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Abstract: Landslide susceptibility prediction (LSP) has been widely and effectively implemented by
machine learning (ML) models based on remote sensing (RS) images and Geographic Information
System (GIS). However, comparisons of the applications of ML models for LSP from the perspectives
of supervised machine learning (SML) and unsupervised machine learning (USML) have not been
explored. Hence, this study aims to compare the LSP performance of these SML and USML models,
thus further to explore the advantages and disadvantages of these ML models and to realize a
more accurate and reliable LSP result. Two representative SML models (support vector machine
(SVM) and CHi-squared Automatic Interaction Detection (CHAID)) and two representative USML
models (K-means and Kohonen models) are respectively used to scientifically predict the landslide
susceptibility indexes, and then these prediction results are discussed. Ningdu County with 446
recorded landslides obtained through field investigations is introduced as case study. A total of 12
conditioning factors are obtained through procession of Landsat TM 8 images and high-resolution
aerial images, topographical and hydrological spatial analysis of Digital Elevation Modeling in GIS
software, and government reports. The area value under the curve of receiver operating features
(AUC) is applied for evaluating the prediction accuracy of SML models, and the frequency ratio
(FR) accuracy is then introduced to compare the remarkable prediction performance differences
between SML and USML models. Overall, the receiver operation curve (ROC) results show that the
AUC of the SVM is 0.892 and is slightly greater than the AUC of the CHAID model (0.872). The FR
accuracy results show that the SVM model has the highest accuracy for LSP (77.80%), followed by
the CHAID model (74.50%), the Kohonen model (72.8%) and the K-means model (69.7%), which
indicates that the SML models can reach considerably better prediction capability than the USML
models. It can be concluded that selecting recorded landslides as prior knowledge to train and test
the LSP models is the key reason for the higher prediction accuracy of the SML models, while the
lack of a priori knowledge and target guidance is an important reason for the low LSP accuracy of
the USML models. Nevertheless, the USML models can also be used to implement LSP due to their
advantages of efficient modeling processes, dimensionality reduction and strong scalability.
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1. Introduction

Landslides are considered as one type of the most serious natural disasters around the world.
The safety of local residents and property is frequently destroyed by some triggered landslides [1–3].
Accurately predicting the potential location of landslide occurrence in advance can significantly reduce
losses. The landslide susceptibility prediction (LSP) is considered as an effective tool to determine the
landslide occurrence possibility in a certain study area. LSP involves comprehensive evaluation of
the landslide-inducing conditioning factors and the characteristics of recorded landslides, which are
mainly extracted from the remote sensing (RS) images and spatial analysis of Geographic Information
System (GIS) [4].

LSP is one of the most important research bases of landslide risk prediction. To obtain reasonable
LSP results, it is crucial to select appropriate prediction models that accept the landslide-relevant
thematic information. Conventionally, the LSP models can be divided into these types as probability
analysis models [5], heuristic models [1], deterministic models [6] and statistical models [7]. On the
whole, these types of models contribute to the development of LSP and are regarded as effective
technologies. Many attentions have been paid to overcome the limitations of the high subjectivity in
determining the parameters of probability analysis and heuristic models [8–11]. At the same time,
aiming at the difficulty in acquiring the reliable parameters of deterministic models, many researches
have tried their best to improve the accuracy of deterministic models by incorporating advanced soil
properties [12–14]. In particular, in recent years, many excellent machine learning (ML) models that
can efficiently fit and predict the nonlinear correlations between landslides and related conditioning
factors, have been proposed to address the drawbacks of the conventional statistical models. Related
literature shows that the ML models have been more and more popularly used for LSP [15–18].

In general, according to whether labeled data are used as the prior knowledge in the modeling
process, ML models can be classified as: supervised machine learning (SML) using a priori knowledge
and unsupervised machine learning models (USML) without prior knowledge. In previous LSP
studies, the frequently used SML models include most artificial neural networks [19,20], support vector
machines [21–23], decision tree methods [24–26], random forest [27,28], logistic regression [29–31],
fuzzy mathematical theory [32], etc. These types of models perform very well for LSP in many research
areas due to their advantages in supervised data mining [33]. The frequently used USML models
include K-means model [34,35], self-organization mapping (SOM) model [15,36], principal component
analysis [37,38], hierarchical cluster analysis [39], and so on. These models have also been widely used
in LSP because the modeling process is simple [40].

SML and USML are the most popular classification criteria of ML models. It is important to adopt
different classes of models to evaluate and compare LSP results, and many studies have focused on
this issue [41,42], because no agreement is reached about which type of model is the most appropriate
one for LSP. Therefore, the work of exploring the comparisons of SML and USML models for LSP is
very meaningful. Unfortunately, the literature shows that comparison studies about LSP performance
and results implemented by the SML and USML models have rarely been reported.

To summarize, the goal of this paper thus is to assess and compare the LSP results from the
perspectives of SML and USML models based on RS and GIS platforms, and further to choose the
most appropriate to generate accurate and reliable LSP. Two typical SML models (support vector
machine (SVM) and CHi-squared Automatic Interaction Detection (CHAID), and two other typical
USML models (K-means and Kohonen models) are applied to implement LSP. Then, the applications
and accuracies of SML and USML for LSP are discussed and analyzed.

