Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Flood Inventory Map
2.1.3. Flood Indicators
2.2. 1D-Convolution Neural Network
- Input layer: the input layer is the matrix of the input flood indicators X (X = [x1, x2, x3, …, xn]), where the output layer is the flood susceptibility (Y) with values belonging to [0, 1].
- Convolutional layer: The 1D-CNN applies convolutional operations to the input of a set of filters, also known as kernels. Each filter has weights (W) and biases (b). Thus, the convolution operation at a given position i can be represented as below:
- Pooling Layer: After the convolutional layer, the pooling layer can be used to reduce the dimensionality of the feature maps.
- Fully Connected Layer: In this layer, each neuron in a fully connected layer is connected to every element in the flattened vector. The output from these layers can be represented as:
- The output layer: The final output is the probability belonging to the flood class.
3. Proposed Methodology for Spatial Prediction of Fluvial Inundation Using 1D-CNN
3.1. Fluvial Flood Database
3.2. Feature Selection for Flood Indicators
3.3. Model Configuration and Training
3.4. Model Validation
3.5. Benchmark Model Comparison
3.6. Fluvial Flood Susceptibility Map
4. Result and Analysis
4.1. The Role of the Flood Indicator
4.2. Model Training and Validation
4.3. Model Comparison
4.4. Determining Fluvial Flood Susceptibility
5. Discussions
6. Conclusions
- 1D-CNN with the ADAM optimizer and the MSE loss function is capable of producing fluvial flood susceptibility maps with high accuracy.
- The performance of the proposed 1D-CNN model surpassed that of the DeepNN, SVM, and LR models, which were used for benchmarking. This outcome suggests that 1D-CNN stands as a promising and innovative tool for susceptibility mapping of fluvial floods.
- Slope, LULC, and rainfall were found to be the most critical factors for fluvial floods in this study area.
- The fluvial flood susceptibility map generated by the 1D-CNN model in this study holds significant potential to provide a valuable tool to policymakers and authorities in Quang Nam Province, aiding in the implementation of effective flood hazard management practices.
- Future research should concentrate on the temporal prediction of fluvial floods and risk assessment, as well as the development of frameworks for issuing warnings and delivering flood predictions to the community.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wallemacq, P.; Below, R.; McLean, D. UNISDR and CRED Report: Economic Losses, Poverty & Disasters (1998–2017); CRED: Brussels, Belgium, 2018. [Google Scholar]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Devitt, L.; Neal, J.; Coxon, G.; Savage, J.; Wagener, T. Flood hazard potential reveals global floodplain settlement patterns. Nat. Commun. 2023, 14, 2801. [Google Scholar] [CrossRef] [PubMed]
- Alifu, H.; Hirabayashi, Y.; Imada, Y.; Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 2022, 12, 20687. [Google Scholar] [CrossRef]
- Viglione, A.; Rogger, M. Chapter 1—Flood Processes and Hazards. In Hydro-Meteorological Hazards, Risks and Disasters; Shroder, J.F., Paron, P., Baldassarre, G.D., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 3–33. [Google Scholar]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Lavtar, K.; Bezak, N.; Šraj, M. Rainfall-Runoff Modeling of the Nested Non-Homogeneous Sava River Sub-Catchments in Slovenia. Water 2019, 12, 128. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J. Hydrol. 2016, 540, 317–330. [Google Scholar] [CrossRef]
- Ponce, V.M.; Hawkins, R.H. Runoff Curve Number: Has It Reached Maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Vincendon, B.; Ducrocq, V.; Saulnier, G.-M.; Bouilloud, L.; Chancibault, K.; Habets, F.; Noilhan, J. Benefit of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods. J. Hydrol. 2010, 394, 256–266. [Google Scholar] [CrossRef]
- Jodar-Abellan, A.; Valdes-Abellan, J.; Pla, C.; Gomariz-Castillo, F. Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Sci. Total Environ. 2019, 657, 1578–1591. [Google Scholar] [CrossRef]
