Measuring the Multi-Scale Landscape Pattern of China’s Largest Archipelago from a Dual-3D Perspective Based on Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Remote Sensing
2.2.2. Field Survey
2.3. Island Landscape Type Classification System
2.4. Dual-3D Island Landscape Pattern Model
2.4.1. First 3D
2.4.2. Second 3D
2.5. Spatial Scale
2.5.1. Scale Establishment
2.5.2. Scale Analysis
3. Results
3.1. Changes in ACR at Different Spatial Scales
3.2. Changes in HII and HITI at Different Spatial Scales
3.3. Changes in LFI and LFTI at Different Spatial Scales
3.4. Changes in VTI at Different Spatial Scales
3.5. Changes in BTI at Different Spatial Scales
4. Discussion
4.1. The Significance of the Research Results on Island Landscape Patterns from Three-Dimensional Perspectives
4.1.1. The Theoretical Significance of Three-Dimensional Landscape Indices
4.1.2. The Practical Significance of Three-Dimensional Landscape Indices
4.2. Correlations between Island Landscape Pattern and Environmental Factors at Different Spatial Scales
4.2.1. Grid Scale and Island Scale
4.2.2. Island Group Scale
4.3. The Contributions and Limitations of Island Landscape Pattern Studies from Three-Dimensional Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional perspective |
3D | three-dimensional perspective |
HII | human interference index |
HITI | human interference three-dimensional index |
ΔHITI | difference between HITI and HII |
LFI | landscape fragmentation index |
LFTI | landscape fragmentation three-dimensional index |
ΔLFTI | difference between LFTI and LFI |
VTI | vegetation three-dimensional index |
BTI | building three-dimensional index |
NP | number of patches |
TE | total edge |
AWMSI | area-weighted mean shape index |
LII | landscape isolated index |
VP | area proportion of vegetation |
BP | area proportion of buildings |
VVI | vegetation volume index |
BVI | building volume index |
ACR | area change rate |
DEM | mean elevation |
Sl | mean slope |
As | mean aspect |
EDTS | Euclidean distance to the sea |
CDTS | cost distance to the sea |
EDTR | Euclidean distance to the main road |
CDTR | cost distance to the main road |
IA | island area |
ISA | island surface area |
ISI | island shape index |
DTM | distance to the mainland |
DTZ | distance to the Zhoushan Island |
References
- Zhang, H.; Xiao, Y.; Deng, Y. Island ecosystem evaluation and sustainable development strategies: A case study of the Zhoushan Archipelago. Glob. Ecol. Conserv. 2021, 28, e01603. [Google Scholar] [CrossRef]
- Matias, T.P.; Leonel, J.; Imperador, A.M. A systemic environmental impact assessment on tourism in island and coastal ecosystems. Environ. Dev. 2022, 44, 100765. [Google Scholar] [CrossRef]
- Kurniawan, F.; Adrianto, L.; Bengen, D.G.; Prasetyo, L.B. Patterns of Landscape Change on Small Islands: A Case of Gili Matra Islands, Marine Tourism Park, Indonesia. Procedia—Soc. Behav. Sci. 2016, 227, 553–559. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D.; Wang, Z.; Yang, H. Optimization of ecological security patterns considering both natural and social disturbances in China’s largest urban agglomeration. Ecol. Eng. 2022, 180, 106647. [Google Scholar] [CrossRef]
- Nel, R.; Mearns, K.F.; Jordaan, M.; Goethals, P. Towards understanding the role of islandness in shaping socio-ecological systems on SIDS: The socio-ecological islandscape concept. Ecol. Inform. 2021, 62, 101264. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Zheng, W.; Wang, E. Archipelagic landscape patterns and their ecological effects in multiple scales. Ocean Coast. Manag. 2018, 152, 120–134. [Google Scholar] [CrossRef]
- Steibl, S.; Gebauer, G.; Laforsch, C. Impacts on food web properties of island invertebrate communities vary between different human land uses. Sci. Total Environ. 2022, 831, 154838. [Google Scholar] [CrossRef]
