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Abstract: Landslide susceptibility evaluation can accurately predict the spatial distribution of poten-
tial landslides, which offers great usefulness for disaster prevention, disaster reduction, and land
resource management. Aiming at the problems of insufficient samples for landslide compilation,
difficulty in expanding landslide samples, and insufficient expression of nonlinear relationships
among evaluation factors, this paper proposes a new evaluation method of landslide susceptibility
combining deep autoencoder and multi-scale residual network (DAE-MRCNN). In the first step, a
deep autoencoder network was used to learn the feature expression of the original landslide data in
order to acquire effective features in the data. Next, a multi-scale residual network was constructed;
specifically, the model was improved into a deep residual network model by adding skip connections
in the convolutional layer. In addition, the multi-scale idea was utilized to fully extract the scale
characteristics of the evaluation factors. Finally, the model was used for feature training, and the
results were input into the Softmax classifier to complete the prediction of landslide susceptibility.
For this purpose, a machine learning method and two state-of-the-art deep learning methods, namely
SVM, CPCNN-ML, and 2D-CNN, were utilized to model landslide susceptibility in Hanzhong City,
Shaanxi Province. The proposed method produced the highest model performance of 0.891, followed
by 0.842, 0.869, and 0.873. The experimental results show that the DAE-MRCNN method can fully
express the complex nonlinear relationships among the evaluation factors, alleviate the problem of
insufficient samples in convolutional neural networks (CNN) training, and significantly improve the
accuracy of susceptibility prediction.

Keywords: landslide susceptibility; deep autoencoder; convolutional neural networks; residual
learning; multiscale

1. Introduction

In recent years, the deteriorating global environment and increasing frequency of
natural hazards have had a considerable impact on human production and living. In
particular, landslides represent a major type of natural hazard [1,2]. Thus, landslide sus-
ceptibility evaluation has become the focus of disaster prevention and mitigation work;
this challenging topic has attracted extensive attention from scholars at both domestic and
international levels [3]. Landslide susceptibility evaluation, a method for predicting the
temporal-spatial distribution and occurrence probability of landslide hazards, yields predic-
tion results that can provide a vital scientific basis for landslide risk management, territorial
spatial planning, and landslide monitoring [4]. Therefore, in order to enrich landslide
susceptibility evaluation theories and models, protect people’s lives and properties, reduce
disaster losses, and improve the efficiency of disaster prevention and mitigation work, the
study of landslide susceptibility evaluation and zoning offers academic significance while
also providing a fact-based resource to help government departments formulate disaster
prevention and mitigation measures, which has essential practical application value.
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According to the different theoretical foundations, landslide susceptibility evaluation
methods can be divided into two categories: deterministic and uncertainty-based [5,6]. The
deterministic method primarily predicts the probability of landslide occurrence within a
specific range by exploiting traditional quantitative physical–mechanical models based on
landslide-inducing mechanisms and slope stability calculations. Therefore, this method is
suitable for landslide susceptibility evaluation at both large scale and small range [7]. By
comparison, the uncertainty method, which is further divided into two analysis methods,
knowledge-driven and data-driven, superimposes weights on the factors affecting the
occurrence of disasters, mainly by statistically analyzing historical disaster information at
the locations where landslides have occurred and subsequently arriving at a prediction
of the probability of landslide occurrence in the study area [8,9]. Since the uncertainty
method considers the weight information of each indicator factor and has a high evalua-
tion accuracy, it has found wide acclamation from scholars and researchers. Among the
data-driven machine learning methods are those based on logistic regression (LR) [10,11],
decision tree [12,13], random forest (RF) [14,15], and support vector machine (SVM) [16,17],
all of which are well-suited to exploring the nonlinear relationship between landslide sus-
ceptibility and each evaluation factor. These methods are computationally efficient without
much prior knowledge. However, the continuously increasing quality and quantity of
geological hazard data is requiring the machine learning method to process a large amount
of prior knowledge while also imposing various limitations because of the difficulty in effi-
ciently obtaining the nonlinear relationships among evaluation factors from these complex
data [18,19].

In contrast, deep learning has been recognized as better at converting low-level fea-
ture representations into deeper-level feature representations through multi-layer neural
network training to further explore the distributed features of data; hence, this method
has been widely used in landslide susceptibility mapping in recent years [20,21]. As one of
the most representative methods in deep learning, convolutional neural networks (CNN)
can better simulate the formation of landslide hazards with their powerful expressive
learning capability to accurately predict potential landslide risk [22,23]. Wang et al. [24]
applied CNN models to landslide susceptibility evaluation work by constructing CNN-1D,
CNN-2D, and CNN-3D models for feature extraction and classification. Fang et al. [25]
used a one-dimensional convolutional neural network (1D-CNN) with a five-layer network
structure to evaluate landslide hazard susceptibility in Yongxin County, Jiangxi Province,
and achieved good evaluation results. Youssef et al. [26] first used 13 evaluation factors
as the input data set, then built a two-dimensional convolutional neural network model
with a four-layer structure, and finally predicted the susceptibility index of each raster cell
by the model to obtain the final landslide susceptibility results. These previous studies all
achieved some success in improving classification accuracy. However, the current shortage
of landslide inventories means difficulties in providing sufficient training samples for CNN.
In addition, these single-scale network structures tend to neglect the details of evaluation
factors and cannot effectively express the differences among attribute values.