- Yu, S.; Bond, N.R.; Bunn, S.E.; Xu, Z.; Kennard, M.J. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data. J. Hydrol. 2018, 559, 861–872. [Google Scholar] [CrossRef]
- Tien Bui, D.; Hoang, N.-D. A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods. Geosci. Model Dev. 2017, 10, 3391–3409. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Hoang, N.-D.; Pradhan, B.; Nguyen, Q.K.; Tran, X.T.; Nguyen, Q.M.; Nguyen, V.N.; Samui, P.; Tien Bui, D. A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors 2018, 18, 3704. [Google Scholar] [CrossRef]
- Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.X.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 2018, 621, 1124–1141. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.-D.; Pham, T.-D.; Ngo, P.-T.T.; Hoa, P.V.; Minh, N.Q.; Tran, X.-T.; Samui, P. A new intelligence approach based on GIS-based Multivariate Adaptive Regression Splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J. Hydrol. 2019, 575, 314–326. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Janizadeh, S.; Shabani, F.; Ahmadi, K.; Shabani, F. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 2021, 13, 2638. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Predicting flood susceptibility using LSTM neural networks. J. Hydrol. 2021, 594, 125734. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I.; Chrysafi, A.-A.; Matiatos, I.; Chen, W.; Hong, H. Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sens. 2023, 15, 3471. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Dikshit, A.; Kim, H. Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model. Geosci. Front. 2023, 14, 101625. [Google Scholar] [CrossRef]
- Vincent, A.M.; Parthasarathy, K.S.S.; Jidesh, P. Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization. Appl. Soft Comput. 2023, 148, 110846. [Google Scholar] [CrossRef]
- Melgar-García, L.; Martínez-Álvarez, F.; Tien Bui, D.; Troncoso, A. A novel semantic segmentation approach based on U-Net, WU-Net, and U-Net++ deep learning for predicting areas sensitive to pluvial flood at tropical area. Int. J. Digit. Earth 2023, 16, 3661–3679. [Google Scholar] [CrossRef]
- Tuan, T.A.; Pha, P.D.; Tam, T.T.; Bui, D.T. A new approach based on Balancing Composite Motion Optimization and Deep Neural Networks for spatial prediction of landslides at tropical cyclone areas. IEEE Access 2023, 11, 69495–69511. [Google Scholar] [CrossRef]
- Lepvrier, C.; Maluski, H.; Van Tich, V.; Leyreloup, A.; Thi, P.T.; Van Vuong, N. The early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 2004, 393, 87–118. [Google Scholar] [CrossRef]
- Tra, T.V.; Thinh, N.X.; Greiving, S. Combined top-down and bottom-up climate change impact assessment for the hydrological system in the Vu Gia- Thu Bon River Basin. Sci. Total Environ. 2018, 630, 718–727. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Duong, T.Q.; Liem, N.D.; Tram, V.N.Q.; Cuong, D.K.; Loi, N.K. Projections of future climate change in the Vu Gia Thu Bon River Basin, Vietnam by using statistical downscaling model (SDSM). Water 2020, 12, 755. [Google Scholar] [CrossRef]
- Shrestha, S.; Trang, B.T.T. Assessment of the climate-change impacts and evaluation of adaptation measures for paddy productivity in Quang Nam province, Vietnam. Paddy Water Environ. 2015, 13, 241–253. [Google Scholar] [CrossRef]
- Le, N.T.; Tham, N. Assessing bioclimatic resources for tourism development in Quang Nam province. J. Sci. Educ. 2016, 45, 159–168. [Google Scholar]
- Clement, M.A.; Kilsby, C.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2018, 11, 152–168. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Phong, T.V.; Nguyen, H.D.; Le, H.V.; Tran, T.Q.; Ta, H.T.; Prakash, I. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. J. Hydrol. 2021, 592, 125815. [Google Scholar] [CrossRef]
- Bui, D.T.; Ngo, P.-T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Pham, T.D.; Hoang, N.-D.; Tran, D.A.; Amiri, M.; Le, T.T.; Hoa, P.V.; Van Bui, P.; Nhu, V.-H.; Bui, D.T. A new hybrid equilibrium optimized SysFor based geospatial data mining for tropical storm-induced flash flood susceptible mapping. J. Environ. Manag. 2021, 280, 111858. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Maidment, D.R. Arc Hydro: GIS for Water Resources; ESRI, Inc.: Redlands, CA, USA, 2002. [Google Scholar]