- Nori, J.; Villalobos, F.; Osorio-Olvera, L.; Loyola, R. Insufficient protection and intense human pressure threaten islands worldwide. Perspect. Ecol. Conserv. 2022, 20, 223–230. [Google Scholar] [CrossRef]
- Ma, X.; de Jong, M.; Sun, B.; Bao, X. Nouveauté or Cliché? Assessment on island ecological vulnerability to Tourism: Application to Zhoushan, China. Ecol. Indic. 2020, 113, 106247. [Google Scholar] [CrossRef]
- Xi, H.; Cui, W.; Cai, L.; Chen, M.; Xu, C. Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC. Sustainability 2021, 13, 2302. [Google Scholar] [CrossRef]
- Šálek, M.; Riegert, J.; Krivopalova, A.; Cukor, J. Small islands in the wide open sea: The importance of non-farmed habitats under power pylons for mammals in agricultural landscape. Agric. Ecosyst. Environ. 2023, 351, 108500. [Google Scholar] [CrossRef]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Han, Z.; Cui, S.; Yan, X.; Liu, C.; Li, X.; Zhong, J.; Wang, X. Guiding sustainable urban development via a multi-level ecological framework integrating natural and social indicators. Ecol. Indic. 2022, 141, 109142. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Haworth, B.; Boruff, B.; Wales, N.; Biggs, E.M.; Bruce, E. Managing multifunctional landscapes: Local insights from a Pacific Island Country context. J. Environ. Manag. 2020, 260, 109692. [Google Scholar] [CrossRef] [PubMed]
- Cadavid-Florez, L.; Laborde, J.; McLean, D.J. Isolated trees and small woody patches greatly contribute to connectivity in highly fragmented tropical landscapes. Landsc. Urban Plan. 2020, 196, 103745. [Google Scholar] [CrossRef]
- Lazaro-Lobo, A.; Martin de Agar, P.; de Pablo, C.T.L. Spatial configuration of patches with different ecological maturity: Implications for service supply at the landscape level. J. Environ. Manag. 2023, 342, 118094. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, J. Heterogeneous effects of climate change and human activities on annual landscape change in coastal cities of mainland China. Ecol. Indic. 2021, 125, 107561. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Fu, B.; Zhang, X. Landscape pattern and ecosystem services are critical for protected areas’ contributions to sustainable development goals at regional scale. Sci. Total Environ. 2023, 881, 163535. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X. Detection of spatiotemporal dynamics of land cover and its drivers using remote sensing and landscape metrics (Pingtan Island, China). Environ. Dev. Sustain. 2018, 22, 1269–1298. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, C.; Wang, H.; Gao, Y. Evolution and reconstruction of settlement space in tourist islands: A case study of Dachangshan Island, Changhai County. Environ. Dev. Sustain. 2021, 24, 9777–9808. [Google Scholar] [CrossRef]
- Li, Y.; Wen, H.; Wang, F. Analysis of the Evolution of Mangrove Landscape Patterns and Their Drivers in Hainan Island from 2000 to 2020. Sustainability 2022, 15, 759. [Google Scholar] [CrossRef]
- Kefalas, G.; Kalogirou, S.; Poirazidis, K.; Lorilla, R.S. Landscape transition in Mediterranean islands: The case of Ionian islands, Greece 1985–2015. Landsc. Urban Plan. 2019, 191, 103641. [Google Scholar] [CrossRef]
- Wang, D.G.; Dou, Y.J.; Shi, A.Q.; Cheng, J.; Lv, D.A. Research on the Evolution of Island Coastal Wetland Landscape Pattern. IOP Conf. Ser. Earth Environ. Sci. 2021, 787, 012053. [Google Scholar] [CrossRef]
- Shi, H.; Yin, L.; Gao, M. Landscape changes and their ecological effects of Miaodao Archipelago with human disturbances and under natural conditions in the past 30 years. J. Oceanol. Limnol. 2021, 39, 955–978. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D.; Wang, J.; Wang, E. Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China. Land Use Policy 2020, 99, 104846. [Google Scholar] [CrossRef]
