb space telescope |
HST | Hubble space telescope |
IRAC | Infrared array camera |
VLT | Very large telescope |
References
- Guillot, T.; Hueso, R. The composition of Jupiter: Sign of a (relatively) late formation in a chemically evolved protosolar disc. Mon. Not. R. Astron. Soc. 2006, 367, L47–L51. [Google Scholar] [CrossRef] [Green Version]
- Showman, A.P.; Cooper, C.S.; Fortney, J.J.; Marley, M.S. Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing. Astrophys. J. 2008, 682, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Guerlet, S.; Spiga, A.; Sylvestre, M.; Indurain, M.; Fouchet, T.; Leconte, J.; Millour, E.; Wordsworth, R.; Capderou, M.; Bézard, B.; et al. Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. ICARUS 2014, 238, 110–124. [Google Scholar] [CrossRef]
- Miguel, Y.; Guillot, T.; Fayon, L. Jupiter internal structure: The effect of different equations of state (Corrigendum). Astron. Astrophys. 2018, 618, C2. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, G.; Vidal-Madjar, A.; Liang, M.C.; Beaulieu, J.P.; Yung, Y.; Carey, S.; Barber, R.J.; Tennyson, J.; Ribas, I.; Allard, N.; et al. Water vapour in the atmosphere of a transiting extrasolar planet. Nature 2007, 448, 169–171. [Google Scholar] [CrossRef] [Green Version]
- The JWST Transiting Exoplanet Community Early Release Science Team; Ahrer, E.M.; Alderson, L.; Batalha, N.M.; Batalha, N.E.; Bean, J.L.; Beatty, T.G.; Bell, T.J.; Benneke, B.; Berta-Thompson, Z.K.; et al. Identification of carbon dioxide in an exoplanet atmosphere. arXiv 2022, arXiv:2208.11692. [Google Scholar]
- Sing, D.K.; Fortney, J.J.; Nikolov, N.; Wakeford, H.R.; Kataria, T.; Evans, T.M.; Aigrain, S.; Ballester, G.E.; Burrows, A.S.; Deming, D.; et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 2016, 529, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Tsiaras, A.; Waldmann, I.P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L.K.; Tennyson, J.; et al. A Population Study of Gaseous Exoplanets. Astron. J. 2018, 155, 156. [Google Scholar] [CrossRef]
- Stevenson, K.B.; Désert, J.M.; Line, M.R.; Bean, J.L.; Fortney, J.J.; Showman, A.P.; Kataria, T.; Kreidberg, L.; McCullough, P.R.; Henry, G.W.; et al. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 2014, 346, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Bolton, S.J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J.E.P.; DeJong, E.; et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science 2017, 356, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, V.; Fortney, J.J.; Showman, A.P.; Morley, C.; Marley, M.S. Transitions in the Cloud Composition of Hot Jupiters. Astrophys. J. 2016, 828, 22. [Google Scholar] [CrossRef]
- Changeat, Q.; Edwards, B.; Waldmann, I.P.; Tinetti, G. Toward a More Complex Description of Chemical Profiles in Exoplanet Retrievals: A Two-layer Parameterization. Astrophys. J. 2019, 886, 39. [Google Scholar] [CrossRef]
- MacDonald, R.J.; Goyal, J.M.; Lewis, N.K. Why Is it So Cold in Here? Explaining the Cold Temperatures Retrieved from Transmission Spectra of Exoplanet Atmospheres. Astrophys. J. 2020, 893, L43. [Google Scholar] [CrossRef]
- Pluriel, W.; Zingales, T.; Leconte, J.; Parmentier, V. Strong biases in retrieved atmospheric composition caused by day-night chemical heterogeneities. Astron. Astrophys. 2020, 636, A66. [Google Scholar] [CrossRef]