Unlike the supervised CNN, autoencoder (AE) is an unsupervised feature learning
neural network that can automatically learn from a large number of unlabeled data samples
to acquire the effective features embedded within the data. This technique has been
successfully applied to image processing [27,28], pattern recognition [29,30], anomaly
detection [31], and so on. Considering the characteristics of AE and the deficiency that the
single-scale network structure cannot effectively express the differences among attribute
values, this paper proposes a landslide susceptibility evaluation method that integrates
deep autoencoder and multi-scale residual networks. The new method makes full use
of the data reconstruction advantage of AE along with the classification advantage of
CNN networks. The proposed approach uses the organic integration of these two network
structures to construct a unified architecture for susceptibility evaluation that can solve
the problem of insufficient training samples and makes adequate use of the scale features
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of evaluation factors to extract more comprehensive discriminative features, significantly
improving the accuracy of landslide susceptibility evaluation.

2. Study Area and Service Data
2.1. Study Area

China, located in the eastern part of the Asian continent, is a country with a high
occurrence of geological disasters, including landslides, whose seriousness is underlined by
their high frequency, wide influence, and persistence. For example, the severity of the problem
of landslides is evident in a report published by China’s Ministry of Natural Resources in
2021 that listed 4772 geological disasters in China, of which 2335 (48.93%) were landslides.
Hanzhong City in Shaanxi Province features active geological tectonic movement, complex
geological conditions, deep valleys, crushed terrain, and steep slopes that are affected by
various factors such as engineering construction, land resource utilization, mineral resource
development, and heavy rainfall, leading to increased landslide potential and making this
location a key area for landslide prevention and control. Therefore, monitoring and forecasting
landslide disasters in Hanzhong City, Shaanxi Province, is of immense practical significance.

Hanzhong City is in the southwest of Shaanxi Province, bounded by the Qinling
Mountains in the north and the Daba Mountains in the south, covering a total area of
27,246 km2. The center of Hanzhong Plain is formed by the alluvial accumulation of the
Hanjiang River, which has a subtropical climate. The city is located in the middle region
of the Hanzhong Basin, upstream of the Hanshui River Basin, between 105◦30′50′′ and
108◦16′45′′ E and 32◦08′54′′ and 33◦53′16′′ N. The city crosses the Qinling fold system and
the Yangtze quasi-platform. Frequent tectonic movements and intense magmatic activities
in the area’s geological history complicate the regional geological situation. The terrain is
generally low in the south and high in the north, and the city is comprised of three types
of landforms: plains, hills, and mountains. The plain area is mainly distributed between
500 m and 600 m above sea level, with flat terrain and fertile soil, accounting for 34.62%
of the city’s area. Meanwhile, hilly areas are distributed between 601 m and 800 m above
sea level, with large topographic relief, accounting for 28.1% of the city’s area. Shallow
mountains and middle mountains formed on the southern slope of the Qinling Mountains
are the main mountainous areas in Hanzhong City, with a complex terrain. The altitude
of this area ranges from 701 m to 2038 m, accounting for 37.2% of the city’s total area.
These complex geographic and geomorphic conditions jointly contribute to the natural
environment of frequent landslide disasters in Hanzhong City. Hence, Hanzhong City was
selected as the research area for this study.

2.2. Usage Data

The data on landslide points in Hanzhong City were derived from the Spatial Distribu-
tion Data of Geological Hazard Points from the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences, acquired in 2017. The geological lithology data
were obtained from the Spatial Distribution Data of Geological Lithology in China from
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences,
acquired in 2018. The rainfall data were derived from the China Annual Precipitation Spa-
tial Interpolation Data Set Since 1980 from the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences, acquired in 2018. The vegetation index data
came from the Resource and Environmental Science Data Center of the Chinese Academy
of Sciences, which generated the annual vegetation index data set with the maximum syn-
thetic method, acquired in 2018. Digital elevation model (DEM) data and residential area
data were obtained from the results of the first national geoinformation survey, acquired in
2018. The road data and water system data are public datasets provided by OpenStreetMap,
acquired in 2018. In order to achieve the purpose of statistical analysis, the center of the
practical range of landslide occurrence was adopted as the sampling point, and grid cells
with a resolution of 30 m× 30 m were used as reference cells for division in this study. The
study area was divided into 10,581 columns and 7769 rows, totaling 42,978,531 grid units.
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3. Method

The procedure adopted for the proposed evaluation method to determine landslide
susceptibility is illustrated in Figure 1. The constructed network is composed of three parts:
selection of landslide susceptibility evaluation factors, construction of a training sample
dataset, and susceptibility prediction based on DAE-MRCNN.
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Figure 1. Flowchart of the proposed method.

3.1. Landslide Susceptibility Evaluation Factor

Taking into account the characteristics of the geological environment of landslide de-
velopment in the study area, we conducted state grading and correlation analysis for each
evaluation factor based on the landslide proportion, grading proportion, and information
value under each indicator factor of landslide hazard. The formation of landslides is the result
of the joint action of factors from various aspects; in addition, environmental variations in
different areas make the selected evaluation factors for landslide susceptibility evaluation
distinct in each area. For some evaluation factors with strong correlations, the correlations
between the index factors could be eliminated to some extent by selective retention and
elimination. Thus, the factors with a high frequency of occurrence were selected by referring
to the general experience of landslide hazard research; meanwhile, the evaluated factors
that strongly correlated with multiple index factors were eliminated. We began building the
evaluation factor system of landslide susceptibility in the study area (Figure 2) by identifying
the following 10 evaluation factors in 4 categories: topography (DEM, slope, aspect, and
geomorphologic units landslide point density), human influence (distance from road and
distance from the residential area), meteorological hydrology (cumulative rainfall and distance
from river system), and geological and environmental factors (lithologic units landslide point
density and normalized difference vegetation index [NDVI]).

