Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020
Abstract
:1. Introduction
2. Datasets
2.1. Air Pollution and Meteorological Site Observation Data
2.2. Remote Sensing Data
2.3. Auxiliary Data
3. Method
3.1. Multipollutant LightGBM Combining Spatial Sampling, Random IDs, and Parameter Convolution
3.1.1. Spatial Sampling
3.1.2. Random IDs
- Randomize the position parameters, scramble the position IDs with a random algorithm, and assign a random ID to each pixel.
- Apply a 0–1 normalization algorithm to normalize the location parameters and random location IDs.
3.1.3. Parameter Convolution
- Normalize all features.
- Select a 1 × 3 convolution window.
- Set the number of features considered for the two convolution boosting parameters, where m1 = 64 and m2 = 16.
3.1.4. Sequential Multiple-Pollutant Simulation
3.2. Other Models
3.3. CV and Visualization Assessment
3.4. Model Explanation
4. Results and Analysis
4.1. CV Results
4.1.1. Total Random Sampling CV
4.1.2. Regular Sampling CV
4.1.3. CV of LSTM, RF-Ps, and LightGBM
4.2. Visual Comparison of the Spatial Distribution of Air Pollutants
4.3. SHAP Results
4.4. Long-Term Spatial Distribution Characteristics of Various Air Pollutants
4.5. Impact of COVID-19 on Air Pollution in China in 2019 and 2020
5. Discussion
5.1. Model Overview
5.2. The Efficacy of the Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviate | Explanation | Abbreviate | Explanation |
Hum | Humidity | Ele | Elevation |
Ws | Wind speed | SLOP | Slope |
Pr | Atmospheric pressure | POP | Population |
Tem | Temperature | NDVI | Normalized difference vegetation index |
RL | Road length | DOY | Day of year |
LUCC | Land use cover change | YEAR | Specific year |
WOND | Weekday/nonweekday | PBLH | Planetary boundary layer height |
AOD550 | AOD at 550 nm | AOD470 | AOD at 470 nm |
COLSO | SO2 column concentration | COLO3 | Ozone column concentration |
PM2.5 | Particulate matter with an aerodynamic diameter ≤ 2.5 μm | SO2 | Sulfur dioxide |
MuAP | The spatially distributed multiple-air-pollutant model | SHAP | SHapley Additive exPlanations |
CHAP | China high air pollutants | TAP | Tracking air pollution in China |
AOD | Aerosol optical depth | MAIAC | Multiangle implementation of atmospheric correction |
OMI | Ozone monitoring instrument | CV | Cross-validation |
LightGBM | Tree-based machine-learning gradient-boosting model | RID | Random ID for each pixel |
RF-Ps | Random forest with spatial weights | API | Air pollution index |
LSTM | Long short-term memory network | NPC | The North China Plain |
YRD | Yangtze River Delta | PRD | Pearl River Delta |
SB | Sichuan Basin |
References
- Dedoussi, I.C.; Eastham, S.D.; Monier, E.; Barrett, S.R.H. Premature mortality related to United States cross-state air pollution. Nature 2020, 578, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2016, 2, e4–e5. [Google Scholar] [CrossRef]
- Shen, G.; Ru, M.; Du, W.; Zhu, X.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Meng, W.; Liu, J.; et al. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat. Commun. 2019, 10, 3405. [Google Scholar] [CrossRef]
- Zhang, A.L.; Balmes, J.R.; Lutzker, L.; Mann, J.K.; Margolis, H.G.; Tyner, T.; Holland, N.; Noth, E.M.; Lurmann, F.; Hammond, S.K.; et al. Traffic-related air pollution, biomarkers of metabolic dysfunction, oxidative stress, and CC16 in children. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2021, 270, 112775. Available online: https://www.sciencedirect.com/science/article/pii/S0034425721004958 (accessed on 10 December 2023). [CrossRef]