- Baeyens, R.; Decin, L.; Carone, L.; Venot, O.; Agúndez, M.; Mollière, P. Grid of pseudo-2D chemistry models for tidally locked exoplanets - I. The role of vertical and horizontal mixing. Mon. Not. R. Astron. Soc. 2021, 505, 5603–5653. [Google Scholar] [CrossRef]
- Pluriel, W.; Leconte, J.; Parmentier, V.; Zingales, T.; Falco, A.; Selsis, F.; Bordé, P. Toward a multidimensional analysis of transmission spectroscopy. II. Day-night-induced biases in retrievals from hot to ultrahot Jupiters. Astron. Astrophys. 2022, 658, A42. [Google Scholar] [CrossRef]
- Wardenier, J.P.; Parmentier, V.; Lee, E.K.H. All along the line of sight: A closer look at opening angles and absorption regions in the atmospheres of transiting exoplanets. Mon. Not. R. Astron. Soc. 2022, 510, 620–629. [Google Scholar] [CrossRef]
- Falco, A.; Zingales, T.; Pluriel, W.; Leconte, J. Toward a multidimensional analysis of transmission spectroscopy. I. Computation of transmission spectra using a 1D, 2D, or 3D atmosphere structure. Astron. Astrophys. 2022, 658, A41. [Google Scholar] [CrossRef]
- Pepe, F.; Mayor, M.; Galland, F.; Naef, D.; Queloz, D.; Santos, N.C.; Udry, S.; Burnet, M. The CORALIE survey for southern extra-solar planets VII. Two short-period Saturnian companions to HD 108147 and HD 168746. Astron. Astrophys. 2002, 388, 632–638. [Google Scholar] [CrossRef]
- Brogi, M.; Giacobbe, P.; Guilluy, G.; de Kok, R.J.; Sozzetti, A.; Mancini, L.; Bonomo, A.S. Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189 733 b. Astron. Astrophys. 2018, 615, A16. [Google Scholar] [CrossRef]
- Ehrenreich, D.; Lovis, C.; Allart, R.; Rosa Zapatero Osorio, m.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Borsa, F.; Demangeon, O.; et al. Nightside condensation of iron in an ultra-hot giant exoplanet. arXiv 2020, arXiv:2003.05528. [Google Scholar]
- Snellen, I.A.G.; de Kok, R.J.; de Mooij, E.J.W.; Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 2010, 465, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Rosenthal, L.J.; Fulton, B.J.; Hirsch, L.A.; Isaacson, H.T.; Howard, A.W.; Dedrick, C.M.; Sherstyuk, I.A.; Blunt, S.C.; Petigura, E.A.; Knutson, H.A.; et al. The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades. Astrophys. J. 2021, 255, 8. [Google Scholar] [CrossRef]
- Borucki, W.J.; Summers, A.L. The photometric method of detecting other planetary systems. ICARUS 1984, 58, 121–134. [Google Scholar] [CrossRef]
- Barnes, J.W. Effects of Orbital Eccentricity on Extrasolar Planet Transit Detectability and Light Curves. Astron. Soc. Pac. 2007, 119, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Guillot, T.; Fletcher, L.N.; Helled, R.; Ikoma, M.; Line, M.R.; Parmentier, V. Giant Planets from the Inside-Out. arXiv 2022, arXiv:2205.04100. [Google Scholar]
- Venot, O.; Hébrard, E.; Agúndez, M.e.a. A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 2012, 546, A43. [Google Scholar] [CrossRef] [Green Version]
- Swain, M.R.; Vasisht, G.; Tinetti, G. Methane present in an extrasolar planet atmosphere. arXiv 2008, arXiv:0802.1030. [Google Scholar]
- Deming, D.; Wilkins, A.; McCullough, P.; Burrows, A.; Fortney, J.J.; Agol, E.; Dobbs-Dixon, I.; Madhusudhan, N.; Crouzet, N.; Desert, J.M.; et al. Infrared Transmission Spectroscopy of the Exoplanets HD 209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 2013, 774, 95. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, R.J.; Madhusudhan, N. HD 209458b in new light: Evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 2017, 469, 1979–1996. [Google Scholar] [CrossRef] [Green Version]