- Pan, Y.; Qiu, L.; Wang, Z.; Zhu, J.; Cheng, M. Unravelling the association between polycentric urban development and landscape sustainability in urbanizing island cities. Ecol. Indic. 2022, 143, 109348. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.; Xie, Z.; Wang, J. How human activities influence the island ecosystem through damaging the natural ecosystem and supporting the social ecosystem? J. Clean. Prod. 2020, 248, 119203. [Google Scholar] [CrossRef]
- Ferrer-Valero, N.; Hernández-Calvento, L.; Hernández-Cordero, A.I. Human impacts quantification on the coastal landforms of Gran Canaria Island (Canary Islands). Geomorphology 2017, 286, 58–67. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D.; Wang, C.; Xing, W.; Gao, J. Island development suitability evaluation for supporting the spatial planning in archipelagic areas. Sci. Total Environ. 2022, 829, 154679. [Google Scholar] [CrossRef]
- Pena-Alonso, C.; Garcia-Romero, L.; Hernandez-Cordero, A.I.; Hernandez-Calvento, L. Beach vegetation as an indicator of human impacts in arid environments: Environmental conditions and landscape perception in the Canary Islands. J. Environ. Manag. 2019, 240, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Liu, D. Measuring the island tourism development sustainability at dual spatial scales using a four-dimensional model: A case study of Shengsi archipelago, China. J. Clean. Prod. 2023, 388, 135775. [Google Scholar] [CrossRef]
- Liyun, W.; Weibin, Y.; Zhirong, J.; Shihong, X.; Dongjin, H. Ecosystem health assessment of Dongshan Island based on its ability to provide ecological services that regulate heavy rainfall. Ecol. Indic. 2018, 84, 393–403. [Google Scholar] [CrossRef]
- Lei, J.; Chen, Y.; Li, L.; Chen, Z.; Chen, X.; Wu, T.; Li, Y. Spatiotemporal change of habitat quality in Hainan Island of China based on changes in land use. Ecol. Indic. 2022, 145, 109707. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Hou, Y.; Zhao, Y.; Xue, X. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China. Ecol. Indic. 2021, 124, 107438. [Google Scholar] [CrossRef]
- Hazard, Q.C.K.; Froidevaux, J.S.P.; Yoh, N.; Moore, J.; Senawi, J.; Gibson, L.; Palmeirim, A.F. Foraging guild modulates insectivorous bat responses to habitat loss and insular fragmentation in peninsular Malaysia. Biol. Conserv. 2023, 281, 110017. [Google Scholar] [CrossRef]
- Ren, W.; Zhao, J.; Ma, X. Analysis of the spatial characteristics of inhalable particulate matter concentrations under the influence of a three-dimensional landscape pattern in Xi’an, China. Sustain. Cities Soc. 2022, 81, 103841. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.-M.; Li, C.-L. Landscape metrics for three-dimensional urban building pattern recognition. Appl. Geogr. 2017, 87, 66–72. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, H.; Niu, W.; Mao, Z.; Huang, X.; Zhang, F. Oblique photogrammetry supporting procedural tree modeling in urban areas. ISPRS J. Photogramm. Remote Sens. 2023, 200, 120–137. [Google Scholar] [CrossRef]
- Zhou, X.; Li, C. Mapping the vertical forest structure in a large subtropical region using airborne LiDAR data. Ecol. Indic. 2023, 154, 110731. [Google Scholar] [CrossRef]
- McNeil, D.J.; Fisher, G.; Fiss, C.J.; Elmore, A.J.; Fitzpatrick, M.C.; Atkins, J.W.; Cohen, J.; Larkin, J.L. Using aerial LiDAR to assess regional availability of potential habitat for a conservation dependent forest bird. For. Ecol. Manag. 2023, 540, 121002. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Liu, G. Vertical Structure Classification of a Forest Sample Plot Based on Point Cloud Data. J. Indian Soc. Remote Sens. 2020, 48, 1215–1222. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Li, W.; Jia, S.; Yue, H. Hybrid model for estimating forest canopy heights using fused multimodal spaceborne LiDAR data and optical imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103431. [Google Scholar] [CrossRef]