Otherwise, considering the complicated geological structure research district, for
discrete data such as lithology and geomorphology, combining the distribution of geological
lithology space and geomorphological types and the distribution of landslide hazard points
in Hanzhong City, the density of hazard points in each geological lithology unit and the
hazard points in geomorphological units are quantified respectively.
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Figure 2. (a) DEM, (b) slope, (c) aspect, (d) geomorphologic units landslide point density, (e) distance
from road, (f) distance from residential area, (g) cumulative rainfall, (h) distance from river system,
(i) lithologic units landslide point density, (j) NDVI.

3.2. Evaluation Model Training Sample Dataset

Training the landslide susceptibility model required first establishing the landslide
susceptibility evaluation training sample dataset. Each sample of data consisted of landslide
attributes (landslide hazard unit or non-landslide hazard unit) and landslide evaluation
factors (10 attribute values of landslide susceptibility evaluation factors), which were the
model parameters of the evaluation model; the landslide attribute was the prediction target
of the evaluation model.

In the process of selecting non-landslide points, we sought to avoid selecting samples
comprising a raster unit with potential landslides by keeping the probability of landslides in
the generated raster unit as low as possible. Specifically, we adopted the information value
as the range constraint of the generation range of non-landslide points as follows: After
grading each evaluation factor, the information value corresponding to the 10 evaluation
factors was obtained and superimposed to obtain the total information map. Then, the
very low susceptibility area and low susceptibility area, which were delineated based
on the information value, were used as the generation areas of non-landslide samples.
However, since there were still a few landslide points in the generation area, the selected
non-landslide points were random and diverse due to distance constraints. On the basis of
a thorough analysis of the landslide hazard development pattern in Hanzhong City, the
distance between the generated non-landslide points and the existing landslide points, we
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defined the distance among the non-landslide points as not less than 1km as the distance
constraint after repeated experiments.

Regarding the sample balance, when establishing the training sample dataset of the
evaluation model, 2155 landslide points in Hanzhong City corresponded to 2155 raster cells.
In the event that the above constraints were satisfied, the number of raster units consistent
with the number of landslide points was randomly selected as non-landslide hazard units
from the remaining 42,976,376 raster units. These two parts were defined as the sample
dataset, 70% of which was used as the training dataset, and the other 30% was assigned
to the testing dataset. In addition, a ten-fold cross-validation method was performed to
determine the parameters of the model in the training dataset.

3.3. Landslide Susceptibility Prediction Based on DAE-MRCNN

The overall process of the DAE-MRCNN model constructed in this paper is shown
in Figure 3. The model begins by normalizing the attribute values of the 10 evaluation
factors. The next step involved a deep autoencoder network that was designed to achieve
feature reconstruction, and then the reconstructed features were input into a depth residual
module with three different scales for deep feature extraction. In the step that followed,
the Softmax classifier was adopted to classify and obtain the affiliation degree. Finally, the
affiliation degree was divided into five hazard susceptibility levels (very low susceptibility
area, low susceptibility area, moderate susceptibility area, high susceptibility area, and
very high susceptibility area) to generate the landslide susceptibility map, which could
intuitively perceive the susceptibility degree of a landslide in each region of the study area.

Remote Sens. 2023, 15, 653 7 of 22 
 

 

we defined the distance among the non-landslide points as not less than 1km as the dis-

tance constraint after repeated experiments. 

Regarding the sample balance, when establishing the training sample dataset of the 

evaluation model, 2155 landslide points in Hanzhong City corresponded to 2155 raster 

cells. In the event that the above constraints were satisfied, the number of raster units 

consistent with the number of landslide points was randomly selected as non-landslide 

hazard units from the remaining 42,976,376 raster units. These two parts were defined as 

the sample dataset, 70% of which was used as the training dataset, and the other 30% was 

assigned to the testing dataset. In addition, a ten-fold cross-validation method was per-

formed to determine the parameters of the model in the training dataset. 

3.3. Landslide Susceptibility Prediction Based on DAE-MRCNN 

The overall process of the DAE-MRCNN model constructed in this paper is shown 

in Figure 3. The model begins by normalizing the attribute values of the 10 evaluation 

factors. The next step involved a deep autoencoder network that was designed to achieve 

feature reconstruction, and then the reconstructed features were input into a depth resid-

ual module with three different scales for deep feature extraction. In the step that fol-

lowed, the Softmax classifier was adopted to classify and obtain the affiliation degree. 

Finally, the affiliation degree was divided into five hazard susceptibility levels (very low 

susceptibility area, low susceptibility area, moderate susceptibility area, high susceptibil-

ity area, and very high susceptibility area) to generate the landslide susceptibility map, 

which could intuitively perceive the susceptibility degree of a landslide in each region of 

the study area. 

 

Figure 3. The overall flow of the DAE-MRCNN. 

