Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations
Abstract
:1. Introduction
- (1)
- Evaluate the spatial and temporal change characteristics of vegetation greenness on the Tibetan Plateau during the growing season between 2000 and 2022 using four vegetation greenness indexes.
- (2)
- On the basis of an analysis of growing season vegetation, assess the temporal change in winter evergreen vegetation on the Tibetan Plateau.
- (3)
- Analyze the consistency and difference in vegetation greenness variations using four vegetation greenness indexes.
2. Materials and Methods
2.1. Study Area
2.2. Framework
2.3. Dataset
2.3.1. Vegetation Greenness
2.3.2. Solar-Induced Fluorescence Dataset
2.3.3. Landcover Datasets
2.3.4. Snow Cover
2.4. Data Preprocessing
2.5. Data Analysis
2.5.1. Temporal Change of Vegetation Greenness
2.5.2. Probability of Vegetation Greenness Change
- (1)
- If four vegetation indexes (NDVI, EVI, NIRv, and LAI) showed significant change in the same direction, the probability of vegetation greenness change was defined as ‘very likely’ (i.e., four ‘↑’ is defined as ‘Enhanced very likely’, and four ‘↓’ is defined as ‘Degraded very likely’).
- (2)
- If three vegetation indexes showed significant change, the probability of vegetation greenness change was defined as ‘likely’.
- (3)
- If two vegetation indexes showed significant change, the probability of vegetation greenness change was defined as ‘probably’.
- (4)
- If there was none or only one vegetation index that showed a significant change, the probability of vegetation greenness change was defined as ‘Uncertainty’.
3. Results
3.1. The Trend of Vegetation Greenness during the Growing Season and Winter
3.2. Analysis of the Probability of Vegetation Greenness Change
3.3. Comparison of Vegetation Greenness Trends between Two Different Vegetation Indexes
4. Discussion
4.1. Significances of the Consistency of Vegetation Greenness Trend
4.2. The Driving Factors of Vegetation Greenness Change
4.3. Uncertainty and Limitations
4.4. Implications and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Remote Sensing for the Assessment of Ecosystem Services Provided by Urban Vegetation: A Review of the Methods Applied. Urban For. Urban Green. 2022, 74, 127636. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland Ecosystem Services: A Systematic Review of Research Advances and Future Directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Li, P.; Hu, Z.; Liu, Y. Shift in the Trend of Browning in Southwestern Tibetan Plateau in the Past Two Decades. Agric. For. Meteorol. 2020, 287, 107950. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, J.; Qiu, S.; Zhao, Y. Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in Terms of Greenness, Cover, and Productivity. Earth’s Future 2020, 8, e2020EF001618. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, G.; Dong, J.; Ge, Q.; Tao, J.; Zhang, X.; Qi, Y.; Doughty, R.B.; Xiao, X. Spatial, Temporal, and Spectral Variations in Albedo Due to Vegetation Changes in China’s Grasslands. ISPRS J. Photogramm. Remote Sens. 2019, 152, 1–12. [Google Scholar] [CrossRef]
- Anwar, S.A. Understanding the Contribution of the Vegetation-Runoff System for Simulating the African Climate Using the Regcm4 Model. Theor. Appl. Climatol. 2019, 138, 1219–1230. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, Q.; Fan, X.; Li, W.; Yin, J. Bayesian Retro-and Prospective Assessment of Cmip6 Climatology in Pan Third Pole Region. Clim. Dyn. 2022, 60, 767–784. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The Imbalance of the Asian Water Tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Xue, Y.; Piao, S. Climate Change Trends and Impacts on Vegetation Greening over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 7540–7552. [Google Scholar] [CrossRef]
