Risk Assessment and Analysis of Its Influencing Factors of Debris Flows in Typical Arid Mountain Environment: A Case Study of Central Tien Shan Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.2.1. Tests of Covariance for Hazard Assessment Variables
2.2.2. Variable of Vulnerability Assessment
2.3. Methods
2.3.1. Methods of Hazard Assessment
2.3.2. Methods of Vulnerability Assessment
2.3.3. Methods of Risk Assessment
3. Results
3.1. Debris Flow Hazard Assessment in the TSMs
3.2. Debris Flow Vulnerability Assessment in the TSMs
3.3. Debris Flow Risk Assessment in the TSMs
4. Discussion
5. Conclusions
- The hazard of debris flows in the Tien Shan region results from geological and tectonic processes. The tectonics determine the source material, which in turn controls the initiation of debris flows. The density of faults, topographic relief, and differences in height are the primary factors that affect the likelihood of debris flows in Tien Shan.
- The Tien Shan region exhibits a spatial pattern of high vulnerability in the north and low vulnerability in the south. The neighboring regions’ SoVI also displays positive spatial autocorrelation, characterized by evident spatial clustering features.
- A total of 19.13% of the Tien Shan region is categorized as high-risk, divided into three distribution zones: the low-mountain zone in the Tien Shan’s northern foothills, the low-mountain zone along the southern foothills of the Tien Shan, and the Yili Valley zone. Monitoring and early warning in these three areas are crucial.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, N.; Tian, S.; Zhang, Y.; Wang, Z. Soil mass domination in debris-flow disasters and strategy for hazard mitigation. Earth Sci. Front. 2021, 28, 337–348. [Google Scholar] [CrossRef]
- Dowling, C.A.; Santi, P.M. Debris Flows and Their Toll on Human Life: A Global Analysis of Debris-Flow Fatalities from 1950 to 2011. Nat. Hazards 2014, 71, 203–227. [Google Scholar] [CrossRef]
- Tian, S.; Hu, G.; Chen, N.; Rahman, M.; Han, Z.; Somos-Valenzuela, M.; Habumugisha, J.M. Extreme Climate and Tectonic Controls on the Generation of a Large-Scale, Low-Frequency Debris Flow. Catena 2022, 212, 106086. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Fang, G.; Li, Y.; Li, Z.; Wang, F.; Xia, Z. Observed Changes in Extreme Precipitation over the Tienshan Mountains and Associated Large-Scale Climate Teleconnections. J. Hydrol. 2022, 606, 127457. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, H.; Wei, W.; Li, J. Slip rates and seismic moment deficits on major faults in the Tianshan region. Seismol. Geol. 2021, 43, 249–261. [Google Scholar]
- Tie, Y.; Tang, C. Application of AHP in single debris flow risk assessment. Chin. J. Geol. Hazard Control 2006, 17, 79–84. [Google Scholar]
- Sun, Y.; Ge, Y.; Chen, X.; Zeng, L.; Liang, X. Risk Assessment of Debris Flow along the Northern Line of the Sichuan-Tibet Highway. Geomat. Nat. Hazards Risk 2023, 14, 2195531. [Google Scholar] [CrossRef]
- Yılmaz, K.; Dinçer, A.E.; Kalpakcı, V.; Öztürk, Ş. Debris Flow Modelling and Hazard Assessment for a Glacier Area: A Case Study in Barsem, Tajikistan. Nat. Hazards 2023, 115, 2577–2601. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Tian, S.; Chen, N.; Rahman, M.; Hu, G.; Peng, T.; Zhang, Y.; Liu, M. New Insights into the Occurrence of the Catastrophic Zhaiban Slope Debris Flow That Occurred in a Dry Valley in the Hengduan Mountains in Southwest China. Landslides 2022, 19, 647–657. [Google Scholar] [CrossRef]