3.3.1. Normalize the Evaluation Factors 

Because a certain variability, in terms of magnitude, of different evaluation factors 

existed, it was necessary to normalize each attribute value of evaluation factors to ensure 

the accuracy and validity of the susceptibility evaluation results. Without normalization, 

the convergence speed is slow, and the result obtained may be locally optimal. The nor-

malization process is calculated as follows: 

FC1

FC2

Max Pooling

Deep Autoencoder

Normalization Processing

...

...

...

...

...

Multiscale-RCNN

Reconstructed 

data Softmax

       C11       C12        C13        C14

      C21       C22       C23      C24

      C31       C32       C33       C34

C：Convolution layer

FC：Fully connected layer

Input Data

... ... ... ... ... ... ...

DecoderEncoder

Norm1

Norm2

Norm3

Norm10

Figure 3. The overall flow of the DAE-MRCNN.
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3.3.1. Normalize the Evaluation Factors

Because a certain variability, in terms of magnitude, of different evaluation factors
existed, it was necessary to normalize each attribute value of evaluation factors to ensure
the accuracy and validity of the susceptibility evaluation results. Without normalization,
the convergence speed is slow, and the result obtained may be locally optimal. The
normalization process is calculated as follows:

X =
Y−Ymin

Ymax −Ymin
(1)

where Y is the input evaluation factor attribute value, X is the normalized evaluation factor
attribute value, and Ymax and Ymin are the respective maximum and minimum values of the
attribute values in the corresponding evaluation factors. After the normalization operation,
the attribute values in each evaluation factor are in the range of [0, 1]; in other words, they
have the same degree of perception.

3.3.2. Feature Reconstruction Based on DAE

Automatically learning the feature representation of raw data is one of the core pur-
poses of deep learning and neural networks. AE is a nonlinear unsupervised learning
network with strong feature learning ability that is extensively utilized in classification and
unsupervised feature learning. It is well-suited to obtain the reconstruction information of
the input data by characterizing the original data [32].

To acquire a better feature description than the original landslide data, we designed a
deep autoencoder (DAE) network structure as illustrated in Figure 4. The DAE is composed
of stacked connections of AE networks; each layer of the AE is trained separately, and the
output of the previous AE layer is used as the input for the next layer of the AE, which has
a better ability to extract data features. During the training process, the network parameters
are constantly adjusted to minimize the objective function and achieve the purpose of
reconstructing the input data in the decoding layer. The model yields a good reconstruction
performance while improving the network generalization ability.
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Assuming that the normalized processed attribute value is X = [x(1), x(2), · · · , x(dx)]
T

(x ∈ Rdx ), where dx is the dimension of the input data. In the encoding stage, x is mapped
from the input layer to the hidden layer as H = [h(1), h(2), · · · , h(dh)

]T(h ∈ Rdh), and dh is
the dimension of the hidden layer vector. In the decoding stage, h is mapped from the
hidden layer to the output layer as X̃ = [x̃(1), x̃(2), · · · , x̃(dx)]

T(X̃ ∈ Rdx ). In both stages, the
transformation process of the input data is as follows:

h = δ f (WX + b) (2)

X̃ = δ f̃ (W̃H + b̃) (3)

where W ∈ dh × dx and b ∈ Rdh are the encoding weights and biases, W̃ ∈ dx × dh and
b̃ ∈ Rdx are the decoding weights and biases, and δ f and δ f̃ are the activation functions,
of which the sigmoid function is generally selected. On this basis, the loss function is
minimized by continuously training

{
W, W̃

}
and

{
b, b̃

}
so that the reconstructed output

X̃ is as close as possible to the original input X.

3.3.3. Feature Extraction Based on Multiscale-RCNN

Considering the inadequate utilization of the detail features by existing single-scale
techniques, we designed a multi-scale residual network (Multiscale-RCNN) based on Res-
1DCNN to comprehensively obtain the feature information, as shown in Figure 3. The
Multiscale-RCNN model can successively and alternatively extract complex nonlinear
features from the evaluation factors. Compared with a simple CNN, the Multiscale-RCNN
method fully fuses the features of evaluation factors among different branches by introduc-
ing a Res-1DCNN model which improves the classification accuracy.

In Figure 3, C11-C14, C21-C24, and C31-C34 represent ordinary convolutional layers
with a step size of 1 and kernel size of 1, 3, and 5, respectively (C11, C21, and C31 have
a valid convolution mode, and the rest use the same convolution mode). Max pooling
represents the maximum pooling layer with a step size of 2 and a pooling window size
of 3, and FC represents a fully connected layer. First, the reconstructed landslide features
are used as the input of the network. Next, a Res-1DCNN with a three-branch parallel
structure (the convolutional kernel sizes of the three branches are 1, 3, and 5) is constructed,
and the extraction of different perceptual fields is achieved through multiple parallel
Res-1DCNN branches, which are utilized to connect the feature information extracted
by each convolutional layer in the network. Following that step, the model extracts the
deep features and then performs multi-scale feature fusion. Finally, a max pooling layer is
introduced after the Multiscale-RCNN model to reduce the computational effort; the feature
map output from the max pooling layer is converted into one-dimensional vectors and then
connected to fully connected layers FC1 and FC2 with 512 and 256 neurons, respectively, to
convert the feature data into 1× 256 dimensional vectors.