2. Materials and Methods

2.1. Materials

The materials include the study area description, landslide inventory information, and the
description of related conditioning factors.
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2.1.1. Study Area and Landslide Inventory Information

Ningdu County of Jiangxi Province, in China is chosen as research area since it is seriously affected
by landslide disasters. Ningdu County locates in longitudes 26◦05′18”–27◦08′13”N and latitudes
115◦40′20”–116◦17′15”E (Figure 1). The area of Ningdu County is about 4053.16 km2. The study
area has a sub-tropical monsoon climate with annual average rainfall ranging from 1500 to 1700 mm.
The total rainfall amounts in the north and east zones being larger than those in the south and
west zones.
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Figure 1. The location and elevation map of Ningdu County.

The landslide inventory information in Ningdu County are measured through Global Position
System (GPS) [43] field investigations (Figure 1). Based on field investigation results and landslide
inventory, there are a total of 446 recorded landslides, which are small shallow landslides with areas
ranging from 759.17 m2 to 44,368.0 m2 and an average area about 10,000 m2. The landslide masses
are mainly composed of Quaternary alluvium, and the failure modes are mainly retrogressive sliding.
Furthermore, it can be found that the main trigger factors of landslides occurrence are continuous
heavy rainfall and human engineering activities.

2.1.2. Acquisition and Description of Landslide Conditioning Factors

Landslides are caused by the effect of basic conditioning factors and inducing factors. The basic
conditioning factors refer to the inherent characteristics of slopes, which include terrain, hydrological,
land cover, and geography factors [33,40]. The inducing factors are the external conditions that induce
landslides, such as earthquakes and heavy rainfall [44–46]. In general, the LSP reveals the instability
probability of a slope when only considering the basic conditioning factors.

Generally, most of these basic conditioning factors are acquired from RS images and described
in GIS software. The RS is mainly used to obtain conditioning factors. For example, the terrain and
hydrological factors are extracted from Digital Elevation Model (DEM) through spatial analysis of
ARCGIS software, land cover factors are extracted from high-resolution RS images. GIS is adopted as
the basic platform of LSP to capture, analyze, store, and map spatial huge data of landslides [47]. In
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this study, grid units with resolution of 30 m × 30 m are selected as the basic mapping unit in ARCGIS.
In addition, for predicting the landslide susceptibility indexes (LSIs) of Ningdu County, 12 conditioning
factors are extracted as Figures 1 and 2. Next, the nonlinear correlations between these landslides and
conditioning factors are calculated by FR method in ARCGIS using spatial analysis functions.
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Figure 2. Landsat 8 TM image (a), aerial image (b), and produced land cover types map (c).

Acquisition of Terrain Factors

The terrain factors of elevation, slope, slope aspect, profile curvature, plane curvature, relief
amplitude are extracted through topographic spatial analysis of DEM in ARCGIS. Elevation is defined
as the distance from a grid unit to the earth ellipsoid in the normal direction. Slope expresses the
ratio of vertical height to the corresponding horizontal distance in a certain slope surface. The slope
aspect, defined as the projection direction of the slope surface normal onto the horizontal plane, can be
classified as flat, north, northeast, east, southeast, south, southwest, west, and northwest.

Meanwhile, the plane and profile curvatures respectively describe the vary features of concave and
convex terrains from horizontal and vertical directions. Based on the definitions, the plane curvature
and profile curvature are respectively calculated as the slope of the aspect and the slope of the slope in
ARCGIS [7]. In addition, relief amplitude reflects the difference between the maximum elevation and
minimum elevation in a certain area of one point on the ground surface [16]. The terrain amplitude
can be obtained through the statistical test and the maximum height difference method in ARCGIS
software for describing the regional macroscopic terrain characteristics. A greater relief amplitude
means a higher terrain complexity.

Analysis of Hydrological Factors

The hydrological factors of Terrain Wetness Index (TWI) and drainage density are extracted through
hydrological analysis method from DEM data. TWI reflects the important effect from the topography
and soil moisture content on landslide occurrence, which is widely used in studies of hydrology, soil
and geomorphology (Figure 3d). In addition, TWI can be expressed as TWI = ln(As/tan β), where As

means the up-stream catchment area and β presents the slope angle of a certain grid cell.
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Figure 3. Landslide conditioning factors: (a) slope, (b) profile curvature, (c) relief amplitude, (d) Terrain
Wetness Index (TWI), (e) drainage density, (f) lithology, (g) normalized difference vegetation index
(NDVI), and (h) normalized difference built-up index (NDBI) (aspect and plane curvature are not
presented).

Drainage density reflects the ratio of total length of river network to per unit area. The drainage
density shows the balance characteristics between climate, geomorphology, and hydrology (Figure 3e).
Higher drainage density means that the basin is sensitive to rainfall, while lower drainage density
means that the basin is insensitive to rainfall.