- Shen, M.G.; Jeong, S.J.; Zhou, L.M.; Zeng, Z.Z.; Ciais, P.; Chen, D.L.; Huang, M.T.; Jin, C.S.; Li, L.Z.X.; Li, Y.; et al. Evaporative Cooling over the Tibetan Plateau Induced by Vegetation Growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Li, G.; Ma, W.; Wu, J.; Gong, Y.; Xu, G. Vegetation Degradation Impacts Soil Nutrients and Enzyme Activities in Wet Meadow on the Qinghai-Tibet Plateau. Sci. Rep. 2020, 10, 21271. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Zhang, R.; Zhao, P. The Relation of Vegetation over the Tibetan Plateau to Rainfall in China During the Boreal Summer. Clim. Dyn. 2011, 36, 1207–1219. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.; Li, Y.; Wang, X.; Li, X.; Shi, J.; Dong, Q. The Impact of Land Degradation on the C Pools in Alpine Grasslands of the Qinghai-Tibet Plateau. Plant Soil 2012, 368, 329–340. [Google Scholar] [CrossRef]
- She, Y.; Zhang, Z.; Ma, L.; Xu, W.; Huang, X.; Zhou, H. Vegetation Attributes and Soil Properties of Alpine Grassland in Different Degradation Stages on the Qinghai-Tibet Plateau, China: A Meta-Analysis. Arab. J. Geosci. 2022, 15, 193. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Huang, G.; Zhu, W.; Zhang, Y. The Role of May Vegetation Greenness on the Southeastern Tibetan Plateau for East Asian Summer Monsoon Prediction. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Meng, Z.; Liu, S.; Sun, P.; Yang, T. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China. Forests 2018, 9, 46. [Google Scholar] [CrossRef]
- Ma, M.; Yuan, W.; Dong, J.; Zhang, F.; Cai, W.; Li, H. Large-Scale Estimates of Gross Primary Production on the Qinghai-Tibet Plateau Based on Remote Sensing Data. Int. J. Digit. Earth 2017, 11, 1166–1183. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, G.; Liu, X.; Zheng, K.; Lu, Z.; Li, H.; Wang, G.; An, Z. Greening of the Qinghai–Tibet Plateau and Its Response to Climate Variations Along Elevation Gradients. Remote Sens. 2021, 13, 3712. [Google Scholar] [CrossRef]
- Diao, C.; Liu, Y.; Zhao, L.; Zhuo, G.; Zhang, Y. Regional-Scale Vegetation-Climate Interactions on the Qinghai-Tibet Plateau. Ecol. Inform. 2021, 65, 101413. [Google Scholar] [CrossRef]
- Samra, A.; Rasha, M.; El-Barbary, S.M.A. The Use of Remote Sensing Indices for Detecting Environmental Changes: A Case Study of North Sinai, Egypt. Spat. Inf. Res. 2018, 26, 679–689. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y. Optical Vegetation Indices for Monitoring Terrestrial Ecosystems Globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, M.; Shi, C.; Shi, F.; Jiang, N.; Yang, Z.; Ji, Z. Local Climatic Factors Mediated Impacts of Large-Scale Climate Oscillations on the Growth of Vegetation across the Tibetan Plateau. Front. Environ. Sci. 2021, 9, 597971. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Xiao, J.; Li, X. Large Discrepancies among Remote Sensing Indices for Characterizing Vegetation Growth Dynamics in Nepal. Agric. For. Meteorol. 2023, 339, 109546. [Google Scholar] [CrossRef]
- Jiao, K.; Gao, J.; Liu, Z. Precipitation Drives the Ndvi Distribution on the Tibetan Plateau While High Warming Rates May Intensify Its Ecological Droughts. Remote Sens. 2021, 13, 1305. [Google Scholar] [CrossRef]
- Wang, C.; Huang, M.; Zhai, P. Change in Drought Conditions and Its Impacts on Vegetation Growth over the Tibetan Plateau. Adv. Clim. Change Res. 2021, 12, 333–341. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau During 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef]
- Qiu, B.; Yan, X.; Chen, C.; Tang, Z.; Wu, W.; Xu, W.; Zhao, Z.; Yan, C.; Berry, J.; Huang, W.; et al. The Impact of Indicator Selection on Assessment of Global Greening. GIScience Remote Sens. 2021, 58, 372–385. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Huang, M.; Chang, R.; Ran, F. Forest Biomass Carbon Stocks and Variation in Tibet’s Carbon-Dense Forests from 2001 to 2050. Sci. Rep. 2016, 6, 34687. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Peñuelas, J. Species Interactions Slow Warming-Induced Upward Shifts of Treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef]