- Geng, G.; Xiao, Q.; Liu, S.; Liu, X.; Cheng, J.; Zheng, Y.; Xue, T.; Tong, D.; Zheng, B.; Peng, Y.; et al. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environ. Sci. Technol. 2021, 55, 12106–12115. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Presto, A.A.; Zimmerman, N. Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environ. Sci. Technol. 2021, 55, 8631–8641. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Gupta, P.; Wang, K.; Jena, C.; Zhang, Y.; Lu, Z.; Streets, D.G. Using gap-filled MAIAC AOD and WRF-Chem to estimate daily PM2.5 concentrations at 1 km resolution in the Eastern United States. Atmos. Environ. 2018, 199, 443–452. Available online: https://www.sciencedirect.com/science/article/pii/S135223101830829X (accessed on 10 December 2023). [CrossRef]
- Kang, Y.; Choi, H.; Im, J.; Park, S.; Shin, M.; Song, C.-K.; Kim, S. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environ. Pollut. 2021, 288, 117711. Available online: https://www.sciencedirect.com/science/article/pii/S0269749121012938 (accessed on 10 December 2023). [CrossRef]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.-C.; Eskes, H.J.; Eichmann, K.-U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. Available online: https://amt.copernicus.org/articles/14/481/2021/ (accessed on 10 December 2023). [CrossRef]
- Chi, Y.; Zhan, Y. A Simple and Effective Random Forest Refit to Map the Spatial Distribution of NO2 Concentrations. Atmosphere 2022, 13, 1832. [Google Scholar] [CrossRef]
- Wang, C.; Guan, K.; Peng, B.; Chen, M.; Jiang, C.; Zeng, Y.; Wu, G.; Wang, S.; Wu, J.; Yang, X.; et al. Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the U.S. Midwest. Remote. Sens. Environ. 2020, 241, 111728. Available online: http://www.sciencedirect.com/science/article/pii/S0034425720300985 (accessed on 10 December 2023). [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Lin, C.-A.; Chen, Y.-C.; Liu, C.-Y.; Chen, W.-T.; Seinfeld, J.H.; Chou, C.C.-K. Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens. 2019, 11, 1738. [Google Scholar] [CrossRef]
- Womack, C.C.; Manfred, K.M.; Wagner, N.L.; Adler, G.; Franchin, A.; Lamb, K.D.; Middlebrook, A.M.; Schwarz, J.P.; Brock, C.A.; Brown, S.S.; et al. Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol. Atmos. Meas. Tech. 2021, 21, 7235–7252. Available online: https://acp.copernicus.org/articles/21/7235/2021/ (accessed on 10 December 2023). [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhu, L.; Zhang, M. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. Available online: http://www.sciencedirect.com/science/article/pii/S1352231017300936 (accessed on 10 December 2023). [CrossRef]
- Hu, H.; Hu, Z.; Zhong, K.; Xu, J.; Zhang, F.; Zhao, Y.; Wu, P. Satellite-based high-resolution mapping of ground-level PM2.5 concentrations over East China using a spatiotemporal regression kriging model. Sci. Total. Environ. 2019, 672, 479–490. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30965262 (accessed on 10 December 2023). [CrossRef]
- Semlali, B.-E.B.; El Amrani, C.; Ortiz, G.; Boubeta-Puig, J.; Garcia-De-Prado, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Comput. Electr. Eng. 2021, 93, 107257. Available online: https://www.sciencedirect.com/science/article/pii/S0045790621002421 (accessed on 10 December 2023). [CrossRef]
- Semlali, B.-E.B.; Amrani, C.E. A stream processing software for air quality satellite datasets. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Athens, Greece, 30 July 2020–2 August 2020; Springer: New York, NY, USA, 2020; pp. 839–853. [Google Scholar]
- Yu, M.; Masrur, A.; Blaszczak-Boxe, C. Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model. Sci. Total. Environ. 2023, 860, 160446. Available online: https://www.sciencedirect.com/science/article/pii/S0048969722075489 (accessed on 10 December 2023). [CrossRef]
- Karimi, A.; Shirmardi, M.; Hadei, M.; Birgani, Y.T.; Neisi, A.; Takdastan, A.; Goudarzi, G. Concentrations and health effects of short- and long-term exposure to PM2.5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicol. Environ. Saf. 2019, 180, 542–548. Available online: https://www.sciencedirect.com/science/article/pii/S0147651319305676 (accessed on 10 December 2023). [CrossRef] [PubMed]