- Mikal-Evans, T.; Sing, D.K.; Kataria, T.; Wakeford, H.R.; Mayne, N.J.; Lewis, N.K.; Barstow, J.K.; Spake, J.J. Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. arXiv 2020, arXiv:2005.09631. [Google Scholar] [CrossRef]
- Vidal-Madjar, A.; Lecavelier des Etangs, A.; Désert, J.M.; Ballester, G.E.; Ferlet, R.; Hébrard, G.; Mayor, M. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 2003, 422, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Brogi, M.; Snellen, I.A.G.; de Kok, R.J.; Albrecht, S.; Birkby, J.; de Mooij, E.J.W. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 2012, 486, 502–504. [Google Scholar] [CrossRef]
- Wyttenbach, A.; Ehrenreich, D.; Lovis, C.; Udry, S.; Pepe, F. Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. Astron. Astrophys. 2015, 577, A62. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Deming, D. Exoplanet Atmospheres. Annu. Rev. Astron. Astrophys. 2010, 48, 631–672. [Google Scholar] [CrossRef] [Green Version]
- Knutson, H.A.; Lewis, N.; Fortney, J.J.; Burrows, A.; Showman, A.P.; Cowan, N.B.; Agol, E.; Aigrain, S.; Charbonneau, D.; Deming, D.; et al. 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 2012, 754, 22. [Google Scholar] [CrossRef]
- Quirrenbach, A.; Amado, P.J.; Caballero, J.A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F.J.; et al. CARMENES: An overview six months after first light. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VI, Edinburgh, UK, 26–30 June 2016; Evans, C.J., Simard, L., Takami, H., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2016; Volume 9908, p. 990812. [Google Scholar] [CrossRef] [Green Version]
- Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Di Marcantonio, P.; et al. ESPRESSO: The next European exoplanet hunter. Astron. Nachrichten 2014, 335, 8. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, A.; Landman, R.; Mollière, P.; Casasayas-Barris, N.; Kesseli, A.Y.; Snellen, I.A.G. Searching for the origin of the Ehrenreich effect in ultra-hot Jupiters. Evidence for strong C/O gradients in the atmosphere of WASP-76 b? Astron. Astrophys. 2022, 661, A78. [Google Scholar] [CrossRef]
- Mollière, P.; van Boekel, R.; Bouwman, J.; Henning, T.; Lagage, P.O.; Min, M. Observing transiting planets with JWST. Prime targets and their synthetic spectral observations. Astron. Astrophys. 2017, 600, A10. [Google Scholar] [CrossRef]
- Mollière, P.; Molyarova, T.; Bitsch, B.; Henning, T.; Schneider, A.; Kreidberg, L.; Eistrup, C.; Burn, R.; Nasedkin, E.; Semenov, D.; et al. Interpreting the Atmospheric Composition of Exoplanets: Sensitivity to Planet Formation Assumptions. Astrophys. J. 2022, 934, 74. [Google Scholar] [CrossRef]
- Polman, J.; Waters, L.B.F.M.; Min, M.; Miguel, Y.; Khorshid, N. H2S and SO2 detectability in Hot Jupiters: Sulfur species as indicator of metallicity and C/O ratio. arXiv 2022, arXiv:2208.00469. [Google Scholar] [CrossRef]
- Knutson, H.A.; Benneke, B.; Deming, D.; Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 2014, 505, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Batalha, N.E.; Mandell, A.; Pontoppidan, K.; Stevenson, K.B.; Lewis, N.K.; Kalirai, J.; Earl, N.; Greene, T.; Albert, L.; Nielsen, L.D. PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST. Astron. Soc. Pac. 2017, 129, 064501. [Google Scholar] [CrossRef] [Green Version]