- Shi, C.; Schneider, L.; Hu, Y.; Shen, M.; Sun, C.; Xia, J.; Forbes, B.C.; Shi, P.; Zhang, Y.; Ciais, P. Warming-Induced Unprecedented High-Elevation Forest Growth over the Monsoonal Tibetan Plateau. Environ. Res. Lett. 2020, 15, 054011. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liu, X.; Liang, E.; Grießinger, J.; Wu, G.; Li, X.; Bräuning, A. Does Increasing Intrinsic Water Use Efficiency (Iwue) Stimulate Tree Growth at Natural Alpine Timberline on the Southeastern Tibetan Plateau? Glob. Planet. Chang. 2017, 148, 217–226. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Zhang, G.; Fan, Z.; Wang, X.; Fu, B. Tree Ring–Based Minimum Temperature Reconstruction in the Central Hengduan Mountains, China. Theor. Appl. Climatol. 2020, 141, 359–370. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J.J. Topography and Age Mediate the Growth Responses of Smith Fir to Climate Warming in the Southeastern Tibetan Plateau. Int. J. Biometeorol. 2016, 60, 1577–1587. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Qin, C. Tree-Ring Based Annual Precipitation Reconstruction since Ad 1480 in South Central Tibet. Quat. Int. 2011, 236, 75–81. [Google Scholar] [CrossRef]
- Shi, C.; Shen, M.; Wu, X.; Cheng, X.; Li, X.; Fan, T.; Li, Z.; Zhang, Y.; Fan, Z.; Shi, F.; et al. Growth Response of Alpine Treeline Forests to a Warmer and Drier Climate on the Southeastern Tibetan Plateau. Agric. For. Meteorol. 2019, 264, 73–79. [Google Scholar] [CrossRef]
- Liang, E.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global Warming-Related Tree Growth Decline and Mortality on the North-Eastern Tibetan Plateau. Clim. Chang. 2016, 134, 163–176. [Google Scholar] [CrossRef]
- Liang, E.; Lu, X.; Ren, P.; Li, X.; Zhu, L.; Eckstein, D. Annual Increments of Juniper Dwarf Shrubs above the Tree Line on the Central Tibetan Plateau: A Useful Climatic Proxy. Ann. Bot. 2012, 109, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Schwab, N.; Kaczka, R.; Janecka, K.; Böhner, J.; Chaudhary, R.; Scholten, T.; Schickhoff, U. Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone. Forests 2018, 9, 267. [Google Scholar] [CrossRef]
- Sigdel, S.R.; Dawadi, B.; Camarero, J.J.; Liang, E.; Leavitt, S.W. Moisture-Limited Tree Growth for a Subtropical Himalayan Conifer Forest in Western Nepal. Forests 2018, 9, 340. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Y.; Eckstein, D.; Luo, T. Little Change in the Fir Tree-Line Position on the Southeastern Tibetan Plateau after 200 Years of Warming. New Phytol. 2011, 190, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pederson, N.; Ellison, A.M.; Buckley, H.L.; Case, B.S.; Liang, E.; Camarero, J.J. Increased Stem Density and Competition May Diminish the Positive Effects of Warming at Alpine Treeline. Ecology 2016, 97, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, T.; Yang, T.; Yan, Z.; Liu, Y.; Zhao, Y.; Piao, S. Deciphering Impacts of Climate Extremes on Tibetan Grasslands in the Last Fifteen Years. Sci. Bull. 2019, 64, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau Climate Dynamics: Recent Research Progress and Outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Zhang, Q.; Duan, A.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Liang, X. The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Hua, W.; Lin, Z.; Guo, D.; Fan, G.; Zhang, Y.; Yang, K.; Hu, Q.; Zhu, L. Simulated Long-Term Vegetation–Climate Feedbacks in the Tibetan Plateau. Asia-Pac. J. Atmos. Sci. 2018, 55, 41–52. [Google Scholar] [CrossRef]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An Updated Vegetation Map of China (1:1000000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The Modis Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-Infrared Reflectance and Terrestrial Photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the Modis Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R. Global Products of Vegetation Leaf Area and Fraction Absorbed Par from Year One of Modis Data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. Available online: https://lpdaac.usgs.gov/products/mod13a1v061/ (accessed on 12 October 2022).
- Myneni, R.; Knyazikhin, Y.; Park, T. MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V061 [Data Set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. Available online: https://lpdaac.usgs.gov/products/mod15a2hv061/ (accessed on 12 October 2022).