- Chen, Y.; Chou, J.; Zhang, H. Activity characters of rainstion mudflow in arid land—Taking Ala creek Tianshan Mountains as Example. Jouranl Arid. Land Resour. Environ. 1991, 5, 43–48. [Google Scholar] [CrossRef]
- Passmore, D.G.; Harrison, S.; Winchester, V.; Rae, A.; Severskiy, I.; Pimankina, N.V. Late Holocene Debris Flows and Valley Floor Development in The Northern Zailiiskiy Alatau, Tien Shan Mountains, Kazakhstan. Arct. Antarct. Alp. Res. 2008, 40, 548–560. [Google Scholar] [CrossRef]
- Lv, L.Q.; Chen, N.S.; Lu, Y.; Huang, Q.; Li, J.; Zhu, Y.H. Characteristics and Mechanics Analysis of Debris Flow Disaster in Xinjiang Arid Area. Adv. Mater. Res. 2012, 594–597, 2318–2322. [Google Scholar] [CrossRef]
- Winchester, V.; Passmore, D.G.; Harrison, S.; Rae, A.; Severskiy, I.; Pimankina, N.V. Dendrogeomorphological and Sedimentological Analysis of Debris Flow Hazards in the Northern Zailiiskiy Alatau, Tien Shan Mountains, Kazakhstan. In Vulnerability of Land Systems in Asia; Braimoh, A.K., Huang, H.Q., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 91–113. ISBN 978-1-118-85494-5. [Google Scholar]
- Medeu, A.R.; Popov, N.V.; Blagovechshenskiy, V.P.; Askarova, M.A.; Medeu, A.A.; Ranova, S.U.; Kamalbekova, A.; Bolch, T. Moraine-Dammed Glacial Lakes and Threat of Glacial Debris Flows in South-East Kazakhstan. Earth-Sci. Rev. 2022, 229, 103999. [Google Scholar] [CrossRef]
- Lo, W.-C.; Tsao, T.-C.; Hsu, C.-H. Building Vulnerability to Debris Flows in Taiwan: A Preliminary Study. Nat. Hazards 2012, 64, 2107–2128. [Google Scholar] [CrossRef]
- Winter, M.G.; Smith, J.T.; Fotopoulou, S.; Pitilakis, K.; Mavrouli, O.; Corominas, J.; Argyroudis, S. An Expert Judgement Approach to Determining the Physical Vulnerability of Roads to Debris Flow. Bull. Eng. Geol. Environ. 2014, 73, 291–305. [Google Scholar] [CrossRef]
- Sun, R.; Gao, G.; Gong, Z.; Wu, J. A Review of Risk Analysis Methods for Natural Disasters. Nat. Hazards 2020, 100, 571–593. [Google Scholar] [CrossRef]
- Ji, J.; Luo, P.; White, P.; Jiang, H.; Gao, L.; Ding, Z. Episodic Uplift of the Tianshan Mountains since the Late Oligocene Constrained by Magnetostratigraphy of the Jingou River Section, in the Southern Margin of the Junggar Basin, China. J. Geophys. Res. Solid. Earth 2008, 113, B05102. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Wang, Q. The Deformation Pattern and Fault Rate in the Tianshan Mountains Inferred from GPS Observations. Sci. China Ser. D-Earth Sci. 2008, 51, 1064–1080. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, P.; Zhang, Z.; Zheng, W.; Xu, B.; Wang, W.; Yu, Z.; Dai, X.; Zhang, B.; Zang, K. Slip Partitioning and Crustal Deformation Patterns in the Tianshan Orogenic Belt Derived from GPS Measurements and Their Tectonic Implications. Earth-Sci. Rev. 2023, 238, 104362. [Google Scholar] [CrossRef]
- Abdrakhmatov, K.Y.; Aldazhanov, S.A.; Hager, B.H.; Hamburger, M.W.; Herring, T.A.; Kalabaev, K.B.; Makarov, V.I.; Molnar, P.; Panasyuk, S.V.; Prilepin, M.T.; et al. Relatively Recent Construction of the Tien Shan Inferred from GPS Measurements of Present-Day Crustal Deformation Rates. Nature 1996, 384, 450–453. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Yang, Z.-E.; Luo, H.; Mooney, W.D. Crustal Structure of the Northern Margin of the Eastern Tien Shan, China, and Its Tectonic Implications for the 1906 M~7.7 Manas Earthquake. Earth Planet. Sci. Lett. 2004, 223, 187–202. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Zhang, X.; Yan, Z.; Liu, Y.; Yang, H.; Wang, Y.; Jonell, T.N.; Qian, J.; Gou, S.; et al. Westerlies-Monsoon Interaction Drives out-of-Phase Precipitation and Asynchronous Lake Level Changes between Central and East Asia over the Last Millennium. Catena 2022, 218, 106568. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent Climate and Hydrological Changes in a Mountain–Basin System in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Yan, X. The Administration of Debris flow in Alagou Basin of Tianshan. Arid Land Geograpyh 1991, 68–75. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, Z.; Yang, F.; Li, W. Classification and Type Character of Debris flow Along Alago River Basin of Tianshan Mountains in Xinjiang. Arid Land Geograpyh 1991, 68–75. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, D.; Liang, G.; Li, S.; Zhao, Y.; Chao, Z.; Meng, X. Risk Assessment of Debris Flow in a Mountain-Basin Area, Western China. Remote Sens. 2022, 14, 2942. [Google Scholar] [CrossRef]
- Turner, B.; Meyer, W.B.; Skole, D.L. Global Land-Use/Land-Cover Change: Towards an Integrated Study. Ambio A J. Human. Environ. 1994, 23, 91–95. [Google Scholar]
- Efthimiou, N.; Psomiadis, E. The Significance of Land Cover Delineation on Soil Erosion Assessment. Environ. Manag. 2018, 62, 383–402. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of Land Use Land Cover Change on Soil Erosion Potential in an Agricultural Watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Chen, J.; Shang, Y. Debris Flow Susceptibility Assessment in the Wudongde Dam Area, China Based on Rock Engineering System and Fuzzy C-Means Algorithm. Water 2017, 9, 669. [Google Scholar] [CrossRef]
- Lin, J.; Chen, W.; Qi, X.; Hou, H. Risk Assessment and Its Influencing Factors Analysis of Geological Hazards in Typical Mountain Environment. J. Clean. Prod. 2021, 309, 127077. [Google Scholar] [CrossRef]
- Lizama Montecinos, E.; Morales, B.; Somos-Valenzuela, M.; Chen, N.; Liu, M. Understanding Landslide Susceptibility in Northern Chilean Patagonia: A Basin-Scale Study Using Machine Learning and Field Data. Remote Sens. 2022, 14, 907. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, X.; Qi, T.; Chen, G.; Li, Y.; Yue, D.; Qing, F. Modeling the Spatial Distribution of Debris Flows and Analysis of the Controlling Factors: A Machine Learning Approach. Remote Sens. 2021, 13, 4813. [Google Scholar] [CrossRef]
- Gholami, H.; Mohamadifar, A.; Rahimi, S.; Kaskaoutis, D.G.; Collins, A.L. Predicting Land Susceptibility to Atmospheric Dust Emissions in Central Iran by Combining Integrated Data Mining and a Regional Climate Model. Atmos. Pollut. Res. 2021, 12, 172–187. [Google Scholar] [CrossRef]
- Khajehei, S.; Ahmadalipour, A.; Shao, W.; Moradkhani, H. A Place-Based Assessment of Flash Flood Hazard and Vulnerability in the Contiguous United States. Sci. Rep. 2020, 10, 448. [Google Scholar] [CrossRef]
- Guillard-Gonçalves, C.; Cutter, S.L.; Emrich, C.T.; Zêzere, J.L. Application of Social Vulnerability Index (SoVI) and Delineation of Natural Risk Zones in Greater Lisbon, Portugal. J. Risk Res. 2015, 18, 651–674. [Google Scholar] [CrossRef]
- Murillo-García, F.G.; Rossi, M.; Ardizzone, F.; Fiorucci, F.; Alcántara-Ayala, I. Hazard and Population Vulnerability Analysis: A Step towards Landslide Risk Assessment. J. Mt. Sci. 2017, 14, 1241–1261. [Google Scholar] [CrossRef]
- Huang, J.; Su, F.; Zhang, P. Measuring Social Vulnerability to Natural Hazards in Beijing-Tianjin-Hebei Region, China. Chin. Geogr. Sci. 2015, 25, 472–485. [Google Scholar] [CrossRef]