- Li, F.-x.; Li, M.; Feng, X.-g. High-Precision Method for Estimating the Three-Dimensional Green Quantity of an Urban Forest. J. Indian Soc. Remote Sens. 2021, 49, 1407–1417. [Google Scholar] [CrossRef]
- Cao, S.; Du, M.; Zhao, W.; Hu, Y.; Mo, Y.; Chen, S.; Cai, Y.; Peng, Z.; Zhang, C. Multi-level monitoring of three-dimensional building changes for megacities: Trajectory, morphology, and landscape. ISPRS J. Photogramm. Remote Sens. 2020, 167, 54–70. [Google Scholar] [CrossRef]
- Guo, F.; Wu, Q.; Schlink, U. 3D building configuration as the driver of diurnal and nocturnal land surface temperatures: Application in Beijing’s old city. Build. Environ. 2021, 206, 108354. [Google Scholar] [CrossRef]
- Kong, F.; Wang, D.; Yin, H.; Dronova, I.; Fei, F.; Chen, J.; Pu, Y.; Li, M. Coupling urban 3-D information and circuit theory to advance the development of urban ecological networks. Conserv. Biol. 2021, 35, 1140–1150. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Yu, B.; Wang, L.; Wu, B.; Wu, J.; Zhao, F. Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China. Sci. Total Environ. 2020, 725, 138229. [Google Scholar] [CrossRef]
- Kedron, P.; Zhao, Y.; Frazier, A.E. Three dimensional (3D) spatial metrics for objects. Landsc. Ecol. 2019, 34, 2123–2132. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Z.; Yang, C.; Li, H.; Gong, L.; Guo, F. On the Scale Effect of Relationship Identification between Land Surface Temperature and 3D Landscape Pattern: The Application of Random Forest. Remote Sens. 2022, 14, 279. [Google Scholar] [CrossRef]
- Ge, M.; Fang, S.; Gong, Y.; Tao, P.; Yang, G.; Gong, W. Understanding the Correlation between Landscape Pattern and Vertical Urban Volume by Time-Series Remote Sensing Data: A Case Study of Melbourne. ISPRS Int. J. Geo-Inf. 2021, 10, 14. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, J.; Xu, H.; Wang, J.; Ma, J.; Zhang, Z. Construction of 3D landscape indexes based on oblique photogrammetry and its application for islands. Ecol. Inform. 2023, 75, 102112. [Google Scholar] [CrossRef]
- Zhu, Z.; Shen, Y.; Fu, W.; Zheng, D.; Huang, P.; Li, J.; Lan, Y.; Chen, Z.; Liu, Q.; Xu, X.; et al. How does 2D and 3D of urban morphology affect the seasonal land surface temperature in Island City? A block-scale perspective. Ecol. Indic. 2023, 150, 110221. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Zhoushan Natural Resources and Planning Bureau. Information and Data Related Natural Resources in Zhoushan City. 2021. Available online: http://zsblr.zhoushan.gov.cn/ (accessed on 15 March 2023).
- Jin, J.; Quan, Y. Assessment of marine ranching ecological development using DPSIR-TOPSIS and obstacle degree analysis: A case study of Zhoushan. Ocean Coast. Manag. 2023, 244, 106821. [Google Scholar] [CrossRef]
- Cheng, F.; Wei, C.; Tang, T.; Kong, J.; Mikhaylov, A. The Impact of Marine Economic Development on Energy Efficiency: The Case of Zhoushan Archipelago New Area in China. Int. J. Energy Res. 2023, 2023, 4476352. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, J.-m.; Yu, H.; Wang, L.-t. Comprehensive assessment of ecological risks of Island destinations—A case of Mount Putuo Island, China. Ecol. Indic. 2023, 154, 110783. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, Y.; Zhang, Y.; Wang, C.; Cai, A. Evaluation Framework for Determining the Developmental Suitability and Sustainability of Uninhabited Islands. J. Coast. Res. 2022, 38, 816–827. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Gruijter, J.J.; Bierkens, M.F.; Brus, D.J.; Knotters, M. Sampling for Natural Resource Monitoring; Springer: Berlin/Heidelberg, Germany, 2006; 332p. [Google Scholar]