Land Cover and Geography Factors

The normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI)
are extracted from two Landsat TM 8 images (one on 15 October 2013, path/row 121/41 and one on 5
October 2013, path/row 121/42) (Figure 2a). The land cover types map of Ningdu County is produced
through object-oriented image classification method. In additional, the geology factor of lithology is
managed in ARCGIS, the physical and mechanical properties of rock mass usually change dramatically
with lithological units.

The aerial image with raster resolution of 1.07 m, obtained from Google Earth 7.1.8.3036 (32-bit)
on 12 January 2018, is used to map the land cover types distribution of Ningdu County (Figure 2b). In
general, the land cover types of Ningdu County are classified as construction land, water, woodland,
bare and grassland, and farmland. Then the object-oriented method is applied to map these land cover
types of Ningdu County.



Remote Sens. 2020, 12, 502 6 of 21

For the application of object-oriented method, the image objects are firstly segmented using
multi-resolution segmentation method embedded within the eCognition Developer 8.7 software
package. The scale, shape, and compactness parameters of multi-resolution segmentation method are
respectively set to 30, 0.2, and 0.8 using “trial and error” method [48]. Secondly, some optimal features
of image objects such as spectral attributes, layer values, geometry, position, and texture attributes are
used as the input variables of 1-NN method (within the eCognition Developer 8.7) to classify these
image objects. Meanwhile, thousands of training samples of each land cover type are determined
through field survey and image interpretation. Finally, a land cover type classification map is produced
as shown in Figure 2c.

It is necessary to assess the classification accuracy of this land cover map. Thousands of classified
image objects are randomly chosen as reference samples to assess the classification accuracy. Then
a multivariate statistical method namely Kappa Index of Agreement (KIA) is used as an accuracy
evaluation index [49] (Table 1). The classification accuracy of this aerial image is relatively low,
especially due to the 2.07 m raster resolution and lack of NDVI feature (No near-infrared band in this
aerial image). In additional, the image quality, segmentation method, and objects classification method
also affect the classification accuracy of this image.

Table 1. Assessment accuracy of land cover types map of Ningdu County using object-oriented method.

Accuracy Woodland Construction Water Bare and Grassland Farmland

Producer’s 0.896 0.874 0.923 0.834 0.825
User’s 0.828 0.865 0.872 0.783 0.794
Total Overall accuracy 0.857 KIA 0.825

2.1.3. FR Analysis of Conditioning Factors

FR method is applied to determine the effects of conditioning factors on landslide occurrence [50].
As shown in Table 2, for example, the FR values of elevation between 154 m and 410 m are greater than
1, suggesting landslides more probably occur in this elevations. The lithology map is produced through
a geological map at a scale of 1:100,000. In this study, the lithology can be divided into 8 classes: hard
clumpy intrusion rock (Y2); limestone and dolomite rock (T1); slate, metaclastics and phyllite (B1);
schist (B2); clumpy chorismite (B3); sandstone, glutenite, and mudstone (S2); coal sandstone, shale,
and mudstone (S4); and sandstone, glutenite, and shale (S5) (Figure 3f).

2.1.4. Correlation Analysis of Conditioning Factors

Before the LSP analysis, it is necessary to analyze the correlation between these 11 conditioning
factors. The calculation results of correlation in the SPSS 22 software show that, correlation coefficient
values between NDVI and NDBI, land cover are respectively 0.597 and 0.341, illustrating that NDVI
has significant correlations with NDBI and land cover factors. Meanwhile, the correlation coefficient
value between NDBI and Land cover is 0.257, suggesting that the correlation between NDVI and Land
cover is stronger than that between NDBI and Land cover. In addition, the other correlation coefficient
values are all smaller than a value of 0.26, which suggests that there are weak correlations between the
other conditioning factors except NDVI. Hence, it is determined to implement the LSP using the above
10 conditioning factors except NDVI.

2.2. Methods

This research has several steps. (1) The landslides and related conditioning factors are acquired
using “3S” (GPS, RS, and GIS) technology; (2) These conditioning factors are managed and saved using
GIS software, and their FRs are calculated; (3) SML model is first trained using the known training
sample dataset (such as labeled data and prior probability) to establish the sample learning model,
and then this model is applied to predict and classify the remaining unknown data samples in GIS;
(4) USML, a teacher-free learning method, refers to the automatic recognition of data samples by
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analyzing the internal similarities and external differences in the data sample itself without a known
training sample dataset; (5) the corresponding LSMs of these SML and USML models are produced in
ARCGIS software; Finally, the receiver operation curve (ROC) and FR accuracy are used to compare
the prediction results for choosing the best prediction model and obtaining the most accurate LSP
results of Ningdu County.

2.2.1. Acquisitions of Land Cover Factors from RS Images

Two important remote sensing indexes, NDVI and NDBI [51], are extracted from the Landsat TM
images. NDVI is generally adopted for the detection of vegetation growth and coverage conditions as
shown in Equation (1). NDBI is used to calculate the building distribution information on the surface
of the landslide as shown in Equation (2).