Increasing the network depth of CNN has received much recognition in terms of
better results in mining data features. However, this technique also tends to lead to the
disappearance of the model learning gradient, resulting in a more difficult learning process.
To solve this problem, we introduced a residual network (called ResNet [33]) into the model,
which has previously been shown to achieve great success in the field of computer vision.
The basic idea of residual learning is to stack multiple convolutional layers together as a
block and then use a skip connection scheme to transfer the feature information from the
previous layer to the next layer. This scheme allows fitting the residual mapping instead of
the original identity mapping as a way to maintain the input information and broaden the
propagated gradient. Figure 5 displays the ResNet constructed in this paper, where E is the
input to the model, and F(E) is the output after the linear transformation and activation of
the layer, known as the residual.
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Figure 5. Residual Networks.

In the skip connection, we utilize convolution and batch normalization to extract
sample feature E to get E′; the residual connection way is F(E) + E, and F(E) is calculated
as follows:

F(E) = ψ(W2(RelU(ψ(W1 + q1))) + q2) (4)

where W1 and W2 are weights for each convolutional layer, q1 and q2 are biases, and ψ is
represented as batch normalization.

The activation function can be used to enhance the nonlinear mapping ability of the
network, and since the ReLU activation function converges faster than other activation
functions, we utilize ReLU as the activation function of the network for all convolutional
layers, which is expressed as:

ReLU(q) =max(0, q) (5)

To enhance the reuse rate of feature information in CNN to a greater extent, as well as
control the complexity of the model as much as possible, we constructed a deep residual
model, Res-1DCNN, as shown in Figure 6 (C1-C4, R1-R6 represent the convolutional layers
with a step size of 1, respectively). The network consists of convolutional layers, batch
normalization layers, and dropout layers. Compared with the traditional residual unit
structure, the Res1DCNN used in this paper makes adequate utilization of the correlation
features among different layers in the model on the basis of keeping the number of pa-
rameters constant. This structure solves the problem of gradient disappearance due to the
convolutional layers deepening, and extends the width of the network model on the basis
of controlling the complexity. It can more effectively mine deeper features in the sample
data and provide an effective network model for landslide susceptibility analysis.
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In the construction of Res-1DCNN, according to the general experience of CNN
design in computer vision, the complex structure of the evaluation factor means that the
higher the convolution layer, the more convolution kernels are needed. In addition, in
the network structure of residual learning, all convolutional layers use the same number
of convolutional kernels to ensure that their dimensionality is consistent. Therefore, the
number of convolutional kernels in the first convolutional layer C1 is set to 8; next, C2, C3,
and C4 are set to 16, 32, and 64, respectively, and the step size of the convolutional kernels
in C1 to C4 and R1 to R6 is set to 1. Otherwise, in order to speed up the training of the
convolutional neural network and reduce the sensitivity to the network initialization, we
adopt a batch normalization layer to normalize each input channel in batches [34].

As the number of network layers increased, the deep neural networks gradually
produced a large number of parameters that could have easily led to an overfitting phe-
nomenon. In addition, the slow learning speed of the large network structure poses great
challenges to the overfitting problem. Dropout, a regularization method for neural network
models, can randomly discard neurons and their connections from the neural network
during the training process, reduce parameters in the network layer, and greatly alleviate
the overfitting phenomenon [35,36]. Therefore, after fully connecting layers FC1 and FC2,
we adopt a dropout regularization method to randomly discard a certain percentage of
nodes in order to avoid the risk of overfitting. The dropout layer abandons part of the
neurons with probability pdropout, while the remaining neurons are retained with probability
1− pdropout, and the output of the discarded neurons is set to 0, as shown in Figure 7.
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3.3.4. Loss Function

In the output layer of the network, the Softmax linear classifier is used for logistic
regression classification, and the category corresponding to the maximum probability value
is selected as the final prediction result to derive the subordinate degree. In practical terms,
the cross-entropy loss function is often used in classification problems and, in particular,
is frequently adopted as the loss function in the neural network training process. This
function can be used to measure the similarity between the true category distribution
and the model-predicted category distribution, referring to the model prediction to obtain
the category probability and the one-hot encoding of the real category to calculate the
cross-entropy loss function. The calculation formula for cross-entropy is shown below:

pij = softmax(log(sij)) =
elog(sij)

1
n ∑n

i=1 ∑k
j=1 elog(sij)

(6)
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loss = − 1
n

n

∑
i=1

k

∑
j=1

yij ln pij (7)

where n denotes the number of samples, k is the number of categories, yij represents the
label of sample i, pij indicates the probability that sample i is predicted to be class j, sij
is the score of class j in sample i, and loss is the cross entropy of the true value and the
predicted value.

4. Experimental Analysis

Various evaluation metrics were adopted to assess the performance of the proposed
method, including precision, recall, F-measure, overall accuracy (OA), and AUC. Assuming that
true positives (TP) and false positives (FP) were the number of landslide samples with correct
and incorrect classification, respectively, false negatives (FN) and true negatives (TN) were the
number of non-landslide samples with correct and incorrect classification, respectively.

Precision was the percentage of true landslide samples among all samples predicted
as landslides.

Precision =
TP

TP + FP
(8)

Recall referred to the percentage of all landslide samples being accurately predicted
as landslides.

Recall =
TP

TP + FN
(9)

F-measure (F1) was the harmonic mean of precision and recall.