- Ding, M.; Heiser, M.; Huebl, J.; Fuchs, S. Regional Vulnerability Assessment for Debris Flows in China-a CWS Approach. Landslides 2016, 13, 537–550. [Google Scholar] [CrossRef]
- Shen, D.; Liang, H.; Shi, W. Rural Population Aging, Capital Deepening, and Agricultural Labor Productivity. Sustainability 2023, 15, 8331. [Google Scholar] [CrossRef]
- Ogie, R.I.; Pradhan, B. Natural Hazards and Social Vulnerability of Place: The Strength-Based Approach Applied to Wollongong, Australia. Int. J. Disaster Risk Sci. 2019, 10, 404–420. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Zhang, L.; Li, Y.; Wang, P. Risk Perception and Management of Debris Flow Hazards in the Upper Salween Valley Region: Implications for Disaster Risk Reduction in Marginalized Mountain Communities. Int. J. Disaster Risk Reduct. 2020, 51, 101856. [Google Scholar] [CrossRef]
- Gravina, T.; Figliozzi, E.; Mari, N.; De Luca Tupputi Schinosa, F. Landslide Risk Perception in Frosinone (Lazio, Central Italy). Landslides 2017, 14, 1419–1429. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Schmidtlein, M.C.; Deutsch, R.C.; Piegorsch, W.W.; Cutter, S.L. A Sensitivity Analysis of the Social Vulnerability Index. Risk Anal. 2008, 28, 1099–1114. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K. Rapidly Assessing Earthquake-Induced Landslide Susceptibility on a Global Scale Using Random Forest. Geomorphology 2021, 391, 107889. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Jiang, Y.; Zhang, G.; Zhao, B.; Lei, Y. Geomorphic Controls on Debris Flow Activity in the Paraglacial Zone of the Southeast Tibetan Plateau. Nat. Hazards 2023, 117, 917–937. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social Vulnerability to Floods: Review of Case Studies and Implications for Measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef]
- Bakkensen, L.A.; Fox-Lent, C.; Read, L.K.; Linkov, I. Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Anal. 2017, 37, 982–1004. [Google Scholar] [CrossRef] [PubMed]
- Yibo, Y.; Ziyuan, C.; Xiaodong, Y.; Simayi, Z.; Shengtian, Y. The Temporal and Spatial Changes of the Ecological Environment Quality of the Urban Agglomeration on the Northern Slope of Tianshan Mountain and the Influencing Factors. Ecol. Indic. 2021, 133, 108380. [Google Scholar] [CrossRef]
- Sung, C.-H.; Liaw, S.-C. A GIS-Based Approach for Assessing Social Vulnerability to Flood and Debris Flow Hazards. Int. J. Disaster Risk Reduct. 2020, 46, 101531. [Google Scholar] [CrossRef]
- Johnson, P.A.; McCuen, R.H.; Hromadka, T.V. Debris Basin Policy and Design. J. Hydrol. 1991, 123, 83–95. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Liu, Y.; Chen, D.; Li, J. Evaluation on Geological Hazard Risk and Disaster-Causing Factors in the Guozigou Valley in Ili, Xinjiang. Arid Zone Res. 2017, 34, 693–700. [Google Scholar] [CrossRef]
- Bolch, T.; Rohrbach, N.; Kutuzov, S.; Robson, B.A.; Osmonov, A. Occurrence, Evolution and Ice Content of Ice-Debris Complexes in the Ak-Shiirak, Central Tien Shan Revealed by Geophysical and Remotely-Sensed Investigations: Ice-Debris Complexes in Ak-Shiirak. Earth Surf. Process. Landf. 2019, 44, 129–143. [Google Scholar] [CrossRef]
- Vergara Dal Pont, I.; Maris Moreiras, S.; Santibanez Ossa, F.; Araneo, D.; Ferrando, F. Debris Flows Triggered from Melt of Seasonal Snow and Ice within the Active Layer in the Semi-Arid Andes. Permafr. Periglac. Process. 2020, 31, 57–68. [Google Scholar] [CrossRef]
