A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation
Abstract
:1. Introduction
2. Study Area and Service Data
2.1. Study Area
2.2. Usage Data
3. Method
3.1. Landslide Susceptibility Evaluation Factor
3.2. Evaluation Model Training Sample Dataset
3.3. Landslide Susceptibility Prediction Based on DAE-MRCNN
3.3.1. Normalize the Evaluation Factors
3.3.2. Feature Reconstruction Based on DAE
3.3.3. Feature Extraction Based on Multiscale-RCNN
3.3.4. Loss Function
4. Experimental Analysis
4.1. Parameter Settings
4.1.1. Effect of the Number of Network Layers
4.1.2. Effect of the Number of Output Layer Nodes
4.1.3. Effect of Dropout Probability Value
4.1.4. Effect of Iteration Times
4.2. Ablation Experiments
- (1)
- The benchmark model (1DCNN) designed in this paper.
- (2)
- The deep residual network formed by adding a residual learning model to the benchmark model (Res-1DCNN).
- (3)
- The classification model consisting of the deep autoencoder network and the residual learning model added to the benchmark model (DAE-RCNN).
- (4)
- The classification model consisting of the deep autoencoder network and the multi-scale deep residual network with convolution kernel sizes of 1, 3, and 5, added to the benchmark model, which was the classification method proposed in this study (DAE-MRCNN).
4.3. Analysis of Landslide Susceptibility Zoning Results
- (1)
- The method of directly classifying the original landslide data using an SVM classifier, and the radial basis function was adopted as the kernel function (SVM).
- (2)
- The ensemble method based on a channel-expanded pre-trained CNN and a traditional machine learning model (CPCNN-ML) [23].
- (3)
- The landslide susceptibility method based on the two-dimensional CNN method (2D-CNN) [37].
- (4)
- The proposed method in the study.
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Guo, Y.; Gong, Y. A rapid 3D reproduction system of dam-break floods constrained by post-disaster information. Environ. Model. Softw. 2021, 139, 104994. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Xie, Y.; Hu, Y. An augmented representation method of debris flow scenes to improve public perception. Int. J. Geogr. Inf. Sci. 2021, 35, 1521–1544. [Google Scholar] [CrossRef]
- Peng, T.; Chen, Y.; Chen, W. Landslide Susceptibility Modeling Using Remote Sensing Data and Random Subspace-Based Functional Tree Classifier. Remote Sens. 2022, 14, 4803. [Google Scholar] [CrossRef]
- Maheshwari, B. Spatial predictive modelling of rainfall-and earthquake-induced landslide susceptibility in the Himalaya region of Uttarakhand, India. Environ. Earth Sci. 2022, 81, 1–24. [Google Scholar]
- Westen, C.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Assessing susceptibility to landslides: Using models to understand observed changes in slopes. Geomorphology 2010, 122, 25–38. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Chai, H.; Hou, E.; Li, X.; Ding, X. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Wang, L.J.; Sawada, K.; Moriguchi, S. Landslide-susceptibility analysis using light detection and ranging-derived digital elevation models and logistic regression models: A case study in Mizunami City, Japan. J. Appl. Remote Sens. 2013, 7, 3561. [Google Scholar] [CrossRef]
- Rai, D.K.; Xiong, D.; Zhao, W.; Zhao, D.; Zhang, B.; Dahal, N.M.; Wu, Y.; Baig, M.A. An Investigation of Landslide Susceptibility Using Logistic Regression and Statistical Index Methods in Dailekh District, Nepal. Chin. Geogr. Sci. 2022, 32, 834–851. [Google Scholar] [CrossRef]
- Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thi Ngo, P.T. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 2022, 37, 4594–4627. [Google Scholar] [CrossRef]
- Li, Y.; Lin, F.; Luo, X.; Zhu, S.; Li, J.; Xu, Z.; Liu, X.; Luo, S.; Huo, G.; Peng, L. Application of an ensemble learning model based on random subspace and a J48 decision tree for landslide susceptibility mapping: A case study for Qingchuan, Sichuan, China. Environ. Earth Sci. 2022, 81, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, Z.; Xu, Q.; Li, W. Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens. 2021, 13, 1157. [Google Scholar] [CrossRef]
- Lin, R.; Liu, J.; Xu, S.; Liu, M.; Zhang, M.; Liang, E. Evaluation method of landslide susceptibility based on random forest weighted information. Sci. Surv. Mapp. 2020, 45, 131–138. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Guo, Z. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Liu, J.; Wang, X.; Zhang, Y.; Lin, R.; Zhang, M.; Liu, M.; Jiang, T. Entropy index incorporated into support vector machine for landslide hazard susceptibility evaluation method a case of Shaanxi Province. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1214–1222. [Google Scholar] [CrossRef]
- Saha, S.; Saha, A.; Hembram, T.K.; Mandal, K.; Sarkar, R.; Bhardwaj, D. Prediction of spatial landslide susceptibility applying the novel ensembles of CNN, GLM and random forest in the Indian Himalayan region. Stoch. Environ. Res. Risk Assess. 2022, 1–20. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Habumugisha, J.M.; Chen, N.; Rahman, M.; Islam, M.M.; Ahmad, H.; Elbeltagi, A.; Sharma, G.; Liza, S.N.; Dewan, A. Landslide susceptibility mapping with deep learning algorithms. Sustainability 2022, 14, 1734. [Google Scholar] [CrossRef]
- Guo, C.; Wu, J.; Zhao, S.; Wang, Z.; Meena, S.R.; Zhang, F. Landslide susceptibility assessment based on multi GPUs: A deep learning approach. CCF Trans. High Perform. Comput. 2022, 4, 135–149. [Google Scholar] [CrossRef]
- Machichi, M.A.; Saadane, A.; Guth, P.L. Subimages-Based Approach for Landslide Susceptibility Mapping Using Convolutional Neural Network. In Geospatial Intelligence; Springer: Berlin/Heidelberg, Germany, 2022; pp. 131–141. [Google Scholar]
- Chen, Y.; Ming, D.; Xiao, L.; Lv, X.; Zhou, C. Landslide Susceptibility Mapping Using Feature Fusion-Based CPCNN-ML in Lantau Island, Hong Kong. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3625–3639. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wang, Y.; Ling, P.; Hong, H. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheeri, M.M.; Mahdi, A.M. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: Comparison of their performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 1–22. [Google Scholar] [CrossRef]
- Patel, H.; Upla, K.P. A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multimed. Tools Appl. 2022, 81, 695–714. [Google Scholar] [CrossRef]
- He, Y.; Carass, A.; Zuo, L.; Dewey, B.E.; Prince, J.L. Autoencoder Based Self-Supervised Test-Time Adaptation for Medical Image Analysis. Med. Image Anal. 2021, 72, 102136. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, X.; Wang, S. A deep autoencoder feature learning method for process pattern recognition. J. Process Control 2019, 79, 1–15. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Zhang, X.; Chen, X.; Chen, X. Metric learning for novel motion rejection in high-density myoelectric pattern recognition. Knowl.-Based Syst. 2021, 227, 107165. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, D.; Yang, T. Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost. Reliab. Eng. Syst. Saf. 2022, 222, 108445. [Google Scholar] [CrossRef]