- Magney, T.S.; Bowling, D.R.; Logan, B.A.; Grossmann, K.; Stutz, J.; Blanken, P.D.; Burns, S.P.; Cheng, R.; Garcia, M.A.; Kӧhler, P.; et al. Mechanistic Evidence for Tracking the Seasonality of Photosynthesis with Solar-Induced Fluorescence. Proc. Natl. Acad. Sci. USA 2019, 116, 11640–11645. [Google Scholar] [CrossRef]
- Turner, A.J.; Köhler, P.; Magney, T.S.; Frankenberg, C.; Fung, I.; Cohen, R.C. A Double Peak in the Seasonality of California’s Photosynthesis as Observed from Space. Biogeosciences 2020, 17, 405–422. [Google Scholar] [CrossRef]
- Zhang, Y.; Joiner, J.; Alemohammad, S.H.; Zhou, S.; Gentine, P. A Global Spatially Contiguous Solar-Induced Fluorescence (Csif) Dataset Using Neural Networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.; Li, S. Open Access to Earth Land-Cover Map. Nature 2014, 514, 434. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061 [Data Set]. NASA EOSDIS Land Processes Distributed Active Archive Center. 2022. Available online: https://lpdaac.usgs.gov/products/mcd12q1v061/ (accessed on 12 October 2022).
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid, Version 61 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2021. Available online: https://nsidc.org/data/mod10a1/versions/61 (accessed on 15 March 2023).
- Riggs, G.; Hall, D. Continuity of Modis and Viirs Snow Cover Extent Data Products for Development of an Earth Science Data Record. Remote Sens. 2020, 12, 3781. [Google Scholar] [CrossRef]
- Peng, W.; Kuang, T.; Tao, S. Quantifying Influences of Natural Factors on Vegetation Ndvi Changes Based on Geographical Detector in Sichuan, Western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Jiang, N.; Shen, M.; Ciais, P.; Campioli, M.; Peñuelas, J.; Körner, C.; Cao, R.; Piao, S.; Liu, L.; Wang, S.; et al. Warming Does Not Delay the Start of Autumnal Leaf Coloration but Slows Its Progress Rate. Glob. Ecol. Biogeogr. 2022, 31, 2297–2313. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. Landtrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Zhang, Y.; Commane, R.; Zhou, S.; Williams, A.P.; Gentine, P. Light Limitation Regulates the Response of Autumn Terrestrial Carbon Uptake to Warming. Nat. Clim. Chang. 2020, 10, 739–743. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, M.; Jiang, N.; Lv, J.; Liu, L.; Zhang, L. Spatial Variations in the Response of Spring Onset of Photosynthesis of Evergreen Vegetation to Climate Factors across the Tibetan Plateau: The Roles of Interactions between Temperature, Precipitation, and Solar Radiation. Agric. For. Meteorol. 2023, 335, 109440. [Google Scholar] [CrossRef]
- Sen, P.K. Robustness of Some Nonparametric Procedures in Linear Models. Ann. Math. Stat. 1968, 39, 1913–1922. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Effectiveness of Protected Areas Edges on Vegetation Greenness, Cover and Productivity on the Tibetan Plateau, China. Landsc. Urban Plan. 2022, 224, 104421. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The Impact of Class Imbalance in Classification Performance Metrics Based on the Binary Confusion Matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Towers, P.C.; Strever, A.; Poblete-Echeverría, C. Comparison of Vegetation Indices for Leaf Area Index Estimation in Vertical Shoot Positioned Vine Canopies with and without Grenbiule Hail-Protection Netting. Remote Sens. 2019, 11, 1073. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Wang, G. Detecting Drought-Induced Gpp Spatiotemporal Variabilities with Sun-Induced Chlorophyll Fluorescence During the 2009/2010 Droughts in China. Ecol. Indic. 2021, 121, 107092. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Liu, S.; Wang, Y.; Fu, Q.; Shi, H. Estimating the Applicability of Ndvi and Sif to Gross Primary Productivity and Grain-Yield Monitoring in China. Remote Sens. 2022, 14, 3237. [Google Scholar] [CrossRef]