NDVI =
P(NIR) − P(Red)
P(NIR) + P(Red)

(1)

NDBI =
P(MIR) − P(NIR)
P(MIR) + P(NIR)

(2)

where P(Red) P(NIR) and P(NIR) are the measurements of spectral reflectance obtained in the visible
red band, near infrared band, and middle infrared band of Landsat 8 TM image, respectively. Land
cover types can be mapped by the RS image classification method [52]. The object-oriented method is
used to map land cover types from high-resolution images because it can extract properties information
from image objects (including spectral, geometrical, positional, and other features). The object-oriented
method includes three steps: (1) The land cover types of the RS images are identified through field
survey and visual interpretations on high-resolution image; (2) The image objects are extracted from
the RS images using multi-resolution segmentation method and their corresponding classification
features are selected; (3) The obtained image objects are classified into several land cover types using
the simple nearest neighbour (1-NN) method [53], which is a highly efficient and accurate image
classification model and is not built based on a Gaussian distribution.

2.2.2. Drainage Density Extraction by Hydrological Analysis Tool

The river network of a study area can be extracted by the hydrological analysis tool of ARCGIS
software [54]. The DEM data with resolution of 30 m is selected as the basis data. Firstly, the depressions
of DEM are filled by the Fill tool. Then the water flow direction of DEM is calculated by the Flow
Direction tool. Based on this data, the flow accumulation can be obtained by the Flow Accumulation
tool. In the next step, the river network is generated through selecting the flow accumulation of each
grid unit above a certain threshold. The flow accumulation threshold of this study is selected to 5000.
Finally, the drainage density can be calculated by grid calculator as shown in Equation (3), where DS is
drainage density;

∑
L is length of river networks in a unit area A.

DS =
∑

L/A (3)

2.2.3. FR Method

FR method is introduced to discuss the effects of conditioning factors on landslides susceptibility.
All the conditioning factors are divided into 8~9 classes using the natural break point method (the
lithology is divided by strata configuration and the land cover is divided to 5 classes). Finally, the FR
values is calculated using Equation (4) and is shown in Table 2. An FR value greater than 1, indicates a
higher correlation between landslide and conditioning factors; whereas an FR value that is lower than
1, suggests a lower effect on landslide.

FR =
A/A′
B/B′

(4)
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where A donates the pixels number of the landslide in each class of conditioning factor,A′ donates the
pixels number of the total landslides in Ningdu County, B suggests the pixels number in the class of
the factor; B′ suggests the number of total pixels in the whole study area.

Table 2. Frequency ratios (FRs) of conditioning factors (aspect, plane curvature, profile curvature,
NDVI are not presented).

Factor Class
Landslide Not Occurred Landslide Occurred

Frequency Ratio
Count Ratio (%) Count Ratio (%)

Elevation

154~243 1,106,278 0.244 1038 0.280 1.145
243~322 1,304,742 0.288 1291 0.348 1.207
322~410 827,136 0.183 758 0.204 1.118
410~509 537,255 0.119 378 0.102 0.859
509~617 369,291 0.082 175 0.047 0.578
617~750 239,354 0.053 68 0.018 0.347
750~937 110,355 0.024 3 0.001 0.033

937~1410 33,871 0.007 0 0.000 0.000

Slope

0~3 975,826 0.215 150 0.040 0.188
3~7 1,036,313 0.229 945 0.255 1.113
7~11 848,288 0.187 1210 0.326 1.741

11~15 652,842 0.144 742 0.200 1.387
15~19 477,241 0.105 399 0.108 1.020
19~24 315,595 0.070 179 0.048 0.692
24~30 167,758 0.037 72 0.019 0.524
30~53 54,419 0.012 14 0.004 0.314

Relief
amplitude

0~39.673 1,005,640 0.222 610 0.164 0.740
39.673~73.395 999,298 0.221 1430 0.385 1.746
73.395~107.116 871,091 0.192 830 0.224 1.163
107.116~142.822 675,230 0.149 402 0.108 0.726
142.822~182.495 482,321 0.107 315 0.085 0.797
182.495~230.102 301,925 0.067 110 0.030 0.445
230.102~299.529 155,304 0.034 14 0.004 0.110
299.529~505.827 37,473 0.008 0 0.000 0.000

Lithology

B3 222,246 0.049 35 0.009 0.192
Y2 2,128,746 0.470 1460 0.393 0.837
B1 1,310,225 0.289 1698 0.458 1.581
B2 42,542 0.009 4 0.001 0.115
S2 699,839 0.155 360 0.097 0.628
S5 60,439 0.013 72 0.019 1.454
S4 35,181 0.008 50 0.013 1.734
T1 26,595 0.006 32 0.009 1.468
W 2,469 0.001 0 0.000 0.000

TWI

3.898~6.583 1,262,093 0.279 1176 0.317 1.137
6.583~8.261 1,719,261 0.380 1637 0.441 1.162
8.261~10.275 975,276 0.215 668 0.180 0.836
10.275~12.792 370,858 0.082 156 0.042 0.513
12.792~16.483 156,837 0.035 53 0.014 0.412
16.483~26.384 39,565 0.009 21 0.006 0.648
26.384~39.137 4,123 0.001 0 0.000 0.000
39.137~46.688 269 0.000 0 0.000 0.000

Drainage
density

0~0.590 599,996 0.132 545 0.147 1.108
0.590~1.067 861,429 0.190 525 0.141 0.744
1.067~1.486 936,702 0.207 845 0.228 1.101
1.486~1.886 778,759 0.172 672 0.181 1.053
1.886~2.324 666,657 0.147 446 0.120 0.816
2.324~2.876 398,554 0.088 258 0.070 0.790
2.876~3.562 211,146 0.047 288 0.078 1.664
3.562~4.857 75,039 0.017 132 0.036 2.146
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Table 2. Cont.