- Wu, Q.; Guo, F.; Li, H.; Kang, J. Measuring landscape pattern in three dimensional space. Landsc. Urban Plan. 2017, 167, 49–59. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Ai, J.; Yang, L.; Liu, Y.; Yu, K.; Liu, J. Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China. Land 2022, 11, 136. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, X.; Lin, Y.; Chen, H.; Chen, Q.; Huang, F.; Cheng, H. Developing a multiscale landscape assessment framework integrating multiobjectives to identify priority action plans for sustainable development of small inhabited islands. Ocean Coast. Manag. 2023, 243, 106735. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Tian, T.; Wu, J.; Dong, Q.; Peng, S.; Che, Y. The influence of the landscape pattern on the urban land surface temperature varies with the ratio of land components: Insights from 2D/3D building/vegetation metrics. Sustain. Cities Soc. 2022, 78, 103599. [Google Scholar] [CrossRef]
- Qi, J.; Lin, E.S.; Yok Tan, P.; Chun Man Ho, R.; Sia, A.; Olszewska-Guizzo, A.; Zhang, X.; Waykool, R. Development and application of 3D spatial metrics using point clouds for landscape visual quality assessment. Landsc. Urban Plan. 2022, 228, 104585. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Zhang, Y.; Chen, S. Accelerated expansion of built-up area after bridge connection with mainland: A case study of Zhujiajian Island. Ocean Coast. Manag. 2018, 152, 62–69. [Google Scholar] [CrossRef]
- Guzmán-Colón, D.K.; Pidgeon, A.M.; Martinuzzi, S.; Radeloff, V.C. Conservation planning for island nations: Using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Glob. Ecol. Conserv. 2020, 23, e01075. [Google Scholar] [CrossRef]
- Manolaki, P.; Chourabi, S.; Vogiatzakis, I.N. A rapid qualitative methodology for ecological integrity assessment across a Mediterranean island’s landscapes. Ecol. Complex. 2021, 46, 100921. [Google Scholar] [CrossRef]
- Lin, Q.; Eladawy, A.; Sha, J.; Li, X.; Wang, J.; Kurbanov, E.; Thomas, A. Remotely Sensed Ecological Protection Redline and Security Pattern Construction: A Comparative Analysis of Pingtan (China) and Durban (South Africa). Remote Sens. 2021, 13, 2865. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Poirazidis, K.; Detsis, V.; Kalogirou, S.; Chalkias, C. Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece). Ecol. Model. 2020, 422, 108994. [Google Scholar] [CrossRef]
- Phillips, J.D. Landscape change and climate attribution, with a case study of estuarine marshes. Geomorphology 2023, 430, 108666. [Google Scholar] [CrossRef]
- Zhoushan Municipal Statistics Bureau. Zhoushan Statistical Yearbook in 2021. 2022. Available online: http://zstj.zhoushan.gov.cn/ (accessed on 15 March 2023).
- Andersen, D. Secondary human impacts on the forest understory of Ulleung Island, South Korea, a temperate island. J. Ecol. Environ. 2019, 43, 20. [Google Scholar] [CrossRef]
- Pan, Y.; Zhai, M.; Lin, L.; Lin, Y.; Cai, J.; Deng, J.-s.; Wang, K. Characterizing the spatiotemporal evolutions and impact of rapid urbanization on island sustainable development. Habitat Int. 2016, 53, 215–227. [Google Scholar] [CrossRef]
- Bureau of Statistics of Daishan County in Zhoushan City. Daishan Statistical Yearbook in 2020. 2021. Available online: http://www.daishan.gov.cn/ (accessed on 4 April 2023).
- The People’s Government of Zhoushan Municipality. Master Plan of Zhoushan Archipelago New Area (City) in Zhejiang Province (2012–2030). 2022. Available online: https://www.zhoushan.gov.cn/ (accessed on 15 March 2023).
- Bureau of Statistics of Dinghai District in Zhoushan City. Dinghai Statistical Yearbook in 2020. 2022. Available online: http://www.dinghai.gov.cn/ (accessed on 4 April 2023).
- Bureau of Statistics of Putuo District in Zhoushan City. Putuo Statistical Yearbook in 2020. 2022. Available online: http://www.putuo.gov.cn/ (accessed on 4 April 2023).