- Zhong, J.; Zhang, X.; Gui, K.; Wang, Y.; Che, H.; Shen, X.; Zhang, L.; Zhang, Y.; Sun, J.; Zhang, W. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Natl. Sci. Rev. 2021, 8, nwaa307. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, X.; Bi, J.; Liu, Y. A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology. Environ. Int. 2021, 158, 106917. Available online: https://www.sciencedirect.com/science/article/pii/S0160412021005420 (accessed on 10 December 2023). [CrossRef]
- Feng, Z.; Wang, X.; Yuan, J.; Zhang, Y.; Yu, M. Changes in air pollution, land surface temperature, and urban heat islands during the COVID-19 lockdown in three Chinese urban agglomerations. Sci. Total. Environ. 2023, 892, 164496. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Wang, Q. Validation of Himawari-8 aerosol optical depth retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote. Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Cowan, D.; Cooper, G. The Shuttle Radar Topography Mission—A New Source of Near-Global Digital Elevation Data. Explor. Geophys. 2005, 36, 334–340. [Google Scholar] [CrossRef]
- Rose, A.; McKee, J.; Sims, K.; Bright, E.; Reith, A.; Urban, M. Landscan Global 2020; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2021. [Google Scholar]
- Mooney, P.; Minghini, M. A review of openstreetmap data. Mapp. Citiz. Sens. 2017, 37–59. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service Climate Data Store. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observation; Copernicus Climate Change Service Climate Data Store: Reading, UK, 2019. [Google Scholar] [CrossRef]
- Merra, G. Tavgu_2d_lnd_nx: 2d, Diurnal, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics v5. 12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015.
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. Available online: http://www.sciencedirect.com/science/article/pii/S0034425719302408019 (accessed on 10 December 2023). [CrossRef]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 2017, 1, 30. [Google Scholar]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: New York, NY, USA, 2012; pp. 9–48. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.-W.; Newman, S.-F.; Kim, J.; et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Brunner, D.; Kuhlmann, G. Importance of satellite observations for high-resolution mapping of near-surface NO2 by machine learning. Remote. Sens. Environ. 2021, 264, 112573. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Pan, X.; Wang, W. National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD. Remote. Sens. 2016, 8, 184. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Meng, Y.; Zhao, Y.; Fu, H. Satellite-based prediction of daily SO2 exposure across China using a high-quality random forest-spatiotemporal Kriging (RF-STK) model for health risk assessment. Atmos. Environ. 2019, 208, 10–19. Available online: https://www.sciencedirect.com/science/article/pii/S1352231019302006 (accessed on 10 December 2023). [CrossRef]
- Xiao, Q.; Chang, H.H.; Geng, G.; Liu, Y. An Ensemble Machine-Learning Model To Predict Historical PM2.5 Concentrations in China from Satellite Data. Environ. Sci. Technol. 2018, 52, 13260–13269. [Google Scholar] [CrossRef]
- Zhang, H.; Di, B.; Liu, D.; Li, J.; Zhan, Y. Spatiotemporal distributions of ambient SO2 across China based on satellite retrievals and ground observations: Substantial decrease in human exposure during 2013–2016. Environ. Res. 2019, 179, 108795. Available online: https://www.sciencedirect.com/science/article/pii/S0013935119305924 (accessed on 10 December 2023). [CrossRef]