Factor Class
Landslide Not Occurred Landslide Occurred

Frequency Ratio
Count Ratio (%) Count Ratio (%)

NDBI

0~0.129 769,254 0.170 304 0.082 0.482
0.129~0.172 1,255,933 0.277 813 0.219 0.790
0.172~0.220 971,886 0.215 938 0.253 1.178
0.220~0.270 593,484 0.131 720 0.194 1.480
0.270~0.326 420,316 0.093 484 0.130 1.405
0.326~0.384 289,927 0.064 271 0.073 1.141
0.384~0.455 164,850 0.036 124 0.033 0.918

0.455~1 62,632 0.014 57 0.015 1.111

Land cover

Bare and
grassland 1,301,005 0.287 1,103 0.297 1.035

Woodland 2,587,930 0.572 2,453 0.661 1.157
Farmland 380,006 0.084 61 0.016 0.196

Construction 102,625 0.023 94 0.025 1.118
Water 56,716 0.0123 0 0.000 0.000

2.2.4. Supervised Machine Learning

SVM Model

SVM is a type of very popular SML methods for dealing with the problems of classification and
regression [21]. Suppose a series of training input xi (i = 1, 2, . . . , n). The y(y = ±1) corresponds to
output of binary-classification problem. This method is aimed to search an n-dimensional hyper-plane
which can differentiate the two classes by the gap with maximal value as:

1
2
‖w‖2 (5)

yi(ω · xi) + b ≥ 1 (6)

where ‖w‖2 is the norm of the normal of the hyper-plane, b is regarded as a constant value. The
Lagrangian forma is used to define the cost function as:

L = ‖w‖2/2−
N∑

i=1

λi((yi(ω · xi) + b) − 1) (7)

yi(ω · xi) + b ≥ 1 (8)

where λi is the Lagrange multiplier. The slack variable ξi is used as the non-separable case which is
modified as:

yi((ω · xi) + b) ≥ 1− ξi (9)

Then Equation (7) can be expressed as Equation (10), where v(0, 1] reflects the problem of
misclassification. Meanwhile, the radial basis function is selected as the kernel function of SVM.

L =
1
2
‖w‖2 −

1
vn

n∑
i=1

ξi (10)

CHAID Model

CHAID is also one of the main supervised learning decision trees for regression and classification
problems [55]. CHAID tree is built through classifying subsets of the variables into several child nodes.
The dependent variables and conditioning factors are expressed to be nominal or continuous data. The
CHAID establishes a framework with non-binary tree which contains several branches comparing to
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other decision trees. The classification iteration of CHAID will stop if any meaningful chi-square value
between conditioning factors and related dependent variable cannot be found.

2.2.5. Unsupervised Machine Learning

K-Means Model

K-means clustering is regarded as an USML algorithm because it is an efficient unsupervised
classification implementation. K-means clustering is mainly aimed to automatically partition a certain
data set into K classes through comparing their Euclidean distance. The main iterative process of
K-means clustering is as follows:

(1) Let S = {x1, x2, · · · xn} and set the number of clusters K and the initial central point of each cluster,
where xm ∈ Rn and m represents the number of points.

(2) For each point xi in the S dataset, its Euclidean distances to the K central points are calculated,
and then each point is classified into the corresponding cluster with the smallest distance to the
central point of the cluster. The Euclidean distances between all points are expressed as:

D =

 n∑
i=1

(xi −mi)
2

1/2

(11)

(3) All the data points are re-clustered, then the centroids of these data points are updated repeatedly
until the centroids of data points do not change.

Kohonen Model

The Kohonen model is a feed-forward ANN based on an unsupervised learning algorithm [56].
The Kohonen model is generally consisted by one input and one output layer (also called a competitive
layer), and these two layers are connected by the weights. The number of input variables is
regarded as the neurons number of input layer. Neurons in the output layer are represented on a
two-dimensional lattice. The aim of the Kohonen model is to deal with a nonlinear mapping process of
the high-dimensional input vectors into a low-dimensional map (two-dimensional grid).

3. Results

The LSP results in Ningdu County are predicted using the SML (SVM and CHAID models) and
USML (K-means and Kohonen models) models for comparisons.