F1-score = 2× Precision× Recall
Precision + Recall

(10)

Overall accuracy (OA) was the comprehensive evaluation index of model predictions
including landslide samples and non-landslide samples.

OA =
TP + TN

TP + TN + FP + FN
(11)

AUC was the area under the receiver operating characteristic (ROC) curve, and the
closer the value was to 1, the better the classification effect of the method was.

To ensure the reliability and accuracy of the experimental results, we took the average
of the classification accuracy of 10 repeated experiments under each sample size as the final
experimental result. In addition, Sections 4.2 and 4.3 present our comparative analysis in
three aspects, under the condition that both training samples and test samples are the same:
landslide susceptibility map, landslide susceptibility zoning statistics, and evaluation model
accuracy. In terms of landslide susceptibility zoning, we considered various grading criteria
to grade the evaluation factors according to the characteristics of each. Specifically, the
natural discontinuity method is a commonly used classification method that can maximize
the difference among classes. The geometrical interval method creates class breaks based on
class intervals that have a geometric series; in addition, the coefficient in this classifier can be
changed once (to its inverse) to optimize the class ranges. The geometrical interval method
ensures that the interval of each class is relatively consistent, and it is often used when the data
distribution is extremely skewed. When using the SVM method as a comparison experiment,
the common natural discontinuity method was adopted for subordinate degree division. In
addition, as a result of multiple feature extractions, the susceptibility evaluation method using
deep learning generally has a higher recognition accuracy. In view of these characteristics, the
geometric interval method was used as the division method in this study.
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4.1. Parameter Settings

We divided the influencing factors of the proposed method into two parts: the deep
autoencoder structure parameter and the multi-scale residual network parameter in feature
extraction. The deep autoencoder structure parameter included the number of network
layers and the number of output layer nodes. The parameters of the multi-scale residual
network were the dropout probability value and the number of network iterations epoch.
We first set Dropout=0.5 and Epoch=300 to analyze the influence of deep autoencoder
network structure parameters on the model performance. After determining the optimal
network structure, the effect of different values of the other two parameters on the model
performance was considered, and the best parameters were selected.

4.1.1. Effect of the Number of Network Layers

The number of network layers in the deep autoencoder network played a critical
role in the model performance, affecting the feature expression ability of the data. As the
number of network layers increased, the feature expression ability was enhanced, and
more abstract features could be obtained. However, an excessive number of layers could
lead to overfitting of the model. In this experiment, six DAE-MRCNN network structures
with different layers were set up, namely DAE1-MRCNN, DAE2-MRCNN, DAE3-MRCNN,
DAE4-MRCNN, and DAE5-MRCNN, and the corresponding network structures were
represented as 256-10, 256-128-10, 256-128-64-10, 256-128-64-32-10, and 256-128-64-32-16-10,
respectively. The influence of the number of network layers on the classification results is
shown in Table 1. It is evident that the highest classification accuracy was achieved when
the DAE-MRCNN adopted a network structure of four layers.

Table 1. Influence of the number of network layers on the classification results.

Network Structure OA (%) Precision Recall F1 Score

DAE1-MRCNN 79.02 0.83 0.75 0.78
DAE2-MRCNN 81.42 0.84 0.76 0.80
DAE3-MRCNN 83.96 0.83 0.84 0.83
DAE4-MRCNN 84.13 0.85 0.84 0.84
DAE5-MRCNN 82.02 0.78 0.87 0.82

4.1.2. Effect of the Number of Output Layer Nodes

The number of the output layer nodes of the network model could express the ability
of low-dimensional embedding of the original landslide data. Too small of a node number
for output layer W led to insufficient feature expression ability, increasing the possibility
of overfitting. Since the dimension of the original landslide data was 10, W was selected
in [1,10]; its influence on the model performance is illustrated in Figure 8. It can be seen
that the model performance improved as the number of output layer nodes increased;
conversely, it appears to have stagnated or even decreased after gradually reaching the
maximum value. This outcome can be explained by the fact that the increase in the
number of output layer nodes was associated with the increasingly rich extraction of
feature information. For the DAE4-MRCNN method, the OA value was optimal when the
number of output layer nodes was 9. At this point, as the feature dimension continued to
increase, redundant information was gradually introduced into the network, which led to a
deterioration in classification performance.
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4.1.3. Effect of Dropout Probability Value

The dropout layer prevented the model from relying too much on some local features
by randomly discarding the parameter values of some neurons. Thus, its inclusion could
enhance the robustness of the model while avoiding the overfitting phenomenon. The effect
of different dropout values on the model performance is shown in Figure 9. It can be seen that
the classification accuracy performance was optimal when the dropout value was 0.6.
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4.1.4. Effect of Iteration Times

During the process of network training, it is generally necessary to set an appro-
priate number of iterations to update the weights continuously in order to improve the
generalization ability of the network. Figure 10 presents the influence of the different
iteration times on the classification result. When the number of iterations is within 500, the
classification accuracy has been maintained at about 86%. However, the loss value in the
model decreased sharply, indicating that the model was still updating. Once the number of
iterations reached 600, the loss value rapidly decreased from 0.11 to 0.02 and the score was
at its highest. It then decreased slowly and gradually smoothed out, and the classification
performance reached the optimum.
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4.2. Ablation Experiments

To verify the effectiveness of each model using the DAE-MRCNN method, we con-
ducted ablation experiments for the models. The one-dimensional convolutional neural
network designed in this study was chosen as the benchmark. The sub-models were
defined as follows:

(1) The benchmark model (1DCNN) designed in this paper.
(2) The deep residual network formed by adding a residual learning model to the bench-

mark model (Res-1DCNN).
(3) The classification model consisting of the deep autoencoder network and the residual

learning model added to the benchmark model (DAE-RCNN).
(4) The classification model consisting of the deep autoencoder network and the multi-

scale deep residual network with convolution kernel sizes of 1, 3, and 5, added to
the benchmark model, which was the classification method proposed in this study
(DAE-MRCNN).

