Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Estimation of ESV
2.4. Human Activity Impact Analysis of ESV
2.5. Land Use Change Elasticity of ESV
2.6. Geographic Detector Model
3. Results
3.1. Changes in the Watershed Ecological Service Value in the TRB
3.1.1. Time Variation Characteristics
3.1.2. Spatial Variation Characteristics
3.2. Interactions between Changes in Ecosystem Service Value and Land Use Change
3.2.1. Response of ESV to LUCC
3.2.2. Impacts of Land Use Conversion on ESV in the TRB
3.3. Driving Mechanisms of ESV Change
3.3.1. Detection and Analysis of Impact Factors
3.3.2. Analysis of Interaction Influence
4. Discussion
5. Conclusions
- (1)
- Between 1990 and 2020, the general ESV of the TRB showed a fluctuating growth trend, with an increase of CNY 14.02 billion. The HT district had the largest increase (CNY 8.832 billion), while regulation service was the largest single ecosystem function. The increase in ESV primarily emerged in the mountainous and oasis regions, with the AKS, western KK and central YRQ and HT exhibiting the most growth. The secondary and tertiary ESV regions were the main change areas during 2000–2020.
- (2)
- HAI was the primary driving factor of ESV spatial heterogeneity in the study area, while DEM was secondary to HAI and a key factor in ESV spatial differentiation. In analyzing the interactions of influencing factors, we found that HAI∩DEM was the main reason for ESV spatial heterogeneity. The influence of HAI∩TEM and HAI∩PREC was lower than that of HAI∩DEM. Hence, the ecosystem services of the TRB during the study period were mostly affected by Artificial interference, climate, and topography.
- (3)
- The transformation of barren land into water and grassland was responsible for the overall increase in ESV in the TRB over the past 20 years. On the other hand, the conversion of water area into cropland or barren land and the mutation of grassland into cropland or barren land were the driving forces behind the decrease in ESV in some areas. Therefore, the protection of ecological land, the optimal distribution of water resources, and the optimization of the relationship between ecological land and agricultural land are the key points that will result in successful and sustainable ecological civilization construction in the TRB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darvill, R.; Lindo, Z. The inclusion of stakeholders and cultural ecosystem services in land management trade-off decisions using an ecosystem services approach. Landsc. Ecol. 2016, 31, 533–545. [Google Scholar] [CrossRef]
- Costanza, R. The value of ecosystem services. Ecol. Econ. 1998, 25, 1–2. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, R.; Zhao, J. Ecosystem services and their economic valuation. Chin. J. Appl. Ecol. 1999, 10, 635–640. [Google Scholar]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; Groot, R.; Sutton, P.; Sutton, P.; Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Tutner, P.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.; Quine, T.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Z. Positive and negative ecosystem services evaluation and its spatial pattern analysis on urban landscape: A case study of Xi’an City. Acta Geogr. Sin. 2016, 71, 1215–1230. [Google Scholar]
- Yu, L.; Zhang, X.; Li, Y.; Zhao, X.; Ma, S.; Cao, H.; Cao, J. Coastal ecosystem services and their spatial-temporal variation in Haikou, China. Acta Ecol. Sin. 2016, 36, 2431–2441. [Google Scholar]
- Li, Z.; Xu, Y.; Sun, Y.; Wu, M.; Zhao, B. Urbanization-Driven Changes in Land-Climate Dynamics: A Case Study of Haihe River Basin, China. Remote Sens. 2020, 12, 2701. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Zhao, X.; Li, Z.; Hu, W.; Wang, J.; Ren, Y.; Zhang, X. Spatial-temporal analysis of ecosystem services value and research on ecological compensation in Taihu Lake Basin of Jiangsu Province in China from 2005 to 2018. J. Clean. Prod. 2021, 317, 128241. [Google Scholar] [CrossRef]
- Geng, T.; Chen, H.; Zhang, X. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi province based on GWR. J. Nat. Resour. 2020, 35, 1714–1727. [Google Scholar]
- Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ. 2022, 326, 107757. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Pan, Y.; Wu, X.; Li, Z. Changes in human activity intensity and influence on ecosystem regulating services: A study of Tibet based on night light data. J. Geo-Inf. Sci. 2020, 22, 1544–1554. [Google Scholar]
- Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding spatio-temporal patterns of land use/land cover change under urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Fang, C. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Geogr. Sin. 2021, 76, 2797–2812. [Google Scholar]
- Wang, Y.; Dai, E.; Ma, L.; Yin, L. Spatiotemporal and influencing factors analysis of water yield in the Hengduan Mountain region. J. Nat. Resour. 2020, 35, 371–386. [Google Scholar]
- Sun, B.; Zhao, H.; Lu, F.; Wang, X. Spatial and temporal patterns of carbon sequestration in the Northeastern Forest Regions and its impact factors analysis. Acta Ecol. Sin. 2018, 38, 4975–4983. [Google Scholar]
- Zhao, D.; Tong, L.; Qiu, F.; Guo, F. Eco-environment effect of urban expansion in Songhua River Basin. Geogr. Res. 2017, 36, 74–84. [Google Scholar]
- Kong, D.; Chen, G.; Wu, K. The evolution of “Production-Living-Ecological” space, eco-environmental effects and its influencing factors in China. J. Nat. Resour. 2021, 36, 1116–1135. [Google Scholar] [CrossRef]
- Arowolo, A.; Deng, X.; Olatunji, O.; Obayelu, A. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Chen, Y.; Zhu, C. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin. Arid. Land Geogr. 2018, 41, 901–907. [Google Scholar]
- Hou, Y.; Chen, Y.; Ding, J.; Li, Z.; Li, Y.; Sun, F. Ecological impacts of land use change in the arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhang, Y.; Zhan, C.; Sun, S. How is the risk of hydrological drought in the Tarim River Basin, Northwest China? Sci. Total Environ. 2019, 693, 133555. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Chen, Y.; Li, Y.; Zhang, Q.; Qin, J.; Kayumba, P.M. Historic and simulated desert-oasis ecotone changes in the arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhu, C.; Li, W. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. Acta Ecol. Sin. 2019, 39, 7410–7417. [Google Scholar]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Xia, Z. Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China. Sustainability 2019, 11, 4941. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, C.; Yang, Y.; Hao, X.; Sheng, Y. Hydrology and Water Resources Variation and Its Responses to Regional Climate Change in Xinjiang. Acta Geogr. Sin. 2009, 64, 1331–1341. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zulpiya, M.; Hamit, Y.; Anwar, E.; Ajigul, A. Response of Ecosystem Services Value to Land Use/Cover Change in the Yanqi Basin of Xinjiang. China. J. Desert Res. 2014, 34, 275–283. [Google Scholar]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, Q.; Chen, X.; Tang, J. The responses of ecosystem services to land-use change in Dianshan Lake area from 1984 to 2014. Acta Ecol. Sin. 2019, 39, 2973–2985. [Google Scholar]
- Huang, M.; Fang, B.; Yue, W.; Feng, S. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995–2017. Geogr. Res. 2019, 38, 2790–2803. [Google Scholar]
- Zhang, C.; Bai, Z.; Li, X.; Ran, Q.; Wei, Z.; Lei, T.; Wang, N. Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018. Arid Land Geogr. 2021, 44, 188–196. [Google Scholar]
- Yuan, S.; Zhu, C.; Yang, L.; Xie, F. Responses of ecosystem services to urbanization-induced land use changes in ecologically sensitive suburban areas in Hangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 1124. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Ecol. Sin. 2017, 72, 161–173. [Google Scholar]
- Liang, J.; Xiao, R.; Wei, W.; Jing, H. Spatio-temporal evolution and influencing factors of water resource carrying capacity in Shiyang River Basin: Based on the geographical detector method. Water Supply 2020, 20, 1409–1424. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Guo, C.; Gao, S.; Zhou, B.; Gao, J. Effects of land use change on ecosystem service value in Funiu Mountain based upon a grid square. Acta Ecol. Sin. 2019, 39, 3482–3493. [Google Scholar]
- Wang, G.; Wang, Y.; Gui, D. A review on water resources research in Tarim River Basin. Arid Land Geogr. 2018, 41, 1151–1159. [Google Scholar]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.; Daily, G.; Goldstein, J.; Kareiva, P.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Serafy, S. Pricing the invaluable: The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 25–27. [Google Scholar] [CrossRef]
- Zhao, T.; Ouyang, Z.; Wang, X.; Miao, H.; Wei, Y. Ecosystem services and their valuation of terrestrial surface water system in China. J. Nat. Resour. 2003, 18, 443–452. [Google Scholar]