3.1. Results of the SML Models

3.1.1. Preparation Training and Validation Dataset

It is important and indispensable for SML models to obtain the training and testing dataset.
The training dataset is generally applied for building these models, and the testing dataset is applied
for validating these models and to confirm their accuracy. The dataset not only contains the landslide
grid units but also contains the non-landslide grid units with the same number of landslide grid
units. In this study, there are a total of 3711 landslide grid units that are assigned to 1. The same
number of non-landslide grid units are assigned to 0, are sampled randomly from the landslide-free
area. Therefore, the dataset of landslide and non-landslide grid units is randomly spilt into a training
dataset and a testing dataset with a ratio of 70:30, to map the landslide susceptibility using SVM and
CHAID models.
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3.1.2. SVM Model

The SVM model is trained based on the ten-fold cross-testing method. In the training process, the
optimum values of γ and regression precision are respectively determined to be 0.1 and 0.1. Then,
the trained SVM model is applied for all the grid samples of Ningdu County. Moreover, the LSP
indexes are calculated as values ranging from 0 to 0.982. Next, all LSIs are imported into ArcGIS 10.2
for producing corresponding LSM. Last, the obtained LSM is reclassified into five classes based on
the natural break method to better observe the results (Figure 4a). The natural break method is used
for all the present models. Very high susceptibility (0.770~0.982), high susceptibility (0.581~0.770),
moderate susceptibility (0.370~0.581), low susceptibility (0.166~0.370), and very low susceptibility
(0~0.166) classes cover 20.20%, 17.55%, 14.79%, 15.32%, and 32.14% in Ningdu County, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 
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3.1.3. CHAID Model

To achieve the desirable LSP results in the CHAID model, it is important to set up suitable model
criteria. The maximum value of tree depth is set as 10. The limit of the statistical significance, which
controls the merger and creation of new branches, is set as 0.05. The Pearson statistical test is used for
the chi-square statistic because it is suitable for the large dataset. The results of the CHAID model are
shown with the tree structure consisting of many branches representing the related classification of
each landslide related conditioning factor. In addition, the tree depth value is 5, while the node number
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is 92. Some other model parameters are also revealed. Finally, the LSP indexes ranging from 0 to 1 are
determined into five classes and then are constructed as a LSM ArcGIS 10.2 (Figure 4b and Table 3).

Table 3. The frequency ratio among the landslide susceptibility classes for different models.

Model Class Landslide Pixels Percentage of
Landslide Pixels (%)

Pixels in
Domain

Percentage of Pixels
in Domain (%)

Frequency
Ratio

SVM

Very High 2202 0.593 914,815 0.202 2.937

High 770 0.207 794,803 0.176 1.182

Moderate 360 0.097 669,532 0.148 0.656

Low 216 0.058 693,662 0.153 0.380

Very Low 163 0.044 1,455,470 0.321 0.137

CHAID

Very High 1527 0.411 746,461 0.165 2.496

High 1139 0.307 748,410 0.165 1.857

Moderate 693 0.187 775,501 0.171 1.090

Low 291 0.078 1,229,765 0.272 0.289

Very Low 121 0.033 1,333,349 0.294 0.111

K-means

Very High 1384 0.373 787,386 0.174 2.145

High 930 0.251 870,420 0.192 1.304

Moderate 1079 0.291 1,321,009 0.292 0.997

Low 185 0.050 753,772 0.166 0.299

Very Low 133 0.036 795,695 0.176 0.204

Kohonen

Very High 1846 0.497 1,059,768 0.234 2.126

High 982 0.265 953,143 0.210 1.257

Moderate 447 0.120 830,506 0.183 0.657

Low 305 0.082 1,016,018 0.224 0.366

Very Low 131 0.035 668,849 0.148 0.239

3.2. Results of USML Models

3.2.1. K-Means for LSP

The selected normalized conditioning factors are imported as the training dataset of K-means
method. The clusters number is set to 5, the clustering central point is determined randomly, and
the iteration number is set to 50. Then, each training data point is classified into the corresponding
cluster with the smallest distance to the final clustering central point through 50 iterative calculations.
The LSM is produced on the basis of the five clustering classes corresponding to very high, high,
moderate, low, and very low (Figure 5a and Table 3).

3.2.2. Kohonen Model

For training Kohonen model, the input nodes number is set to 11 because 11 conditioning factors
are standardized as the input vector. The maximum learning rate (rate1max) and the minimum learning
rate (rate1min) are respectively 0.1 and 0.01. In addition, the maximum neighborhood radius (r1max)
is set to 1.5, and the minimum neighborhood radius (r1min) is set to 0.4. The maximum iterations
number is set to 1000, and the Kohonen model will stops until the iterations reach. The LSM produced
by the Kohonen model and its landslide susceptibility classes are shown in Figure 5b and Table 3.

3.3. Models Testing and Comparison

The model validation is an important and necessary step to examine the predictive accuracy
and to compare the performance of different LSP models [57–59]. The curve of receiver operating
characteristics (ROC) is introduced for evaluating the LSP performance of the SML models (SVM and
CHAID model), while the frequency ratio (FR) accuracy is used for evaluating the LSP performance of
all models.
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Figure 5. LSMs of the K-means model (a) and Kohonen model (b).