- Zhu, S.; Xu, J.; Yu, C.; Wang, Y.; Zeng, Q.; Wang, H.; Shi, J. Learning Surface Ozone from Satellite Columns (LESO): A Regional Daily Estimation Framework for Surface Ozone Monitoring in China. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Yu, X.; Xi, M.; Wu, L.; Zheng, H. Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine. Remote Sens. 2023, 15, 4104. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Cheng, M.; Wu, X.; Zhan, N.; Xu, J. Long-term ambient SO2 concentration and its exposure risk across China inferred from OMI observations from 2005 to 2018. Atmos. Res. 2020, 247, 105150. Available online: https://www.sciencedirect.com/science/article/pii/S0169809520310863 (accessed on 10 December 2023). [CrossRef]
- Zhu, S.; Xu, J.; Fan, M.; Yu, C.; Letu, H.; Zeng, Q.; Zhu, H.; Wang, H.; Wang, Y.; Shi, J. Estimating Near-Surface Concentrations of Major Air Pollutants from Space: A Universal Estimation Framework LAPSO. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Song, Z.; Chen, B.; Zhang, P.; Guan, X.; Wang, X.; Ge, J.; Hu, X.; Zhang, X.; Wang, Y. High temporal and spatial resolution PM2.5 dataset acquisition and pollution assessment based on FY-4A TOAR data and deep forest model in China. Atmos. Res. 2022, 274, 106199. Available online: https://www.sciencedirect.com/science/article/pii/S0169809522001855 (accessed on 10 December 2023). [CrossRef]
- Devi, S.; Esmaeilbeiki, F.; Karimi, S.M.; Sihag, P. Prediction of sulphur dioxide (SO2) in air by using bagging, ANN and M5P: A case study, Gaya and Tirupati, India. Arab. J. Geosci. 2022, 15, 631. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Zhu, L.; Zhang, L. Estimating daily full-coverage near surface O3, CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI and GEOS-FP. ISPRS J. Photogramm. Remote Sens. 2021, 175, 311–325. Available online: https://www.sciencedirect.com/science/article/pii/S0924271621000897 (accessed on 10 December 2023). [CrossRef]
- He, W.; Meng, H.; Han, J.; Zhou, G.; Zheng, H.; Zhang, S. Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree. Chemosphere 2022, 296, 134003. Available online: https://www.sciencedirect.com/science/article/pii/S0045653522004969 (accessed on 10 December 2023). [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Meas. Tech. 2023, 23, 1511–1532. Available online: https://acp.copernicus.org/articles/23/1511/2023/ (accessed on 10 December 2023). [CrossRef]
- Silibello, C.; Carlino, G.; Stafoggia, M.; Gariazzo, C.; Finardi, S.; Pepe, N.; Radice, P.; Forastiere, F.; Viegi, G. Spatial-temporal prediction of ambient nitrogen dioxide and ozone levels over Italy using a Random Forest model for population exposure assessment. Air Qual. Atmos. Health 2021, 14, 817–829. [Google Scholar] [CrossRef]
- Ma, M.; Liu, M.; Liu, M.; Li, K.; Xing, H.; Meng, F. Resolving contributions of NO2 and SO2 to PM2.5 and O3 pollutions in the North China Plain via multi-task learning. J. Appl. Remote Sens. 2023, 18, 012004. [Google Scholar] [CrossRef]
- Li, T.; Cheng, X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102356. Available online: https://www.sciencedirect.com/science/article/pii/S0303243421000635 (accessed on 10 December 2023). [CrossRef]
- Gao, M.; Gao, J.; Zhu, B.; Kumar, R.; Lu, X.; Song, S.; Zhang, Y.; Jia, B.; Wang, P.; Beig, G.; et al. Ozone pollution over China and India: Seasonality and sources. Atmos. Meas. Tech. 2020, 20, 4399–4414. Available online: https://acp.copernicus.org/articles/20/4399/2020/ (accessed on 10 December 2023). [CrossRef]
- Wen, X.; Chen, W.; Chen, B.; Yang, C.; Tu, G.; Cheng, T. Does the prohibition on open burning of straw mitigate air pollution? An empirical study in Jilin Province of China in the post-harvest season. J. Environ. Manag. 2020, 264, 110451. Available online: https://www.sciencedirect.com/science/article/pii/S0301479720303856 (accessed on 10 December 2023). [CrossRef] [PubMed]
- MEEPRC. Bulletin on China’s Ecological Environment (2019); MEEPRC: Beijing, China, 2020.
- MEEPRC. Bulletin on China’s Ecological Environment (2020); MEEPRC: Beijing, China, 2021.