- Yip, K.H.; Tsiaras, A.; Waldmann, I.P.; Tinetti, G. Integrating Light Curve and Atmospheric Modeling of Transiting Exoplanets. Astron. J. 2020, 160, 171. [Google Scholar] [CrossRef]
- Pluriel, W.; Whiteford, N.; Edwards, B.; Changeat, Q.; Yip, K.H.; Baeyens, R.; Al-Refaie, A.; Fabienne Bieger, M.; Blain, D.; Gressier, A.; et al. ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3. Astron. J. 2020, 160, 112. [Google Scholar] [CrossRef]
- Fischer, P.D.; Knutson, H.A.; Sing, D.K.; Henry, G.W.; Williamson, M.W.; Fortney, J.J.; Burrows, A.S.; Kataria, T.; Nikolov, N.; Showman, A.P.; et al. HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b. Astrophys. J. 2016, 827, 19. [Google Scholar] [CrossRef] [Green Version]
- Millholland, S.; Laughlin, G. Constraints on Planet Nine’s Orbit and Sky Position within a Framework of Mean-motion Resonances. Astron. J. 2017, 153, 91. [Google Scholar] [CrossRef] [Green Version]
- Showman, A.P.; Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 2002, 385, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Zellem, R.T.; Lewis, N.K.; Knutson, H.A.; Griffith, C.A.; Showman, A.P.; Fortney, J.J.; Cowan, N.B.; Agol, E.; Burrows, A.; Charbonneau, D.; et al. The 4.5 μm Full-orbit Phase Curve of the Hot Jupiter HD 209458b. Astrophys. J. 2014, 790, 53. [Google Scholar] [CrossRef] [Green Version]
- Cowan, N.B.; Machalek, P.; Croll, B.; Shekhtman, L.M.; Burrows, A.; Deming, D.; Greene, T.; Hora, J.L. Thermal Phase Variations of WASP-12b: Defying Predictions. Astrophys. J. 2012, 747, 82. [Google Scholar] [CrossRef]
- Arcangeli, J.; Désert, J.M.; Parmentier, V.; Tsai, S.M.; Stevenson, K.B. A new approach to spectroscopic phase curves. The emission spectrum of WASP-12b observed in quadrature with HST/WFC3. Astron. Astrophys. 2021, 646, A94. [Google Scholar] [CrossRef]
- Parmentier, V.; Showman, A.P.; Fortney, J.J. The cloudy shape of hot Jupiter thermal phase curves. Mon. Not. R. Astron. Soc. 2021, 501, 78–108. [Google Scholar] [CrossRef]
- Knutson, H.A.; Charbonneau, D.; Allen, L.E.; Burrows, A.; Megeath, S.T. The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion. Astrophys. J. 2008, 673, 526–531. [Google Scholar] [CrossRef]
- Désert, J.M.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Sing, D.; Ehrenreich, D.; Hébrard, G.; Ferlet, R. TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b. Astron. Astrophys. 2008, 492, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Todorov, K.; Deming, D.; Harrington, J.; Stevenson, K.B.; Bowman, W.C.; Nymeyer, S.; Fortney, J.J.; Bakos, G.A. Spitzer IRAC Secondary Eclipse Photometry of the Transiting Extrasolar Planet HAT-P-1b. Astrophys. J. 2010, 708, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, S.K.; Kawahara, H.; Masuda, K.; Hirano, T.; Kotani, T.; Tajitsu, A. High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b. Astron. J. 2017, 154, 221. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Pallé, E.; Reiners, A.; Molaverdikhani, K.; Casasayas-Barris, N.; Nortmann, L.; Chen, G.; Mollière, P.; Stangret, M. A temperature inversion with atomic iron in the ultra-hot dayside atmosphere of WASP-189b. Astron. Astrophys. 2020, 640, L5. [Google Scholar] [CrossRef]