- Li, X.; Gao, J.; Guo, Z.; Yin, Y.; Zhang, X.; Sun, P.; Gao, Z. A Study of Rainfall-Runoff Movement Process on High and Steep Slopes Affected by Double Turbulence Sources. Sci. Rep. 2020, 10, 9001. [Google Scholar] [CrossRef]
- Fang, H.; Sun, L.; Tang, Z. Effects of rainfall and slope on runoff, soil erosion and rill development: An experimental study using two loess soils. Hydrol. Process. 2015, 29, 2649–2658. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí-Bono, C.; Arnáez, J. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef]
- Best, J.; Bridge, J. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology 1992, 39, 737–752. [Google Scholar] [CrossRef]
- Buchanan, B.; Fleming, M.; Schneider, R.; Richards, B.; Archibald, J.; Qiu, Z.; Walter, M. Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrol. Earth Syst. Sci. 2014, 18, 3279–3299. [Google Scholar] [CrossRef]
- Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Buffington, J.M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Mahala, A. The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl. Water Sci. 2020, 10, 33. [Google Scholar] [CrossRef]
- Van Trang, N. Geology and Mineral Resources Map of Vietnam Scale 1:200,000, Hue-Quang Ngai Sheet Series; Department of Geology and Minerals of Vietnam: Hanoi, Vietnam, 1986. [Google Scholar]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Kirkby, M.; Bracken, L.; Reaney, S. The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2002, 27, 1459–1473. [Google Scholar] [CrossRef]
- Zhan, T.L.; Ng, C.W. Analytical analysis of rainfall infiltration mechanism in unsaturated soils. Int. J. Geomech. 2004, 4, 273–284. [Google Scholar] [CrossRef]
- Mialhe, F.; Gunnell, Y.; Mering, C. Synoptic assessment of water resource variability in reservoirs by remote sensing: General approach and application to the runoff harvesting systems of south India. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Serrano, L.; Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Penuelas, J. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Arthington, A.H. Environmental Flows: Saving Rivers in the Third Millennium; University of California Press: Berkeley, CA, USA, 2012; Volume 4. [Google Scholar]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 2022, 37, 5479–5496. [Google Scholar] [CrossRef]
- Qu, N.; Li, Z.; Li, X.; Zhang, S.; Zheng, T. Multi-parameter fire detection method based on feature depth extraction and stacking ensemble learning model. Fire Saf. J. 2022, 128, 103541. [Google Scholar] [CrossRef]
- Nava, L.; Carraro, E.; Reyes-Carmona, C.; Puliero, S.; Bhuyan, K.; Rosi, A.; Monserrat, O.; Floris, M.; Meena, S.R.; Galve, J.P. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 2023, 20, 2111–2129. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Zeiler, M. Modeling Our World: The ESRI Guide to Geodatabase Design; ESRI, Inc.: Redlands, CA, USA, 1999. [Google Scholar]
- Dodangeh, E.; Panahi, M.; Rezaie, F.; Lee, S.; Bui, D.T.; Lee, C.-W.; Pradhan, B. Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J. Hydrol. 2020, 590, 125423. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. CATENA 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A review of feature selection methods for machine learning-based disease risk prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.-T.T.; Pham, T.D.; Nhu, V.-H.; Le, T.T.; Tran, D.A.; Phan, D.C.; Hoa, P.V.; Amaro-Mellado, J.L.; Bui, D.T. A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J. Hydrol. 2021, 596, 125682. [Google Scholar] [CrossRef]