- Jin, W.; Cui, P.; Zhang, G.; Wang, J.; Zhang, Y.; Zhang, P. Evaluating the Post-Earthquake Landslides Sediment Supply Capacity for Debris Flows. Catena 2023, 220, 106649. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Zhao, G.; Li, H.; Su, D.; Ding, H.; Yan, Z.; Yan, L.; Yun, K.; Ma, C. Uplift and erosion driven by Wenchuan earthquake and their effects on geomorphic growth of Longmen Mountains: A case study of Hongchun gully in Yingxiu, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2015, 42, 5–17. [Google Scholar]
- Kumar, A.; Bhambri, R.; Tiwari, S.K.; Verma, A.; Gupta, A.K.; Kawishwar, P. Evolution of Debris Flow and Moraine Failure in the Gangotri Glacier Region, Garhwal Himalaya: Hydro-Geomorphological Aspects. Geomorphology 2019, 333, 152–166. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A Warming-Induced Reduction in Snow Fraction Amplifies Rainfall Extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef]
- Di Napoli, M.; Miele, P.; Guerriero, L.; Annibali Corona, M.; Calcaterra, D.; Ramondini, M.; Sellers, C.; Di Martire, D. Multitemporal Relative Landslide Exposure and Risk Analysis for the Sustainable Development of Rapidly Growing Cities. Landslides 2023, 20, 1781–1795. [Google Scholar] [CrossRef]
Risk Assessment | Element | Factor | Unit | Source | Influence on the Hazard/Vulnerability |
---|---|---|---|---|---|
Hazard assessment | Geomorphological conditions | Catchment area (Area) | km2 | DEM—Chinese Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 12 July 2023)) | |
Elevation difference (HD) | m | DEM | |||
Average slope (Slope) | ° | DEM | |||
Topographical relief (RDLS) | - | DEM | |||
Geological structure | Lithological intensity (RS) | - | 1:200,000 regional geological map | ||
Fault density (FD) | km/km2 | 1:200,000 regional geological map | |||
Peak ground acceleration (PGA) | g | 1:200,000 regional geological map | |||
Source of debris flow | Land cover (LC) | - | The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022 (https://doi.org/10.5281/zenodo.8176941 (accessed on 12 July 2023)) | ||
Topographic Wetness Index (TWI) | - | DEM | |||
Normalized Difference Vegetation Index (NDVI) | - | MODIS Vegetation index product (https://modis-land.gsfc.nasa.gov/ (accessed on 12 July 2023)) | |||
Road density (RD) | - | National Gatalogue Service For Geographic Information (https://www.webmap.cn/ (accessed on 12 July 2023)) | |||
hydrological conditions | Average annual rainfall (AAP) | mm | Average annual rainfall data (https://data.tpdc.ac.cn/ (accessed on 12 July 2023)) | ||
Normalized Difference Snow Index (NDSI) | - | MODIS snow cover product (https://modis-land.gsfc.nasa.gov/ (accessed on 12 July 2023)) | |||
Vulnerability assessment | Exposure | Population density (PD) | Persons/0.01 km2 | Worldpop (https://worldpop.org (accessed on 12 July 2023)) | + |
Building density (BD) | - | The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022 (https://doi.org/10.5281/zenodo.8176941 (accessed on 12 July 2023)) | + | ||
Economic density (ED) | million/km2 | China GDP Spatial Distribution Kilometer Grid Dataset (https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 12 July 2023)) | + | ||
Road density (RD) | km/km2 | National Gatalogue Service For Geographic Information (https://www.webmap.cn/ (accessed on 12 July 2023)) | + | ||
Capability of coping | Number of hospital beds per 10,000 | Beds per 10,000 persons | County Statistical Yearbook | - | |
Percent of the population aged over 64 years | % | County Statistical Yearbook | + | ||
Percent of the population aged under 14 years | % | County Statistical Yearbook | + | ||