- Charbonneau, D.; Knutson, H.A.; Barman, T.; Allen, L.E.; Mayor, M.; Megeath, S.T.; Queloz, D.; Udry, S. The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b. Astrophys. J. 2008, 686, 1341–1348. [Google Scholar] [CrossRef]
- Schwarz, H.; Brogi, M.; de Kok, R.; Birkby, J.; Snellen, I. Evidence against a strong thermal inversion in HD 209458b from high-dispersion spectroscopy. Astron. Astrophys. 2015, 576, A111. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, N.; Rackham, B.V.; Jordán, A.; Apai, D.; López-Morales, M.; Osip, D.J.; Grimm, S.L.; Hoeijmakers, J.; Wilson, P.A.; Bixel, A.; et al. ACCESS: A featureless optical transmission spectrum for WASP-19b from Magellan/IMACS. Mon. Not. R. Astron. Soc. 2019, 482, 2065–2087. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.K.; Line, M.R.; Fortney, J.J.; Stevenson, K.B.; Bean, J.; Kreidberg, L.; Parmentier, V. The Impact of Non-uniform Thermal Structure on the Interpretation of Exoplanet Emission Spectra. Astrophys. J. 2016, 829, 52. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Parmentier, V.; Irwin, P.G.J.; Aigrain, S.; Lee, E.K.H.; Krissansen-Totton, J. Understanding and mitigating biases when studying inhomogeneous emission spectra with JWST. Mon. Not. R. Astron. Soc. 2020, 493, 4342–4354. [Google Scholar] [CrossRef]
- Changeat, Q.; Al-Refaie, A. TauREx3 PhaseCurve: A 1.5D Model for Phase-curve Description. Astrophys. J. 2020, 898, 155. [Google Scholar] [CrossRef]
- Guillot, T.; Showman, A.P. Evolution of “51 Pegasus b-like” planets. Astron. Astrophys. 2002, 385, 156–165. [Google Scholar] [CrossRef]
- Showman, A.P.; Fortney, J.J.; Lian, Y.; Marley, M.S.; Freedman, R.S.; Knutson, H.A.; Charbonneau, D. Atmospheric Circulation of Hot Jupiters: Coupled Radiative-Dynamical General Circulation Model Simulations of HD 189733b and HD 209458b. Astrophys. J. 2009, 699, 564–584. [Google Scholar] [CrossRef]
- Caldas, A.; Leconte, J.; Selsis, F.; Waldmann, I.; Bordé, P.; Rocchetto, M.; Charnay, B. Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: Retrieval biases due to day–night temperature gradients. Astron. Astrophys. 2019, 623, A161. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Parmentier, V.; Taylor, J.; Barstow, J.; Aigrain, S.; Lee, E.K.H.; Garland, R. 2.5D retrieval of atmospheric properties from exoplanet phase curves: Application to WASP-43b observations. Mon. Not. R. Astron. Soc. 2020, 493, 106–125. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, V.; Line, M.R.; Bean, J.L.; Mansfield, M.; Kreidberg, L.; Lupu, R.; Visscher, C.; Désert, J.M.; Fortney, J.J.; Deleuil, M.; et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. Astron. Astrophys. 2018, 617, A110. [Google Scholar] [CrossRef] [Green Version]
- Baeyens, R.; Konings, T.; Venot, O.; Carone, L.; Decin, L. Grid of pseudo-2D chemistry models for tidally locked exoplanets - II. The role of photochemistry. Mon. Not. R. Astron. Soc. 2022, 512, 4877–4892. [Google Scholar] [CrossRef]
- Agúndez, M.; Parmentier, V.; Venot, O.; Hersant, F.; Selsis, F. Pseudo 2D chemical model of hot-Jupiter atmospheres: Application to HD 209458b and HD 189733b. Astron. Astrophys. 2014, 564, A73. [Google Scholar] [CrossRef] [Green Version]
- Venot, O.; Parmentier, V.; Blecic, J.; Cubillos, P.E.; Waldmann, I.P.; Changeat, Q.; Moses, J.I.; Tremblin, P.; Crouzet, N.; Gao, P.; et al. Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST. Astrophys. J. 2020, 890, 176. [Google Scholar] [CrossRef] [Green Version]
