Vertically Resolved Global Ocean Light Models Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. BGC-Argo Data
2.1.2. Satellite Ocean Color Data
2.1.3. SeaBASS Data
2.1.4. ARMOR3D Data
2.1.5. Selection of the Database
2.2. Methods
2.2.1. General Features of SOCA Models
2.2.2. The SOCA-Light Models
- Surface components: These encompass satellite-based surface estimates of at five different wavelengths (i.e., 412, 443, 490, 555, and 670 nm) and PAR.
- Vertical components: These rely on the first principal component analysis of salinity and temperature profiles. The principal components were selected on the basis of cumulative explained variance values less than or equal to 0.998. For temperature, this criterion is satisfied by five principal components, and for salinity, by four principal components. The mixed layer depth (MLD) was derived from density calculated from pressure, temperature and salinity profiles with a density differential threshold criterion of 0.03 kg m with reference to the density at 10 m [42]. The was derived from the satellite-derived using Equation (2).
- Temporal components: The temporal components are the day of the year (DOY) and the local time (LT) of the sampling profile. These components follow periodic evolution within certain time windows (0 to 365 days for DOY; 0 to 24 h for LT). The cyclic transformations (sine and cosine) of radian-transformed DOY and LT were used as temporal components (Equations (3) and (4)):
2.2.3. Statistical Analyses
3. Results
3.1. Validation of SOCA-Light Models
3.1.1. Validation of SOCA-Light Models Using 20% of the Global Database
3.1.2. Validation of SOCA-Light Models Using Four Independent BGC-Argo Floats from Different Oceanic Regions
North Atlantic Subtropical Gyre
Eastern Mediterranean Sea
Southern Ocean
North Atlantic Subpolar Gyre
3.1.3. Validation of SOCA Light Models with the Independent Global SeaBASS Database
3.1.4. Additional Validation with iPAR_15
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAM | Adaptive moment estimation |
ANN | Artificial neural network |
AOP | Apparent optical property |
ARMOR3D | A 3D multi-observations T, S, U, V product of the ocean |
Particulate backscattering coefficient | |
BGC-Argo | BioGeoChemical Argo |
CDOM | Colored dissolved organic matter |
Chla | Chlorophyll-a concentration |
CMEMS | Copernicus Marine Environment Monitoring System |
DCM | Deep chlorophyll maxima |
DOC | Dissolved organic carbon |
DOY | Day of the year |
ED | Downwelling irradiance |
EMS | Eastern Mediterranean Sea |
GOOS | Global Ocean Observing System |
IOP | Inherent optical property |
Diffuse attenuation coefficient | |
LT | Local time |
LU | Upwelling radiance |
MAPE | Median absolute percent error |
MLD | Mixed layer depth |
MLP | Multilayer perceptron |
NASPG | North Atlantic Subpolar Gyre |
NASTG | North Atlantic Subtropical Gyre |
NN | Neural network |
PAR | Photosynthetically available radiation |
Probability density function | |
POC | Particulate organic carbon |
RMSE | Root mean squared error |
Remote sensing reflectance | |
SeaBASS | SeaWiFS Bio-Optical Archive and Storage System |
SLA | Sea-level anomaly |
SO | Southern Ocean |
SOCA | Satellite Ocean Color merged with Argo data |
tanh | Hyperbolic tangent |
WMO | World Meteorological Organization |
Z_iPAR_15 | The depth at which instantaneous PAR value = 15 μmol quanta m s |
References
- Antoine, D.; Morel, A. Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob. Biogeochem. Cycles 1996, 10, 43–55. [Google Scholar] [CrossRef]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22, GB003078. [Google Scholar] [CrossRef]
- Ohlmann, J.C.; Siegel, D.A.; Mobley, C.D. Ocean Radiant Heating. Part I: Optical Influences. J. Phys. Oceanogr. 2000, 30, 1833–1848. [Google Scholar] [CrossRef]