3.3.1. ROC Curve

ROC analysis is commonly used for evaluating the LSP accuracy of different models, which
indicates the correlation between sensitivity and specificity through the plotting method [50]. The area
under ROC (AUC) is defined to assess the LSP accuracy of these models, containing values between 0.5
and 1.0. Larger AUC value means greater accuracy of model. Figure 6 shows that the AUC values of
the SVM and CHAID models are respectively 0.892 and 0.872, suggesting both models have excellent
and satisfied LSP performance, and further suggesting that the SVM has higher LSP accuracy than the
CHAID model.

3.3.2. Frequency Ratio Accuracy Validation

The ROC method cannot be used for evaluating the USML. On the contrary, the FR accuracy,
defined as the ratio of the sum of frequency ratios of high and very high LSLs to the total frequency
ratios, can be used to evaluate both SML and USML models [60]. The FR accuracies of the SML and
USML models are shown in Table 3, showing that FR values gradually decrease from the very high to
the very low susceptibility classes.

For very high susceptibility class, the SVM has the highest FR value (2.937), followed by the
CHAID (2.496), Kohonen (2.145), and K-means models (2.126). In addition, the FR accuracies of SVM,
CHAID, K-Means, and Kohonen are respectively 0.778, 0.745, 0.697, 0.728. Therefore, the validation
results confirm that SVM has the highest prediction performance, followed by CHAID, Kohonen and
K-means method, further confirm that SML has higher LSP accuracy than that of USML.
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4. Discussion

4.1. Comparison of Model Accuracy

This study deals with the comparisons of LSP results of the SML and USML models, showing that
SML has higher LSP performance than USML. In addition, it can be seen from Figures 4 and 5 that
a large number of very high and high susceptibility classes locate in the south-east and north-west
sections of Ningdu County and are mainly distributed in the zones near roads and rivers, which are
consistent with the landslide distribution features.

4.2. Distribution Features of LSIs

The SML models (SVM and CHAID models) can calculate the LSIs of the study area, while the
USML models (K-means and Kohonen models) can only obtain the landslide susceptibility classes.
The distribution features of LSIs with their corresponding mean values and standard deviations
calculated by the SML models are shown in Figure 7. It can be seen from Figure 7 that the LSIs
calculated by the SVM model mainly belong to low and/or very low landslide susceptibility classes
with low degree of dispersion, while those calculated by CHAID model mainly belong to low and
moderate landslide susceptibility classes with high degree of dispersion. Figure 7 also shows that
the LSIs calculated by SVM model have higher continuity than that of CHAID model. In addition,
the mean values and standard deviations suggest that SVM model has better LSP performance than
the CHAID model. This is because the mean value of LSIs of SVM model (0.4270) is lower than that of
CHAID model (0.5106), although the standard deviations of the two models are close.

4.3. Relative Importance of Conditioning Factors for SML Models

The selection of landslide conditioning factors plays an important role in the LSP, however, it is
still a topic to debate [61]. Therefore, in this study, the relative importance of conditioning factors is
also analyzed by both SML models (Figure 8). The ability of identifying the relative importance of
conditioning factors is another advantage of SML models comparing to USML models.
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Figure 8 shows that all the eleven conditioning factors have positive contributions to LSP modeling
in a certain extent for different models. In case of SVM model, the elevation, slope, NDBI, and Lithology
factors have the highest contributions of 21.00%, 19.00%, 17.00%, and 15.00%, respectively. For the
CHAID model, the slope, drainage density, and elevation factors have the highest contributions
of 34.00%, 15.00%, 13.00%, and 15.00%, respectively. The other conditioning factors have smaller
contributions to the SVM and CHAID models. The results indicate that the contributions of different
conditioning factors to the LSP are similar with each other in the different LSP models for a certain
study area.

4.4. Conditioning Factors Distribution Using USML Models

Comparing to the results of SML (SVM and CHAID) models, the clustering information of
conditioning factors can be well revealed by the USML (K-means and Kohonen) models. The frequency
distribution of conditioning factors for each LSP class of Kohonen model is shown in Figure 9a. For
example, Figure 9b shows the frequency of elevation for very high class of LSP. Meanwhile, for the
K-means model, the clustering centers of conditioning factors for each LSP class can also be shown
visually. These results show that the USML has batter data interpretation than that of SML, because
the conditioning factors data can be clustered into five types of group according to the consistency of
data characteristics.
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4.5. Sensitivity Analysis on Resolution of Grid Units

It is very important to select an appropriate grid resolution for LSP. Too low resolution cannot
guarantee the rationality of the obtained LSP, while too high resolution will greatly increase the model
computation complexity [62]. Although some studies focusing on the issue of LSP considering the
different spatial resolutions of grid units, show that the LSP performance decreases when the resolution
of grid units rises from 10 m to 100 m [63], a lot of literature shows that a 30 m grid resolution is suitable
for LSP and can obtain satisfactory LSP results [7,11,21,30,35,37,50,59,64–69]. Meanwhile, the original
grid resolutions of the DEM and remote sensing images used in this study are both 30 m, which can
not only effectively represent the topographic characteristics, but also avoid excessive computation.
Therefore, this study adapts the grid unit with 30 m resolution for LSP.