- Moses, J.I.; Tremblin, P.; Venot, O.; Miguel, Y. Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase-curve observations. Exp. Astron. 2022, 53, 279–322. [Google Scholar] [CrossRef]
- Tsai, S.M.; Lee, E.K.H.; Powell, D.; Gao, P.; Zhang, X.; Moses, J.; Hébrard, E.; Venot, O.; Parmentier, V.; Jordan, S.; et al. Direct Evidence of Photochemistry in an Exoplanet Atmosphere. arXiv 2022, arXiv:2211.10490. [Google Scholar]
- Venot, O.; Drummond, B.; Miguel, Y.; Waldmann, I.P.; Pascale, E.; Zingales, T. A better characterization of the chemical composition of exoplanets atmospheres with ARIEL. Exp. Astron. 2018, 46, 101–134. [Google Scholar] [CrossRef] [Green Version]
- Dorn, R.; Follert, R.; Bristow, P.; Cumani, C.; Eschbaumer, S.; Grunhut, J.; Haimerl, A.; Hatzes, A.; Heiter, U.; Hinterschuster, R.; et al. The "+" for CRIRES: Enabling better science at infrared wavelength and high spectral resolution at the ESO VLT. In Ground-Based and Airborne Instrumentation for Astronomy VI; SPIE: Bellingham, WA, USA, 2016; Volume 9908, pp. 143–155. [Google Scholar] [CrossRef]
- Bouchy, F.; Doyon, R.; Artigau, É.; Melo, C.; Hernandez, O.; Wildi, F.; Delfosse, X.; Lovis, C.; Figueira, P.; Canto Martins, B.L.; et al. Near-InfraRed Planet Searcher to Join HARPS on the ESO 3.6-metre Telescope. Messenger 2017, 169, 21–27. [Google Scholar] [CrossRef]
- Wardenier, J.P.; Parmentier, V.; Lee, E.K.H.; Line, M.R.; Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 2021, 506, 1258–1283. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 1999, 104, 24155–24176. [Google Scholar] [CrossRef]
- Wolf, E.T.; Toon, O.B. The evolution of habitable climates under the brightening Sun. J. Geophys. Res. Atmos. 2015, 120, 5775–5794. [Google Scholar] [CrossRef]
- Way, M.J.; Georgakarakos, N. Effects of Variable Eccentricity on the Climate of an Earth-like World. Astrophys. J. 2017, 835, L1. [Google Scholar] [CrossRef]
- Mendonça, J.M.; Grimm, S.L.; Grosheintz, L.; Heng, K. THOR: A New and Flexible Global Circulation Model to Explore Planetary Atmospheres. Astrophys. J. 2016, 829, 115. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Head, J.W.; Forget, F.; Navarro, T.; Millour, E.; Spiga, A.; Colaïtis, A.; Määttänen, A.; Montmessin, F.; Dickson, J.L. Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 2014, 41, 4873–4879. [Google Scholar] [CrossRef] [Green Version]
- Lebonnois, S.; Hourdin, F.; Eymet, V.; Crespin, A.; Fournier, R.; Forget, F. Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. (Planets) 2010, 115, E06006. [Google Scholar] [CrossRef]
- Guerlet, S.; Spiga, A.; Delattre, H.; Fouchet, T. Radiative-equilibrium model of Jupiter’s atmosphere and application to estimating stratospheric circulations. ICARUS 2020, 351, 113935. [Google Scholar] [CrossRef]
- Guillot, T.; Burrows, A.; Hubbard, W.B.; Lunine, J.I.; Saumon, D. Giant Planets at Small Orbital Distances. Astrophys. J. 1996, 459, L35. [Google Scholar] [CrossRef] [Green Version]
- Showman, A.P.; Menou, K.; Cho, J.Y.K. Atmospheric Circulation of Hot Jupiters: A Review of Current Understanding. In Extreme Solar Systems; Fischer, D., Rasio, F.A., Thorsett, S.E., Wolszczan, A., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 398, p. 419. [Google Scholar]
- Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 2010, 520, A27. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, V.; Guillot, T.; Fortney, J.J.; Marley, M.S. A non-grey analytical model for irradiated atmospheres. II. Analytical vs. numerical solutions. Astron. Astrophys. 2015, 574, A35. [Google Scholar] [CrossRef] [Green Version]
- Vallis, G.K. Shallow Water Systems. In Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017; pp. 105–142. [Google Scholar] [CrossRef]
- Tan, X.; Komacek, T.D. The Atmospheric Circulation of Ultra-hot Jupiters. Astrophys. J. 2019, 886, 26. [Google Scholar] [CrossRef] [Green Version]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.E.A. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.E.; Rothman, L.S.; Li, G. HITRAN2012 and Remote Sensing of Planetary Atmospheres. In Proceedings of the 68th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 17–21 June 2013; p. ERE03. [Google Scholar]
- Tennyson, J.; Yurchenko, S.N. ExoMol: Molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 2012, 425, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.J.; Chiu, C.; Golpayegani, S.; Yurchenko, S.N.; Tennyson, J.; Frohman, D.J.; Bernath, P.F. ExoMol molecular line lists V: The ro-vibrational spectra of NaCl and KCl. Mon. Not. R. Astron. Soc. 2014, 442, 1821–1829. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, S.N.; Tennyson, J.; Bailey, J.E.A. Spectrum of hot methane in astronomical objects using a comprehensive computed line list. Proc. Natl. Acad. Sci. USA 2014, 111, 9379–9383. [Google Scholar] [CrossRef] [PubMed]
- Allard, N.F.; Allard, F.; Hauschildt, P.H.; Kielkopf, J.F.; Machin, L. A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and K I resonance line profiles. Astron. Astrophys. 2003, 411, L473–L476. [Google Scholar] [CrossRef]
- Baudino, J.L.; Mollière, P.; Venot, O.; Tremblin, P.; Bézard, B.; Lagage, P.O. Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters. Astrophys. J. 2017, 850, 150. [Google Scholar] [CrossRef] [Green Version]
- Seidel, J.V.; Ehrenreich, D.; Pino, L.; Bourrier, V.; Lavie, B.; Allart, R.; Wyttenbach, A.; Lovis, C. Wind of change: Retrieving exoplanet atmospheric winds from high-resolution spectroscopy. Astron. Astrophys. 2020, 633, A86. [Google Scholar] [CrossRef] [Green Version]
- Seidel, J.V.; Ehrenreich, D.; Allart, R.; Hoeijmakers, H.J.; Lovis, C.; Bourrier, V.; Pino, L.; Wyttenbach, A.; Adibekyan, V.; Alibert, Y.; et al. Into the storm: Diving into the winds of the ultra-hot Jupiter WASP-76 b with HARPS and ESPRESSO. Astron. Astrophys. 2021, 653, A73. [Google Scholar] [CrossRef]
- Komacek, T.D.; Showman, A.P. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences. Astrophys. J. 2016, 821, 16. [Google Scholar] [CrossRef] [Green Version]
- Lothringer, J.D.; Barman, T.; Koskinen, T. Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H- Opacity, and Thermal Dissociation of Molecules. Astrophys. J. 2018, 866, 27. [Google Scholar] [CrossRef] [Green Version]
- Skinner, J.W.; Cho, J.Y.K. Modons on tidally synchronized extrasolar planets. Mon. Not. R. Astron. Soc. 2022, 511, 3584–3601. [Google Scholar] [CrossRef]
- Heng, K.; Frierson, D.M.W.; Phillipps, P.J. Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment. Mon. Not. R. Astron. Soc. 2011, 418, 2669–2696. [Google Scholar] [CrossRef]