- Gokalp, O.; Tasci, E.; Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification. Expert Syst. Appl. 2020, 146, 113176. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd international conference for learning representations (iclr’15), San Diego, CA, USA, 7–9 May 2015; Volume 500. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Elliott, G.; Timmermann, A. Optimal forecast combinations under general loss functions and forecast error distributions. J. Econom. 2004, 122, 47–79. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, İ.B.; Amiri, M.; et al. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sens. 2020, 12, 2688. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woollings, T. Atmospheric blocking and weather extremes over the Euro-Atlantic sector–a review. Weather Clim. Dyn. 2022, 3, 305–336. [Google Scholar] [CrossRef]
- Payne, A.E.; Demory, M.-E.; Leung, L.R.; Ramos, A.M.; Shields, C.A.; Rutz, J.J.; Siler, N.; Villarini, G.; Hall, A.; Ralph, F.M. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 2020, 1, 143–157. [Google Scholar] [CrossRef]
- Macalalad, R.V.; Badilla, R.A.; Cabrera, O.C.; Bagtasa, G. Hydrological response of the Pampanga River basin in the Philippines to intense tropical cyclone rainfall. J. Hydrometeorol. 2021, 22, 781–794. [Google Scholar] [CrossRef]
- Mirones, Ó.; Bedia, J.; Fernández-Granja, J.A.; Herrera, S.; Van Vloten, S.O.; Pozo, A.; Cagigal, L.; Méndez, F.J. Weather-type-conditioned calibration of Tropical Rainfall Measuring Mission precipitation over the South Pacific Convergence Zone. Int. J. Climatol. 2023, 43, 1193–1210. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena 2020, 186, 104249. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.; Wang, J.; Lei, L.; Song, Y. One-dimension hierarchical local receptive fields based extreme learning machine for radar target HRRP recognition. Neurocomputing 2020, 418, 314–325. [Google Scholar] [CrossRef]
- Du, R.; Zhu, S.; Ni, H.; Mao, T.; Li, J.; Wei, R. Valence-arousal classification of emotion evoked by Chinese ancient-style music using 1D-CNN-BiLSTM model on EEG signals for college students. Multimed. Tools Appl. 2023, 82, 15439–15456. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.Q.; Tran, T.-N.-D.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Assessment of urbanization-induced land-use change and its impact on temperature, evaporation, and humidity in central Vietnam. Water 2022, 14, 3367. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2018, 90, 1031–1050. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.; Binh, D.V.; Saber, M.; Vo, D.N.; Sumi, T. Understanding the anthropogenic development impacts on long-term flow regimes in a tropical river basin, Central Vietnam. Hydrol. Sci. J. 2023, 68, 341–354. [Google Scholar] [CrossRef]
- Iqbal, A.; Mondal, M.S.; Veerbeek, W.; Khan, M.S.A.; Hakvoort, H. Effectiveness of UAV-based DTM and satellite-based DEMs for local-level flood modeling in Jamuna floodplain. J. Flood Risk Manag. 2023, 16, e12937. [Google Scholar] [CrossRef]
No | Lithological Unit | Area (%) | Main Lithology |
---|---|---|---|
1 | A Vuong formation | 16.76 | Sericite—quartz schist, quartzitic sandstone, micaceous schist, |
2 | Kham Duc formation | 15.49 | Feldspar-hornblende schist, two-mica garnet schist, biotite schist |
3 | Quaternary | 11.61 | Sandy clay, clay sand, gravel, pebbles, and grit |
4 | Tac Po formation | 7.92 | Biotite gneiss, biotite plagiogneiss, graphite-bearing schist |
5 | Ben Giang complex | 7.39 | Gabbrodiorite, diorite, and hornblende-biotite granite |
6 | Nong Son formation | 6.74 | Pebble conglomerate mixed with sandstone, conglomerate, gravel |
7 | Song Bung formation | 4.86 | Conglomerate, claystone, siltstone, and gravestone |
8 | Chu Lai complex | 3.81 | Granitic gneiss, migmatite granite, and garnet-biotite granite |
9 | Dai Loc complex | 3.34 | Gneissogranite of marginal facies and granite |
10 | Nui Vu formation | 3.17 | Plagioclase-amphibole schist, quartz-mica schist, and cherty schist |
11 | Hai Van complex | 3.00 | Biotite granite, two-mica granite, and granite aplite |
12 | Ban Co formation | 1.91 | Gritstone, conglomerate, and pebble-bearing gritstone |
13 | Ba Na complex | 1.14 | Biotite granite and two-mica granite |
14 | Song Re formation | 1.11 | Biotite-hornblende gneiss and plagiogneiss and biotite gneiss |