- Ohlmann, J.C.; Siegel, D.A. Ocean Radiant Heating. Part II: Parameterizing Solar Radiation Transmission through the Upper Ocean. J. Phys. Oceanogr. 2000, 30, 1849–1865. [Google Scholar] [CrossRef]
- Tedetti, M.; Sempéré, R. Penetration of Ultraviolet Radiation in the Marine Environment. A Review. Photochem. Photobiol. 2006, 82, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Morel, A.; Claustre, H.; Antoine, D.; D’Ortenzio, F.; Poteau, A.; Mignot, A. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval. J. Geophys. Res. Ocean. 2011, 116, 6899. [Google Scholar] [CrossRef]
- Roesler, C.; Uitz, J.; Claustre, H.; Boss, E.; Xing, X.; Organelli, E.; Briggs, N.; Bricaud, A.; Schmechtig, C.; Poteau, A.; et al. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 2017, 15, 572–585. [Google Scholar] [CrossRef]
- Xing, X.; Morel, A.; Claustre, H.; D’Ortenzio, F.; Poteau, A. Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. J. Geophys. Res. Ocean. 2012, 117, 7632. [Google Scholar] [CrossRef]
- Vodacek, A.; Blough, N.V.; DeGrandpre, M.D.; DeGrandpre, M.D.; Nelson, R.K. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol. Oceanogr. 1997, 42, 674–686. [Google Scholar] [CrossRef]
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. Oceans 1988, 93, 10749–10768. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef]
- Morel, A. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? J. Geophys. Res. Oceans 2009, 114, 4803. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 2009, 113, 998–1011. [Google Scholar] [CrossRef]
- Scott, J.P.; Werdell, P.J. Comparing level-2 and level-3 satellite ocean color retrieval validation methodologies. Opt. Express 2019, 27, 30140–30157. [Google Scholar] [CrossRef] [PubMed]
- Claustre, H.; Johnson, K.S.; Takeshita, Y. Observing the Global Ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 2020, 12, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Biogeochemical-ArgoPlanningGroup. The Scientific Rationale, Design and Implementation Plan for a Biogeochemical-Argo Float Array; Report; Ifremer: Plouzané, France, 2016. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed Relationships Between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 1975, 14, 417–427. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse reflectance of oceanic waters: Its dependence on Sun angle as influenced by the molecular scattering contribution. Appl. Opt. 1991, 30, 4427–4438. [Google Scholar] [CrossRef]
- Lee, Z.; Du, K.; Arnone, R.; Liew, S.; Penta, B. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Liu, C.C.; Miller, R.L.; Carder, K.L.; Lee, Z.; D’Sa, E.J.; Ivey, J.E. Estimating the underwater light field from remote sensing of ocean color. J. Oceanogr. 2006, 62, 235–248. [Google Scholar] [CrossRef]
- Mobley, C.D.; Sundman, L.K. HYDROLIGHT 5 ECOLIGHT 5; Sequoia Scientific Inc.: Bellevue, WA, USA, 2008; p. 16. [Google Scholar]
- Xing, X.; Boss, E. Chlorophyll-Based Model to Estimate Underwater Photosynthetically Available Radiation for Modeling, In-Situ, and Remote-Sensing Applications. Geophys. Res. Lett. 2021, 48, e2020GL092189. [Google Scholar] [CrossRef]
- Gregg, W.W.; Carder, K.L. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr. 1990, 35, 1657–1675. [Google Scholar] [CrossRef]
- Organelli, E.; Barbieux, M.; Claustre, H.; Schmechtig, C.; Poteau, A.; Bricaud, A.; Boss, E.; Briggs, N.; Dall’Olmo, G.; D’Ortenzio, F.; et al. Two databases derived from BGC-Argo float measurements for marinebiogeochemical and bio-optical applications. Earth Syst. Sci. Data 2017, 9, 861–880. [Google Scholar] [CrossRef]
- Organelli, E.; Claustre, H.; Bricaud, A.; Barbieux, M.; Uitz, J.; D’Ortenzio, F.; Dall’Olmo, G. Bio-optical anomalies in the world’s oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 2017, 122, 3543–3564. [Google Scholar] [CrossRef]
- Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall’Olmo, G.; D’Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J. Geophys. Res. Oceans 2016, 121, 2552–2571. [Google Scholar] [CrossRef]
- Copernicus Marine Service. Global Ocean 3D Chlorophyll-A Concentration, Particulate Backscattering Coefficient and Particulate Organic Carbon; Copernicus Marine Service Information (CMEMS); Marine Data Store (MDS); Copernicus Marine Service: Ramonville-Saint-Agne, France, 2023. [Google Scholar] [CrossRef]
- Bittig, H.; Wong, A.; Plant, J.; Carval, T.; Rannou, J.P. BGC-Argo Synthetic Profile File Processing and Format on Coriolis GDAC, v1.3; Report; Ifremer: Plouzané, France, 2022. [Google Scholar] [CrossRef]
- Jutard, Q.; Organelli, E.; Briggs, N.; Xing, X.; Schmechtig, C.; Boss, E.; Poteau, A.; Leymarie, E.; Cornec, M.; D’Ortenzio, F.; et al. Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control. Sensors 2021, 21, 6217. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Marine Service. Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L3 (Daily) from Satellite Observations (1997-Ongoing); Copernicus Marine Service Information (CMEMS); Marine Data Store (MDS); Copernicus Marine Service: Ramonville-Saint-Agne, France, 2023. [Google Scholar] [CrossRef]
- Garnesson, P.; Mangin, A.; Fanton d’Andon, O.; Demaria, J.; Bretagnon, M. The CMEMS GlobColour chlorophyll a product based on satellite observation: Multi-sensor merging and flagging strategies. Ocean Sci. 2019, 15, 819–830. [Google Scholar] [CrossRef]
- Gohin, F.; Druon, J.N.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Morel, A.; Huot, Y.; Gentili, B.; Werdell, P.J.; Hooker, S.B.; Franz, B.A. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 2007, 111, 69–88. [Google Scholar] [CrossRef]
- Werdell, P.J.; Fargion, G.S.; McClain, C.R.; Bailey, S.W. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation; Report NASA/TM-2002-211617; NASA: Washington, DC, USA, 2002. [Google Scholar]
- Werdell, P.J.; Bailey, S.; Fargion, G.; Pietras, C.; Knobelspiesse, K.; Feldman, G.; McClain, C. Unique data repository facilitates ocean color satellite validation. Eos Trans. Am. Geophys. Union 2003, 84, 377–387. [Google Scholar] [CrossRef]
- Guinehut, S.; Dhomps, A.L.; Larnicol, G.; Le Traon, P.Y. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 2012, 8, 845–857. [Google Scholar] [CrossRef]
- Mulet, S.; Rio, M.H.; Mignot, A.; Guinehut, S.; Morrow, R. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 70–81. [Google Scholar] [CrossRef]
- Copernicus Marine Service. Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD; Copernicus Marine Service Information (CMEMS); Marine Data Store (MDS); Copernicus Marine Service: Ramonville-Saint-Agne, France, 2023. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer International Publishing: Cham, Switzerland, 2018; pp. 451–455. [Google Scholar] [CrossRef]
- de Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans 2004, 109, 2378. [Google Scholar] [CrossRef]
- Linares-Rodriguez, A.; Ruiz-Arias, J.A.; Pozo-Vazquez, D.; Tovar-Pescador, J. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 2013, 61, 636–645. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Cornec, M.; Claustre, H.; Mignot, A.; Guidi, L.; Lacour, L.; Poteau, A.; D’Ortenzio, F.; Gentili, B.; Schmechtig, C. Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics. Glob. Biogeochem. Cycles 2021, 35, e2020GB006759. [Google Scholar] [CrossRef]
- Bock, N.; Cornec, M.; Claustre, H.; Duhamel, S. Biogeographical Classification of the Global Ocean From BGC-Argo Floats. Glob. Biogeochem. Cycles 2022, 36, e2021GB007233. [Google Scholar] [CrossRef]
- Xing, X.; Briggs, N.; Boss, E.; Claustre, H. Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Opt. Express 2018, 26, 24734–24751. [Google Scholar] [CrossRef] [PubMed]