The maps of landslide hazard susceptibility corresponding to the proposed method and
other sub-models are depicted in Figure 11. As a whole, the landslide susceptibility zoning
obtained by the four models exhibited a certain similarity. The vast majority of the areas were
very low susceptibility areas and low susceptibility areas. High susceptibility areas and very
high susceptibility areas were mainly concentrated in the central part of Hanzhong City and
extended in strips along the east and west directions, primarily along roads and rivers. Most
of the moderate susceptibility areas were distributed in strips around the higher susceptibility
areas, and a few were distributed around the lower susceptibility areas.

Taking the southern part of Hanzhong City as an example, the landslide susceptibility
result obtained by the 1DCNN model was more scattered and less regular, which can be
attributed to the fact that with limited training samples, although the 1DCNN model could
extract features beneficial to the susceptibility evaluation, too many network layers might
have caused the problem of overfitting. The division result of the Res-1DCNN model was
more explicit than that of the 1DCNN model; this outcome resulted because the residual
learning model could better overcome the problem of overfitting and improve the classifi-
cation results to a certain extent. The DAE-RCNN model and the DAE-MRCNN model
raised the hazard susceptibility by one level in one part of the area with the distribution
of hazard points. This result illustrates that the deep autoencoder network was able to
gain a better feature description than the original data while improving the generalization
ability of the network, along with further extracted features that would be beneficial for
landslide hazard susceptibility prediction. Compared with the DAE-RCNN model, the
DAE-MRCNN model had relatively few discretely distributed high susceptibility areas,
suggesting that the single-scale network structure tended to ignore the detail features of
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evaluation factors; in contrast, the multi-scale idea proposed in this study was able to ex-
tract more comprehensive discriminative features, effectively express the differences among
attribute values, and improve the accuracy of landslide hazard susceptibility evaluation.
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The statistical table of landslide hazard susceptibility zoning for the proposed method
and other sub-models is displayed in Table 2. Figure 12 presents the ROC curves of
different sub-models; in particular, the AUC values of 1DCNN, Res-1DCNN, DAE-RCNN,
and DAE-MRCNN were 0.841, 0.858, 0.864, and 0.891, respectively. As the degree of
hazard susceptibility increased, the density of landslide hazard points in each susceptible
area also gradually increased, reaching the maximum in the very high susceptibility area,
which is consistent with the actual situation. The classification performance of the 1DCNN
model was relatively low because of the simple convolutional network structure adopted
model, laying a certain foundation for the subsequent models. Taking high and very high
susceptibility areas as examples, the class-specific accuracy of Res-1DCNN, DAE-RCNN,
and DAE-MRCNN models was higher in each case than that of 1DCNN because the
residual learning model in this study was more able to fully obtain the relevant features
among different layers. In the DAE-RCNNN and DAE-MRCNN models, the sum of the
percentages of these two zones was 88.81% and 88.86%, respectively, higher than the
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results for the other two methods, and the sum of the percentages in the low and very
low susceptibility areas was 2.78% and 1.90%, respectively, lower than the results yielded
by the other two methods. These outcomes point to the ability of the deep autoencoder
network to accurately express the feature data and extract the features that are conducive
to landslide hazard susceptibility evaluation, which further illustrates the effectiveness of
each model of the proposed method.

Table 2. Statistical table of landslide susceptibility zoning for different sub-models.

Model Class Area Landslides Class-Specific
Accuracy

1DCNN

Very low 12,912.25 31 0.002
Low 3337.61 34 0.010

Moderate 4935.76 131 0.026
High 9402.41 586 0.062

Very high 8092.63 1373 0.169

Res-1DCNN

Very low 12,580.65 25 0.002
Low 4573.15 25 0.005

Moderate 10,988.91 325 0.029
High 3727.82 454 0.121

Very high 6810.05 1326 0.194

DAE-RCNN

Very low 9508.76 10 0.001
Low 6936.77 50 0.007

Moderate 7343.59 181 0.024
High 9967.52 817 0.081

Very high 4924.01 1097 0.222

DAE-MRCNN

Very low 13,945.31 18 0.001
Low 4552.32 23 0.005

Moderate 9623.84 199 0.020
High 3611.04 454 0.125

Very high 6948.14 1461 0.210
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4.3. Analysis of Landslide Susceptibility Zoning Results

To further verify the accuracy and reliability of the proposed method, we applied
different methods and compared the predictions in four experiments.

(1) The method of directly classifying the original landslide data using an SVM classifier,
and the radial basis function was adopted as the kernel function (SVM).