Resilience | GDP per capita | Million yuan per person | County Statistical Yearbook | - | |
Proportion of the labor force of the appropriate age | % | County Statistical Yearbook | - |
Soil and Water Loss Classification | Very Weak (1) | Weak (2) | Medium (3) | Strong (4) |
---|---|---|---|---|
Land Cover | Forest | Shrub | Grassland | Impervious |
Intensity Classification | Intensity (Mpa) | Strata Lithologic | Value |
---|---|---|---|
Extremely soft | Quaternary loose material, Neogene detrital rocks, Paleogene detrital rocks | 1 | |
Soft | <30 | Cretaceous detrital rocks, Jurassic detrital rocks, Permian metamorphic rocks, Devonian carbonate rocks, Silurian metamorphic rocks | 2 |
Hard | 30–60 | Triassic and Permian carbonates, Carboniferous carbonates (limestones), Devonian carbonates | 3 |
Extremely hard | >60 | Triassic and Permian intrusive rocks | 4 |
Factors | TOL | VIF | TOL (Delete Slope) | VIF (Delete Slope) |
---|---|---|---|---|
Area | 0.747 | 1.339 | 0.755 | 1.324 |
HD | 0.218 | 4.587 | 0.220 | 4.552 |
Slope | 0.018 | 54.142 | - | - |
RDLS | 0.020 | 50.033 | 0.181 | 5.526 |
RS | 0.569 | 1.759 | 0.582 | 1.719 |
FD | 0.627 | 1.596 | 0.631 | 1.584 |
PGA | 0.856 | 1.168 | 0.884 | 1.131 |
LC | 0.380 | 2.630 | 0.412 | 2.428 |
TWI | 0.387 | 2.587 | 0.504 | 1.986 |
NDVI | 0.411 | 2.431 | 0.413 | 2.421 |
RD | 0.590 | 1.696 | 0.590 | 1.696 |
AAP | 0.271 | 3.685 | 0.272 | 3.679 |
NDSI | 0.387 | 2.582 | 0.393 | 2.544 |
Component Code | (Eigenvalues) | ||
---|---|---|---|
Total | Percent of Variance | Cumulated Variance % | |
1 | 4.547 | 45.468 | 45.468 |
2 | 1.921 | 19.213 | 64.681 |
3 | 1.365 | 13.645 | 78.326 |
4 | 0.848 | 8.483 | 86.809 |
5 | 0.644 | 6.441 | 93.250 |
6 | 0.412 | 4.125 | 97.375 |
7 | 0.127 | 1.267 | 98.641 |
8 | 0.101 | 1.011 | 99.653 |
9 | 0.026 | 0.347 | 100 |
Component | Variance Explained by Extracted Components | Variance Explained after Varimax Rotation | ||||
---|---|---|---|---|---|---|
Total | Percent of Variance | Cumulated Variance % | Total | Percent of Variance | Cumulated Variance % | |
PC 1 | 4.547 | 45.468 | 45.468 | 3.521 | 35.208 | 35.208 |
PC 2 | 1.921 | 19.213 | 64.681 | 2.759 | 27.586 | 62.793 |
PC 3 | 1.365 | 13.645 | 78.326 | 1.553 | 15.533 | 78.326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, M.; Chen, N.; Hou, R.; Tian, S.; Rahman, M. Risk Assessment and Analysis of Its Influencing Factors of Debris Flows in Typical Arid Mountain Environment: A Case Study of Central Tien Shan Mountains, China. Remote Sens. 2023, 15, 5681. https://doi.org/10.3390/rs15245681
Li Z, Wu M, Chen N, Hou R, Tian S, Rahman M. Risk Assessment and Analysis of Its Influencing Factors of Debris Flows in Typical Arid Mountain Environment: A Case Study of Central Tien Shan Mountains, China. Remote Sensing. 2023; 15(24):5681. https://doi.org/10.3390/rs15245681
Chicago/Turabian StyleLi, Zhi, Mingyang Wu, Ningsheng Chen, Runing Hou, Shufeng Tian, and Mahfuzur Rahman. 2023. "Risk Assessment and Analysis of Its Influencing Factors of Debris Flows in Typical Arid Mountain Environment: A Case Study of Central Tien Shan Mountains, China" Remote Sensing 15, no. 24: 5681. https://doi.org/10.3390/rs15245681
APA StyleLi, Z., Wu, M., Chen, N., Hou, R., Tian, S., & Rahman, M. (2023). Risk Assessment and Analysis of Its Influencing Factors of Debris Flows in Typical Arid Mountain Environment: A Case Study of Central Tien Shan Mountains, China. Remote Sensing, 15(24), 5681. https://doi.org/10.3390/rs15245681