- Terrats, L.; Claustre, H.; Cornec, M.; Mangin, A.; Neukermans, G. Detection of Coccolithophore Blooms with BioGeoChemical-Argo Floats. Geophys. Res. Lett. 2020, 47, e2020GL090559. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res. Oceans 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Lefler, J.T.; Robinson, W.D.; Boss, E. Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater. Opt. Express 2013, 21, 32611–32622. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors -OC4, OC5 and OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef]
- Stramski, D.; Reynolds, R.A.; Babin, M.; Kaczmarek, S.; Lewis, M.R.; Röttgers, R.; Sciandra, A.; Stramska, M.; Twardowski, M.S.; Franz, B.A.; et al. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 2008, 5, 171–201. [Google Scholar] [CrossRef]
- Organelli, E.; Claustre, H.; Bricaud, A.; Schmechtig, C.; Poteau, A.; Xing, X.; Prieur, L.; D’Ortenzio, F.; Dall’Olmo, G.; Vellucci, V. A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo Floats: Protocols and Performances. J. Atmos. Ocean. Technol. 2016, 33, 937–951. [Google Scholar] [CrossRef]
- O’Brien, T.; Boss, E. Correction of Radiometry Data for Temperature Effect on Dark Current, with Application to Radiometers on Profiling Floats. Sensors 2022, 22, 6771. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Boss, E.; Zhang, J.; Chai, F. Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats. Remote Sens. 2020, 12, 2367. [Google Scholar] [CrossRef]
- Begouen Demeaux, C.; Boss, E. Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats. Remote Sens. 2022, 14, 4500. [Google Scholar] [CrossRef]
- Stahl, F.T.; Nolle, L.; Jemai, A.; Zielinski, O. A Model for Predicting the Amount of Photosynthetically Available Radiation from BGC-Argo Float Observations in the Water Column. In Proceedings of the European Council for Modelling and Simulation, Alesund, Norway, 30 May–3 June 2022; Hameed, I.A., Hasan, A., Alaliyat, S.A.A., Eds.; ECMS Digital Library: Dudweiler, Germany, 2022; Volume 36, pp. 174–180. [Google Scholar] [CrossRef]
- Kumm, M.M.; Nolle, L.; Stahl, F.; Jemai, A.; Zielinski, O. On an Artificial Neural Network Approach for Predicting Photosynthetically Active Radiation in the Water Column. In Proceedings of the Artificial Intelligence XXXIX, Cambridge, UK, 13–15 December 2022; Bramer, M., Stahl, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 112–123. [Google Scholar]
- Xing, X.; Claustre, H.; Blain, S.; D’Ortenzio, F.; Antoine, D.; Ras, J.; Guinet, C. Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean). Limnol. Oceanogr. Methods 2012, 10, 483–495. [Google Scholar] [CrossRef]
- Jemai, A.; Wollschläger, J.; Voß, D.; Zielinski, O. Radiometry on Argo Floats: From the Multispectral State-of-the-Art on the Step to Hyperspectral Technology. Front. Mar. Sci. 2021, 8, 676537. [Google Scholar] [CrossRef]
- Organelli, E.; Leymarie, E.; Zielinski, O.; Uitz, J.; D’ortenzio, F.; Claustre, H. Hyperspectral radiometry on biogeochemical-argo floats: A bright perspective for phytoplankton diversity. Oceanography 2021, 34, 90–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renosh, P.R.; Zhang, J.; Sauzède, R.; Claustre, H. Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sens. 2023, 15, 5663. https://doi.org/10.3390/rs15245663
Renosh PR, Zhang J, Sauzède R, Claustre H. Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sensing. 2023; 15(24):5663. https://doi.org/10.3390/rs15245663
Chicago/Turabian StyleRenosh, Pannimpullath Remanan, Jie Zhang, Raphaëlle Sauzède, and Hervé Claustre. 2023. "Vertically Resolved Global Ocean Light Models Using Machine Learning" Remote Sensing 15, no. 24: 5663. https://doi.org/10.3390/rs15245663
APA StyleRenosh, P. R., Zhang, J., Sauzède, R., & Claustre, H. (2023). Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sensing, 15(24), 5663. https://doi.org/10.3390/rs15245663