15 | Tra Bong complex | 1.00 | Diorite, quartz-diorite, granodiorite, tonalite, granite |
16 | Long Dai formation | 0.67 | Quartz siltstone, sandstone, clay shale, silty sandstone |
17 | Khe Ren formation | 0.65 | Siltstone, small-grained sandstone, siltstone, sandstone |
18 | Nui Ngoc complex | 0.43 | Gabbro and gabbrodiabase |
19 | Huu Chanh formation | 0.29 | Chocolate siltstone interbeds of sandstone |
20 | Others | 8.70 | Diorite, quartz diorite, Gabbroamphibolite, and serpentinized |
No | Acquisition Date | Mode | Polarization Used | Relative Orbit | Direction | Note |
---|---|---|---|---|---|---|
1 | 3 December 2018 | IW | VV | 120 | Descending | Pre-event |
2 | 11 December 2018 | IW | VV | 55 | Ascending | Post-event |
3 | 1 October 2020 | IW | VV | 55 | Ascending | Pre-event |
4 | 13 October 2020 | IW | VV | 55 | Ascending | Post-event |
5 | 8 October 2021 | IW | VV | 55 | Ascending | Pre-event |
6 | 12 October 2021 | IW | VV | 120 | Descending | Post-event |
Flood Indicators | Scored Value | Pearson’s Correlation | Ranking |
---|---|---|---|
Slope (°) | 0.228 | 0.498 | 1 |
LULC | 0.227 | 0.606 | 2 |
Rainfall (mm) | 0.214 | 0.445 | 3 |
Soil type | 0.190 | 0.231 | 4 |
Elevation (m) | 0.172 | 0.447 | 5 |
Relief amplitude | 0.161 | 0.496 | 6 |
Geology | 0.160 | 0.406 | 7 |
TWI | 0.121 | 0.375 | 8 |
Stream density (km/km2) | 0.079 | 0.309 | 9 |
Aspect | 0.017 | 0.064 | 10 |
NDVI | 0.008 | 0.034 | 11 |
NDWI | 0.008 | 0.034 | 12 |
Flood Model | Performance Metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TN | FP | FN | PPV (%) | NPV (%) | Sens (%) | Spec (%) | Acc (%) | F-Score | Kappa | AUC | |
1D-CNN | 2822 | 2663 | 87 | 246 | 97.0 | 91.5 | 92.0 | 96.8 | 94.3 | 0.944 | 0.886 | 0.981 |
DeepNN | 2672 | 2639 | 237 | 270 | 91.9 | 90.7 | 90.8 | 91.8 | 91.3 | 0.913 | 0.826 | 0.966 |
SVM | 2795 | 2443 | 114 | 466 | 96.1 | 84.0 | 85.7 | 95.5 | 90.0 | 0.906 | 0.801 | 0.961 |
LR | 2692 | 1981 | 217 | 928 | 92.5 | 68.1 | 74.4 | 90.1 | 80.3 | 0.825 | 0.606 | 0.875 |
Flood Model | Performance Metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TN | FP | FN | PPV (%) | NPV (%) | Sens (%) | Spec (%) | Acc (%) | F-Score | Kappa | AUC | |
1D-CNN | 1167 | 1095 | 80 | 152 | 93.6 | 87.8 | 88.5 | 93.2 | 90.7 | 0.910 | 0.814 | 0.963 |
DeepNN | 1137 | 1088 | 110 | 159 | 91.2 | 87.2 | 87.7 | 90.8 | 89.2 | 0.894 | 0.784 | 0.958 |
SVM | 1172 | 1007 | 75 | 240 | 94.0 | 80.8 | 83.0 | 93.1 | 87.4 | 0.882 | 0.747 | 0.943 |
LR | 1149 | 843 | 98 | 404 | 92.1 | 67.6 | 74.0 | 89.6 | 79.9 | 0.821 | 0.597 | 0.874 |
No. | Pair of the Flood Models | Z-Value | p-Value | Significance |
---|---|---|---|---|
1 | 1D-CNN vs. DeepNN | 11.311 | <0.001 | Yes |
2 | 1D-CNN vs. SVM | 11.151 | <0.001 | Yes |
3 | 1D-CNN vs. LR | 6.916 | <0.001 | Yes |
4 | DeepNN vs. SVM | 8.305 | <0.001 | Yes |
5 | DeepNN vs. LR | 6.411 | <0.001 | Yes |
6 | SVM vs. LR | 3.240 | 0.001 | Yes |
No. | FFS Index | Description | Occupied Areas (km2) | Map (%) |
---|---|---|---|---|
2 | 0.126–1.000 | High fluvial flood | 165.7 | 1.58 |
3 | 0.048–0.126 | Low fluvial flood | 44.1 | 0.42 |
5 | 0.000–0.048 | No fluvial flood | 10292.5 | 98.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trong, N.G.; Quang, P.N.; Cuong, N.V.; Le, H.A.; Nguyen, H.L.; Tien Bui, D. Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data. Remote Sens. 2023, 15, 5429. https://doi.org/10.3390/rs15225429
Trong NG, Quang PN, Cuong NV, Le HA, Nguyen HL, Tien Bui D. Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data. Remote Sensing. 2023; 15(22):5429. https://doi.org/10.3390/rs15225429
Chicago/Turabian StyleTrong, Nguyen Gia, Pham Ngoc Quang, Nguyen Van Cuong, Hong Anh Le, Hoang Long Nguyen, and Dieu Tien Bui. 2023. "Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data" Remote Sensing 15, no. 22: 5429. https://doi.org/10.3390/rs15225429
APA StyleTrong, N. G., Quang, P. N., Cuong, N. V., Le, H. A., Nguyen, H. L., & Tien Bui, D. (2023). Spatial Prediction of Fluvial Flood in High-Frequency Tropical Cyclone Area Using TensorFlow 1D-Convolution Neural Networks and Geospatial Data. Remote Sensing, 15(22), 5429. https://doi.org/10.3390/rs15225429