- Hao, A.; Duan, H.; Wang, X.; Zhao, G.; You, Q.; Peng, F.; Du, H.; Liu, F.; Li, C.; Lai, C.; et al. Different Response of Alpine Meadow and Alpine Steppe to Climatic and Anthropogenic Disturbance on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 27, e01512. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y.; Kayumba, P.M.; Wang, X.; Liu, C.; Long, Y.; Sun, F. Biophysical Impacts of Vegetation Dynamics Largely Contribute to Climate Mitigation in High Mountain Asia. Agric. For. Meteorol. 2022, 327, 109233. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Upgrading Protected Areas Can Improve or Reverse the Decline in Conservation Effectiveness: Evidence from the Tibetan Plateau, China. Sci Total Env. 2023, 873, 162345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Y.; Wang, Z.; Ding, M.; Liu, L.; Li, L.; Li, S.; Liu, Q.; Paudel, B.; Zhang, H. Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas. Remote Sens. 2021, 13, 4725. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Human-Induced Grassland Degradation/Restoration in the Central Tibetan Plateau: The Effects of Ecological Protection and Restoration Projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef]
- Anderson, K.; Fawcett, D.; Cugulliere, A.; Benford, S.; Jones, D.; Leng, R. Vegetation Expansion in the Subnival Hindu Kush Himalaya. Glob. Chang. Biol. 2020, 26, 1608–1625. [Google Scholar] [CrossRef]
- Maina, F.Z.; Kumar, S.V.; Albergel, C.; Mahanama, S.P. Warming, Increase in Precipitation, and Irrigation Enhance Greening in High Mountain Asia. Commun. Earth Environ. 2022, 3, 43. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Ren, P.; Sigdel, S.R.; Camarero, J.J. Heterogeneous Responses of Alpine Treelines to Climate Warming across the Tibetan Plateau. Forests 2022, 13, 788. [Google Scholar] [CrossRef]
- Wenqi, S.; Yuhao, F.; Zhiheng, W. Ecological Restoration Programs Dominate Vegetation Greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar]
- Zhang, Z.; Liu, Y.-F.; Cui, Z.; Huang, Z.; Liu, Y.; Leite, P.A.M.; Zhao, J.; Wu, G.-L. Shrub Encroachment Impaired the Structure and Functioning of Alpine Meadow Communities on the Qinghai–Tibetan Plateau. Land Degrad. Dev. 2022, 33, 2454–2463. [Google Scholar] [CrossRef]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S.C.; Graven, H.; Heinze, C.; Huntingford, C.; et al. Recent Trends and Drivers of Regional Sources and Sinks of Carbon Dioxide. Biogeosciences 2015, 12, 653–679. [Google Scholar] [CrossRef]
Trend of NDVI | Trend of EVI | Trend of NIRv | Trend of LAI | Probability of Vegetation Greenness Change |
---|---|---|---|---|
↑ | ↑ | ↑ | ↑ | Enhanced, very likely |
↑ | ↑ | ↑ | – | Enhanced likely |
↑ | ↑ | – | ↑ | |
↑ | – | ↑ | ↑ | |
– | ↑ | ↑ | ↑ | |
↑ | ↑ | – | – | Enhanced probably |
↑ | – | – | ↑ | |
– | – | ↑ | ↑ | |
↓ | ↓ | ↓ | ↓ | Degraded very likely |
↓ | ↓ | ↓ | – | Degraded likely |
↓ | ↓ | – | ↓ | |
↓ | – | ↓ | ↓ | |
– | ↓ | ↓ | ↓ | |
↓ | ↓ | – | – | Degraded probably |
↓ | – | – | ↓ | |
– | – | ↓ | ↓ | |
None or only one vegetation index showed a significant change | Uncertainty |
Accuracy | NDVIGS | EVIGS | NIRvGS | LAIGS |
---|---|---|---|---|
NDVIGS | - | |||
EVIGS | 0.86 | - | ||
NIRvGS | 0.87 | 0.95 | - | |
LAIGS | 0.79 | 0.78 | 0.79 | - |
Accuracy | NDVIWinter | EVIWinter | NIRvWinter | LAIWinter |
---|---|---|---|---|
NDVIWinter | - | |||
EVIWinter | 0.65 | - | ||
NIRvWinter | 0.68 | 0.95 | - | |
LAIWinter | 0.64 | 0.73 | 0.72 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Zhao, W.; Hua, T.; Zhang, L.; Pereira, P. Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations. Remote Sens. 2023, 15, 5697. https://doi.org/10.3390/rs15245697
Lv J, Zhao W, Hua T, Zhang L, Pereira P. Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations. Remote Sensing. 2023; 15(24):5697. https://doi.org/10.3390/rs15245697
Chicago/Turabian StyleLv, Jinxia, Wenwu Zhao, Ting Hua, Lihao Zhang, and Paulo Pereira. 2023. "Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations" Remote Sensing 15, no. 24: 5697. https://doi.org/10.3390/rs15245697
APA StyleLv, J., Zhao, W., Hua, T., Zhang, L., & Pereira, P. (2023). Multiple Greenness Indexes Revealed the Vegetation Greening during the Growing Season and Winter on the Tibetan Plateau despite Regional Variations. Remote Sensing, 15(24), 5697. https://doi.org/10.3390/rs15245697