- Rauscher, E.; Menou, K. A General Circulation Model for Gaseous Exoplanets with Double-gray Radiative Transfer. Astrophys. J. 2012, 750, 96. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, D.S.; Mayne, N.J.; Baraffe, I.; Manners, J.; Tremblin, P.; Drummond, B.; Smith, C.; Acreman, D.M.; Homeier, D. The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b. Astron. Astrophys. 2016, 595, A36. [Google Scholar] [CrossRef]
- Wang, H.; Wordsworth, R. Extremely Long Convergence Times in a 3D GCM Simulation of the Sub-Neptune Gliese 1214b. Astrophys. J. 2020, 891, 7. [Google Scholar] [CrossRef] [Green Version]
- Irwin, P.G.J.; Teanby, N.A.; de Kok, R.; Fletcher, L.N.; Howett, C.J.A.; Tsang, C.C.C.; Wilson, C.F.; Calcutt, S.B.; Nixon, C.A.; Parrish, P.D. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1136–1150. [Google Scholar] [CrossRef]
- Mollière, P.; Wardenier, J.P.; van Boekel, R.; Henning, T.; Molaverdikhani, K.; Snellen, I.A.G. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 2019, 627, A67. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Ormel, C.W.; Chubb, K.; Helling, C.; Kawashima, Y. The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval. Astron. Astrophys. 2020, 642, A28. [Google Scholar] [CrossRef]
- Waldmann, I.P.; Rocchetto, M.; Tinetti, G.; Barton, E.J.; Yurchenko, S.N.; Tennyson, J. Tau-REx II: Retrieval of Emission Spectra. Astrophys. J. 2015, 813, 13. [Google Scholar] [CrossRef] [Green Version]
- Al-Refaie, A.F.; Changeat, Q.; Waldmann, I.P.; Tinetti, G. TauREx 3: A Fast, Dynamic, and Extendable Framework for Retrievals. Astrophys. J. 2021, 917, 37. [Google Scholar] [CrossRef]
- Zingales, T.; Falco, A.; Pluriel, W.; Leconte, J. Toward a multidimensional analysis of transmission spectroscopy. Part III: Modelling 2D effects in retrievals with TauREx. arXiv 2022, arXiv:2207.14247. [Google Scholar]
- Waldmann, I.P.; Tinetti, G.; Rocchetto, M.; Barton, E.J.; Yurchenko, S.N.; Tennyson, J. Tau-REx I: A Next Generation Retrieval Code for Exoplanetary Atmospheres. Astrophys. J. 2015, 802, 107. [Google Scholar] [CrossRef] [Green Version]
- Al-Refaie, A.F.; Changeat, Q.; Venot, O.; Waldmann, I.P.; Tinetti, G. A Comparison of Chemical Models of Exoplanet Atmospheres Enabled by TauREx 3.1. Astrophys. J. 2022, 932, 123. [Google Scholar] [CrossRef]
- MacDonald, R.J.; Lewis, N.K. TRIDENT: A Rapid 3D Radiative-transfer Model for Exoplanet Transmission Spectra. Astrophys. J. 2022, 929, 20. [Google Scholar] [CrossRef]
- Nixon, M.C.; Madhusudhan, N. AURA-3D: A Three-dimensional Atmospheric Retrieval Framework for Exoplanet Transmission Spectra. arXiv 2022, arXiv:2201.03532. [Google Scholar] [CrossRef]
- Madhusudhan, N. Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects. Annu. Rev. Astron. Astrophys. 2019, 57, 617–663. [Google Scholar] [CrossRef] [Green Version]
- Showman, A.P.; Tan, X.; Parmentier, V. Atmospheric Dynamics of Hot Giant Planets and Brown Dwarfs. Space Sci. Rev. 2020, 216, 8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluriel, W. Hot Exoplanetary Atmospheres in 3D. Remote Sens. 2023, 15, 635. https://doi.org/10.3390/rs15030635
Pluriel W. Hot Exoplanetary Atmospheres in 3D. Remote Sensing. 2023; 15(3):635. https://doi.org/10.3390/rs15030635
Chicago/Turabian StylePluriel, William. 2023. "Hot Exoplanetary Atmospheres in 3D" Remote Sensing 15, no. 3: 635. https://doi.org/10.3390/rs15030635
APA StylePluriel, W. (2023). Hot Exoplanetary Atmospheres in 3D. Remote Sensing, 15(3), 635. https://doi.org/10.3390/rs15030635