- Dolgikh, S. On Unsupervised Categorization in Deep Autoencoder Models. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Kyiv, Ukraine, 21–22 February 2022; Springer: Cham, Switzerland, 2020; pp. 255–265. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 2012, 3, 212–223. [Google Scholar]
- Renza, D.; Cárdenas, E.A.; Martinez, E.; Weber, S.S. CNN-Based Model for Landslide Susceptibility Assessment from Multispectral Data. Appl. Sci. 2022, 12, 8483. [Google Scholar] [CrossRef]
Network Structure | OA (%) | Precision | Recall | F1 Score |
---|---|---|---|---|
DAE1-MRCNN | 79.02 | 0.83 | 0.75 | 0.78 |
DAE2-MRCNN | 81.42 | 0.84 | 0.76 | 0.80 |
DAE3-MRCNN | 83.96 | 0.83 | 0.84 | 0.83 |
DAE4-MRCNN | 84.13 | 0.85 | 0.84 | 0.84 |
DAE5-MRCNN | 82.02 | 0.78 | 0.87 | 0.82 |
Model | Class | Area | Landslides | Class-Specific Accuracy |
---|---|---|---|---|
1DCNN | Very low | 12,912.25 | 31 | 0.002 |
Low | 3337.61 | 34 | 0.010 | |
Moderate | 4935.76 | 131 | 0.026 | |
High | 9402.41 | 586 | 0.062 | |
Very high | 8092.63 | 1373 | 0.169 | |
Res-1DCNN | Very low | 12,580.65 | 25 | 0.002 |
Low | 4573.15 | 25 | 0.005 | |
Moderate | 10,988.91 | 325 | 0.029 | |
High | 3727.82 | 454 | 0.121 | |
Very high | 6810.05 | 1326 | 0.194 | |
DAE-RCNN | Very low | 9508.76 | 10 | 0.001 |
Low | 6936.77 | 50 | 0.007 | |
Moderate | 7343.59 | 181 | 0.024 | |
High | 9967.52 | 817 | 0.081 | |
Very high | 4924.01 | 1097 | 0.222 | |
DAE-MRCNN | Very low | 13,945.31 | 18 | 0.001 |
Low | 4552.32 | 23 | 0.005 | |
Moderate | 9623.84 | 199 | 0.020 | |
High | 3611.04 | 454 | 0.125 | |
Very high | 6948.14 | 1461 | 0.210 |
Model | Class | Area | Landslides | Class-Specific Accuracy |
---|---|---|---|---|
SVM | Very low | 11,206.88 | 37 | 0.003 |
Low | 8974.81 | 144 | 0.016 | |
Moderate | 6824.08 | 235 | 0.034 | |
High | 6162.37 | 679 | 0.110 | |
Very high | 5512.51 | 1060 | 0.192 | |
CPCNN-ML | Very low | 9200.83 | 15 | 0.001 |
Low | 5042.66 | 22 | 0.004 | |
Moderate | 5528.88 | 57 | 0.010 | |
High | 10,595.48 | 460 | 0.043 | |
Very high | 8312.80 | 1601 | 0.192 | |
2D-CNN | Very low | 11,530.76 | 18 | 0.001 |
Low | 5986.36 | 38 | 0.006 | |
Moderate | 9207.62 | 256 | 0.027 | |
High | 5840.31 | 562 | 0.096 | |
Very high | 6115.60 | 1281 | 0.209 | |
DAE-MRCNN | Very low | 13,945.31 | 18 | 0.001 |
Low | 4552.32 | 23 | 0.005 | |
Moderate | 9623.84 | 199 | 0.020 | |
High | 3611.04 | 454 | 0.125 | |
Very high | 6948.14 | 1461 | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xu, S.; Liu, J.; Wang, Y.; Ma, X.; Jiang, T.; He, X.; Han, Z. A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation. Remote Sens. 2023, 15, 653. https://doi.org/10.3390/rs15030653
Wang Z, Xu S, Liu J, Wang Y, Ma X, Jiang T, He X, Han Z. A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation. Remote Sensing. 2023; 15(3):653. https://doi.org/10.3390/rs15030653
Chicago/Turabian StyleWang, Zhuolu, Shenghua Xu, Jiping Liu, Yong Wang, Xinrui Ma, Tao Jiang, Xuan He, and Zeya Han. 2023. "A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation" Remote Sensing 15, no. 3: 653. https://doi.org/10.3390/rs15030653
APA StyleWang, Z., Xu, S., Liu, J., Wang, Y., Ma, X., Jiang, T., He, X., & Han, Z. (2023). A Combination of Deep Autoencoder and Multi-Scale Residual Network for Landslide Susceptibility Evaluation. Remote Sensing, 15(3), 653. https://doi.org/10.3390/rs15030653