4.6. Analysis of Parameters of Model Itself

It is revealed in this study that different ML models exhibit different LSP performances based
on the same input data, this is because that some parameters of model itself (including activation
functions, model structures, learning rate, etc.) have considerably different effects on LSP results.

For the SVM modeling, it is well-known that the prediction performance of SVM model is
influenced by the selection of kernel function and other corresponding parameters (width value of
kernel function and regression precision). Hong et al. [70] suggested that the radial basis function
kernel function can achieve the best LSP performance comparing to the polynomial, sigmoid, and linear
kernel functions. In addition, N-fold cross-testing method is used to determine the corresponding
parameters of SVM, because N-fold cross-testing method is an efficient and global parameters searching
algorithm and it is appropriate for huge data modeling [16].

For the decision trees of Classification & Regression Tree (C&RT) model and CHAID model, the
C&RT model is a binary tree (two branches in each node), while the CHAID model is built based on
the non-binary tree framework and contains two or more branches growing from a single node [71].
Park, Lee, Lee, and Lee [26] have compared and analyzed the LSP performances under the conditions
of different decision tree structures, and indicated that the CHAID model has the highest accuracy.
Moreover, the CHAID model can be controlled by pre-setting the model’s criteria (e.g., growth limit
and merging value) to avoid over-fitting problem.
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For the K-means clustering and Kohonen models, the main model parameters are clustering
number and iteration number. The clustering number can be determined by the number of LSM
class. The iteration number is used to end the clustering process and is to meet the data convergence.
In addition, the learning rate, the neighbor-hood radius in Kohonen model should be reasonably
selected to ensure the accuracy and validity of the LSP result. In this study, although the Kohonen
model has a better LSP performance than K-means model, the learning rate of K-means model (time is
260s) is greater than that of Kohonen model (time is 680s).

4.7. Comparison Analysis of SML and USML

There are some differences in the LSP modeling of SML and USML: (1) the core of SML is prediction
and classification, which means that the data are classified by selecting classifiers and determining
weights. The core of USML is cluster analysis, which divides datasets into classes with similar objects.
Hence, USML algorithms can start working as long as they know how to calculate similarity. (2) SML
is usually poor to reduce data dimensions. In contrast, USML achieves dimensionality reduction
of data by using layer clustering or item clustering. Furthermore, the USML results exhibit as a
group of clusters by clustering first and then qualitatively analyzing. (3) The classification reasons for
SML are unexplainable because classification principles are artificially generated. USML is a useful
interpretation of the clustering method; that is, the data can cluster into a group according to the
consistency of data characteristics. (4) The scalability of SML is weak. By contrast, the scalability of
USML is strong, and regardless of how high the weight of the additional one-dimensional data is, it
will have a limited effect on the original result output.

The recorded landslides, as prior knowledge, play a core role for training and testing processes of
the SML model, contributing to the high prediction accuracy. The lack of a strong target in the modeling
process is an important reason for the low prediction accuracy of the USML model. This is because
there are no prior training samples and supervised information to be used in the USML model, and if
there are some marginalization test samples continuing to be accepted by the classifier, the accuracy of
the classification may be affected. On the other hand, the difficult acquisition of training samples, the
accuracy of training samples and the small number of training samples also have a negative effect on
the prediction results. Hence, it is recommended to use a semi-supervised machine learning method
for LSP, which can solve the problems of the weak generalization ability of SML and the imprecision of
USML. In addition, the uncertainty and analysis errors of the prediction models also have a certain
impact on the prediction results. This can be seen by comparing the results of the SVM and CHAID
models; the ROC accuracy of the two models is similar (Figure 4), while the FR accuracy is quite
different (Table 3) due to the differences in the internal algorithms of the two models, which leads to
many very high class pixels being classified as moderate class in the CHAID model. Therefore, use of
integrated learning to comprehensively evaluate the prediction results of each model is suggested.

5. Conclusions

In this study, 446 recorded landslides and landslide-related conditioning factors are acquired,
stored and analyzed through RS and GIS technologies. Then, the LSMs of Ningdu County have been
predicted using SML models (SVM and CHAID models) and USML models (K-means and Kohonen
models) based on the 11 conditioning factors. In general, ML models have been successfully used to
carry out LSP with the SVM having the greatest LSP accuracy, followed by CHAID, Kohonen, and
K-means models. Furthermore, the SML models have better LSP performance than the UMSL models
because the SML models trained with recorded landslide training samples have strong predictive power
for unknown data, while the lack of a strong target in the USML model leads to limited prediction
accuracy. However, difficult acquisition of training samples, the accuracy of training samples and a
small number of training samples have negative effects on the prediction results of SML models.

In addition, the UMSL models have also been widely used in LSP due to some advantages, such as
simple modeling, efficiency, dimensionality reduction and scalability, compared to the SML models.
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Hence, it is recommended to improve the prediction accuracy of SML and USML models in further
research in order to reduce the uncertainty and analysis errors associated with ML models. As a final
conclusion, the results from comparisons of SML and USML for producing LSMs may be meaningful
for making correct decision about land use planning in areas prone to landslides.
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