- de Leeuw, G.; van der, A.R.; Bai, J.; Xue, Y.; Varotsos, C.; Li, Z.; Fan, C.; Chen, X.; Christodoulakis, I.; Ding, J.; et al. Air quality over China. Remote Sens. 2021, 13, 3542. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? arXiv 2022, arXiv:2207.08815. [Google Scholar]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. Available online: https://www.sciencedirect.com/science/article/pii/S1566253521002360 (accessed on 10 December 2023). [CrossRef]
- Chi, Y.; Zhan, Y.; Wang, K.; Ye, H. MuAP Spatial Distribution of Various Air Pollutants in China at 1 km (SO2 2015-01-01:2020-12-31) (Version1.1); Zenodo: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Chi, Y.; Zhan, Y.; Wang, K.; Ye, H. MuAP Spatial Distribution of Various Air Pollutants in China at 1 km (PM2.5 2015-01-01:2020-12-31) (Version1.1); Zenodo: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Chi, Y.; Zhan, Y.; Wang, K.; Ye, H. MuAP Spatial Distribution of Various Air Pollutants in China at 1 km (O3 2015-01-01:2020-12-31) (Version1.1); Zenodo: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
Name | Composed Model | Shared Parameters | PM2.5 | SO2 | Ozone | Special | ||||
---|---|---|---|---|---|---|---|---|---|---|
LightGBM | LightGBM | Hum | Tem | COLO3 | WOND | Ele | PrPM2.5 | PrSO2 | PrO3 | - |
LSTM | LSTM | POP | DOY | AOD550 | LUCC | Pr | CtPM2.5 | CtSO2 | CtO3 | - |
RF-Ps | RF | PBLH | Ws | AOD470 | COLSO | RL | CoPM2.5 | CoSO2 | CoO3 | Ps |
NDVI | YEAR | SLOP |
Name | Time Ratio | R2 (PM2.5) | GPU |
---|---|---|---|
LightGBM | 1 | 0.65 | available |
RF-Ps | 12.56 | 0.83 | unavailable |
LSTM | 7.5 | 0.74 | available |
Ours | 1.97 | 0.9 | available |
PM2.5 | SO2 | Ozone | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | R2 | RMSE | Resolution | Name | R2 | RMSE | Resolution | Name | R2 | RMSE | Resolution |
[39] | 0.79 | 18.6 | 3 km | [40] | 0.62 | 10.36 | 0.25° | [24] | 0.84 | - | 0.1° |
[41] | 0.79 | 21 | - | [42] | 0.64 | 19.5 | 0.1° | [43] | 0.85 | - | 0.1° |
[44] | 0.9 | 11 | 1 km | [45] | 0.74 | 10.49 | 0.25° | [46] | 0.8 | - | 0.1° |
[47] | 0.86 | 11.47 | 0.04° | [48] | 0.74 | 2.6 | - | [49] | 0.91 | 14 | 0.05° |
[50] | 0.92 | 10.14 | 1 km | [51] | 0.84 | 10.7 | 10 | [52] | 0.8 | - | 1 km |
[33] | 0.85 | 15.57 | 1 km | [53] | 0.81 | 12.59 | 0.1 | [54] | 0.93 | 13 | 0.05° |
RF-Ps | 0.83 | 16.55 | 1 km | RF-Ps | 0.84 | 6.88 | 1 km | RF-Ps | 0.86 | 10.8 | 1 km |
LSTM | 0.74 | 18.33 | 1 km | LSTM | 0.79 | 8.62 | 1 km | LSTM | 0.8 | 13.27 | 1 km |
LightGBM | 0.65 | 20.36 | 1 km | LightGBM | 0.69 | 10.54 | 1 km | LightGBM | 0.70 | 15.77 | 1 km |
Ours | 0.9 | 9.62 | 1 km | Ours | 0.91 | 4.71 | 1 km | Ours | 0.93 | 6.81 | 1 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Zhan, Y.; Wang, K.; Ye, H. Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020. Remote Sens. 2023, 15, 5705. https://doi.org/10.3390/rs15245705
Chi Y, Zhan Y, Wang K, Ye H. Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020. Remote Sensing. 2023; 15(24):5705. https://doi.org/10.3390/rs15245705
Chicago/Turabian StyleChi, Yufeng, Yu Zhan, Kai Wang, and Hong Ye. 2023. "Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020" Remote Sensing 15, no. 24: 5705. https://doi.org/10.3390/rs15245705
APA StyleChi, Y., Zhan, Y., Wang, K., & Ye, H. (2023). Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020. Remote Sensing, 15(24), 5705. https://doi.org/10.3390/rs15245705