- Wu, G.; Dong, R.; Yu, F. Estimation of Ecological Compensation Standards for Small Watersheds: Based on the Value of Ecological Service Function. Ecol. Econ. 2019, 35, 210–214. [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Sun, J. Research advances and trends in ecosystem services and evaluation in China. Procedia Environ. Sci. 2011, 10, 1791–1796. [Google Scholar]
- Dai, E.; Wang, Y. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region. Acta Geogr. Sin. 2020, 75, 607–619. [Google Scholar]
- Li, Y.; Chen, Y.; Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Glob. Planet. Chang. 2019, 178, 184–192. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Fang, G. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geogr. Sin. 2014, 69, 95–1304. [Google Scholar]
- Hou, Y.; Chen, Y.; Li, Z.; Li, Y.; Sun, F.; Zhuang, S.; Wang, C.; Feng, M. Land Use Dynamic Changes in an Arid Inland River Basin Based on Multi-Scenario Simulation. Remote Sens. 2022, 14, 2797. [Google Scholar] [CrossRef]
- Chen, Y.; Wumaierjiang, W.; Aikeremu, A.; Chen, Y.; Chen, Y.; Hao, X.; Zhu, C.; Wang, Y. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years. Arid Land Geogr. 2021, 44, 605–611. [Google Scholar]
- Li, B.; Chen, Y.; Li, W.; Chen, Z.; Zhang, B.; Guo, B. Spatial and temporal variations of temperature and precipitation in the arid region of northwest China from 1960–2010. Fresenius Environ. Bull. 2013, 22, 362–371. [Google Scholar]
Ecosystem Service Function | Land Use Type | |||||
---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grass Land | Waters | Construction Land | Unused Land | |
Gas regulation | 940.91 | 6586.37 | 1505.46 | 0.00 | 0.00 | 0.00 |
Climate regulation | 1674.82 | 5080.92 | 1693.64 | 865.64 | 0.00 | 0.00 |
Water conservation | 1129.09 | 6021.83 | 1505.46 | 38,351.50 | 0.00 | 56.45 |
Soil formation and protection | 2747.46 | 7339.10 | 3669.55 | 18.82 | 0.00 | 37.64 |
Waste disposal | 3086.19 | 2465.18 | 2465.18 | 34,211.50 | 0.00 | 18.82 |
Biodiversity conservation | 1336.09 | 6134.74 | 2051.18 | 4685.73 | 0.00 | 639.82 |
Food production | 1881.82 | 188.18 | 564.55 | 188.18 | 0.00 | 18.82 |
Raw material production | 188.18 | 4892.73 | 94.09 | 18.82 | 0.00 | 0.00 |
Entertainment culture | 18.82 | 2408.73 | 75.27 | 8167.10 | 82.60 | 18.82 |
Total | 13,003.38 | 41,117.78 | 13,624.38 | 86,507.29 | 82.60 | 790.36 |
Criterion Basis | Interaction |
---|---|
q(X1∩X2) < min[q(X1),q(X2)] | Non-linear weakening |
min[q(X1),q(X2)] < q(X1∩X2) < max[q(X1),q(X2)] | Single-factor non-linear attenuation |
q(X1∩X2) > max[q(X1),q(X2)] | Double factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) > q(X1) + q(X2) | Non-linear enhancement |
Basin Name | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
YRQ | 1126.41 | 1200.11 | 1237.85 | 1283.97 | 1127.52 |
AKS | 520.86 | 507.98 | 598.04 | 551.21 | 545.21 |
THGL | 212.74 | 232.90 | 223.78 | 223.43 | 234.24 |
KK | 881.98 | 861.74 | 880.82 | 897.79 | 886.72 |
HT | 797.69 | 873.42 | 898.60 | 900.81 | 886.02 |
Total | 3539.68 | 3676.15 | 3839.09 | 3857.21 | 3679.71 |
Land Use Type | CR | FO | GR | WA | BA | BL | WE | Total 2000 |
---|---|---|---|---|---|---|---|---|
CR | 17,943.94 | 5.81 | 1847.71 | 50.51 | 47.37 | 237.26 | 4.38 | 20,136.97 |
FO | 106.66 | 609.07 | 0.86 | 1.55 | 0.00 | 0.67 | 0.13 | 718.94 |
GR | 7545.51 | 254.92 | 83,202.14 | 248.81 | 7248.39 | 975.25 | 225.64 | 99,700.66 |
WA | 127.40 | 4.43 | 274.09 | 16,392.81 | 2091.20 | 72.54 | 0.28 | 18,962.76 |
BA | 2892.33 | 1.75 | 13,935.56 | 2475.82 | 191,888.74 | 415.79 | 0.06 | 211,610.05 |
BL | 0.24 | 0 | 2.49 | 7.23 | 0.91 | 300.10 | 0.00 | 310.97 |
WE | 22.44 | 2.17 | 26.93 | 1.29 | 0.01 | 0.00 | 310.64 | 363.48 |
Total 2020 | 28,638.53 | 878.14 | 99,289.79 | 19,178.02 | 201,276.62 | 2001.61 | 541.12 | 351,803.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Wang, Y.; Li, Z.; Hou, Y. Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China. Remote Sens. 2023, 15, 591. https://doi.org/10.3390/rs15030591
Zhang S, Wang Y, Wang Y, Li Z, Hou Y. Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China. Remote Sensing. 2023; 15(3):591. https://doi.org/10.3390/rs15030591
Chicago/Turabian StyleZhang, Shuai, Yin Wang, Yang Wang, Zhi Li, and Yifeng Hou. 2023. "Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China" Remote Sensing 15, no. 3: 591. https://doi.org/10.3390/rs15030591
APA StyleZhang, S., Wang, Y., Wang, Y., Li, Z., & Hou, Y. (2023). Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China. Remote Sensing, 15(3), 591. https://doi.org/10.3390/rs15030591