(2) The ensemble method based on a channel-expanded pre-trained CNN and a tradi-
tional machine learning model (CPCNN-ML) [23].
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(3) The landslide susceptibility method based on the two-dimensional CNN method
(2D-CNN) [37].

(4) The proposed method in the study.

The statistical table of landslide hazard susceptibility zoning for the different methods
is shown in Table 3. The proposed method exhibited the lowest class-specific accuracy in the
very low susceptibility and low susceptibility zones, and the highest class-specific accuracy
in the very high susceptibility and high susceptibility zones, respectively. Figures 13 and 14
illustrate the landslide susceptibility maps and ROC curves of the four methods, respec-
tively. The AUC values of the methods of SVM, CPCNN-ML, and 2D-CNN and the
proposed method were 0.842, 0.869, 0.873, and 0.891, respectively. Compared with the
other three methods, the SVM method divided more landslide points into the moderate
susceptibility zone, and had the highest point density in the zones, indicating that the CNN
method can better express the nonlinear relationships among evaluation factors. Although
the AUC value of the CPCNN-ML method was improved to a certain extent, some zones
with sparse distribution of landslide points were misclassified as very high susceptibility
zone. The performance of zone delineation was similar between the 2D-CNN method and
the DAE-RCNN method, but the DAE-RCNN method was more explicit in the delineation
of landslide points. In summary, the proposed method eliminates the majority of zones
directly from the risk zones in the practical application, which further demonstrates the
proposed method is more reasonable and reliable.

Table 3. Statistical table of landslide susceptibility zoning for different methods.

Model Class Area Landslides Class-Specific
Accuracy

SVM

Very low 11,206.88 37 0.003
Low 8974.81 144 0.016

Moderate 6824.08 235 0.034
High 6162.37 679 0.110

Very high 5512.51 1060 0.192

CPCNN-ML

Very low 9200.83 15 0.001
Low 5042.66 22 0.004

Moderate 5528.88 57 0.010
High 10,595.48 460 0.043

Very high 8312.80 1601 0.192

2D-CNN

Very low 11,530.76 18 0.001
Low 5986.36 38 0.006

Moderate 9207.62 256 0.027
High 5840.31 562 0.096

Very high 6115.60 1281 0.209

DAE-MRCNN

Very low 13,945.31 18 0.001
Low 4552.32 23 0.005

Moderate 9623.84 199 0.020
High 3611.04 454 0.125

Very high 6948.14 1461 0.210
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4.4. Discussion

Landslide susceptibility research provides a relatively accurate prediction of the spatial
probability of a potential landslide occurrence in a certain region. Deep learning, a current
significant branch of artificial intelligence, provides better simulation of landslide hazard
formation and predicts potential risks effectively. In previous related literature, deep
learning methods commonly suffer from insufficient samples of landslide, and gradient
disappearance problems, and cannot effectively express complex nonlinear relationships
among the evaluation factors. Therefore, we propose a new evaluation method of landslide
susceptibility combining a deep autoencoder and a multi-scale residual network.

We conducted the experimental analysis of the major parameters affecting the perfor-
mance of the model, including the number of network layers, the number of output layer
nodes, the dropout probability value, and the number of network iterations epoch, so that
the optimal model parameters were finally selected. For confirming the effectiveness of
each model, the one-dimensional convolutional neural network designed in this study was
chosen as the benchmark, and the ablation experiments for the models were conducted.
These experimental results revealed that: (1) DAE was better able to express the complex
nonlinear relationship among the evaluation factors in the case of insufficient landslide
inventories; (2) the proposed depth residual model was caused by the increased number of
network layers and adequately acquired the correlation features between different layers
while keeping the number of parameters constant; and (3) the multi-scale idea made better
use of the scale features of evaluation factors to extract more comprehensive discrimina-
tive features, providing the ability to solve the problem in which a single-scale network
structure cannot effectively express the differences among attribute values.

To further verify the accuracy and reliability of the proposed method, a machine
learning method and two state-of-the-art deep learning methods, namely SVM, CPCNN-
ML, and 2D-CNN, were adopted as comparison experiments in this paper. The proposed
method produced the highest model performance of 0.891, followed by 0.842, 0.869, and
0.873, while also achieving the highest class-specific accuracy in the high and very high
susceptibility zones, and the lowest class-specific accuracy in the low and very low sus-
ceptibility zones. Therefore, the DAE-MRCNN method can effectively improve prediction
performance and may be a promising method for future studies. Despite the excellent
feature extraction capability of the DAE-MRCNN method, it is necessary to manually
adjust a large number of parameters to optimize the complex CNN structure, which affects
the efficiency of landslide hazard prediction and also makes it difficult to accurately obtain
the optimal parameters of the model.

5. Conclusions

In this paper, we have presented a DAE-MRCNN method for landslide hazard suscep-
tibility evaluation. Based on 2155 landslide hazard sites in Hanzhong City, 10 influencing
factors, such as slope, aspect, and DEM, were selected as landslide hazard susceptibility
evaluation factors, and the DAE-MRCNN method was designed to evaluate landslide
hazard susceptibility in the study area.

In summary, the proposed method not only effectively improves the prediction accu-
racy of landslide susceptibility but also lays a firm foundation for the application of deep
learning in the field of susceptibility evaluation. However, the large number of parameters
involved in CNN makes it necessary to manually adjust the parameters for optimization.
Solving these problems and investigating more effective classification methods will be the
goal of future research.
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