- Collin, A.; Hench, J.L.; Pastol, Y.; Planes, S.; Thiault, L.; Schmitt, R.J.; Holbrook, S.J.; Davies, N.; Troyer, M. High resolution topobathymetry using a Pleiades-1 triplet: Moorea Island in 3D. Remote Sens. Environ. 2018, 208, 109–119. [Google Scholar] [CrossRef]
- Thompson-Ambriz, J.; Moreno, C.E.; Rangel-Salazar, J.L.; Martínez-Morales, M.A. Multi-scale response of wetland bird assemblages to landscape patterns on a Neotropical island: When wetland type matters more than size. Wetl. Ecol. Manag. 2020, 28, 251–269. [Google Scholar] [CrossRef]
- Carrasco, L.; Giam, X.; Papeş, M.; Sheldon, K. Metrics of Lidar-Derived 3D Vegetation Structure Reveal Contrasting Effects of Horizontal and Vertical Forest Heterogeneity on Bird Species Richness. Remote Sens. 2019, 11, 743. [Google Scholar] [CrossRef]
Primary Type | Secondary Type | Patch Number | Proportion (%) | Area (km2) | Proportion (%) |
---|---|---|---|---|---|
1 Road | 1.1 Asphalt road | 90 | 0.17 | 33.17 | 2.43 |
1.2 Cement road | 1426 | 2.74 | 18.42 | 1.35 | |
1.3 Dirt road | 260 | 0.50 | 1.62 | 0.12 | |
2 Dock and embankment | 2.1 Dock | 831 | 1.59 | 9.94 | 0.73 |
2.2 Embankment | 1253 | 2.40 | 14.19 | 1.04 | |
3 Industrial land | 3.1 Clean energy industry | 127 | 0.24 | 0.59 | 0.04 |
3.2 Ordinary industry | 1161 | 2.23 | 79.43 | 5.82 | |
3.3 Tank farm | 123 | 0.24 | 8.95 | 0.66 | |
4 Building land | 4.1 Residential building | 14,788 | 28.37 | 105.67 | 7.74 |
4.2 Educational building | 145 | 0.28 | 5.32 | 0.39 | |
4.3 Business building | 1965 | 3.77 | 22.73 | 1.67 | |
4.4 Tourism building | 374 | 0.72 | 2.75 | 0.20 | |
4.5 Temporary building | 1875 | 3.60 | 1.78 | 0.13 | |
5 Public facility land | 5.1 Structured facility land | 5245 | 10.06 | 5.72 | 0.42 |
5.2 Unstructured facility land | 579 | 1.11 | 5.59 | 0.41 | |
5.3 Parking lot land | 318 | 0.61 | 2.60 | 0.19 | |
6 Quarrying area | 317 | 0.61 | 25.42 | 1.86 | |
7 Agricultural land | 7.1 Cultivated land | 9619 | 18.46 | 141.07 | 10.34 |
7.2 Garden land | 133 | 0.26 | 3.15 | 0.23 | |
8 Water area | 8.1 Natural water area | 1735 | 3.33 | 15.60 | 1.14 |
8.2 Reservoir | 1899 | 3.64 | 23.49 | 1.72 | |
8.3 Aquaculture pond | 412 | 0.79 | 52.90 | 3.88 | |
8.4 Harbor basin | 30 | 0.06 | 9.93 | 0.73 | |
8.5 Temporary water area | 39 | 0.07 | 3.20 | 0.23 | |
9 Bare land | 9.1 Natural bare land | 320 | 0.61 | 5.59 | 0.41 |
9.2 Artificial bare land | 1338 | 2.57 | 46.20 | 3.39 | |
10 Vegetation area | 10.1 Woodland | 2280 | 4.37 | 654.37 | 47.96 |
10.2 Grassland | 3140 | 6.02 | 41.28 | 3.03 | |
10.3 Wetland | 295 | 0.57 | 23.81 | 1.75 |
Indices | HITI | LFTI | VTI | BTI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade | L | M | H | L | M | H | L | M | H | L | M | H | |
HITI | L | 498 | 155 | 23 | 9 | 118 | 549 | 672 | 5 | 0 | |||
M | 87 | 175 | 98 | 240 | 116 | 4 | 272 | 69 | 19 | ||||
H | 153 | 135 | 40 | 325 | 3 | 0 | 193 | 22 | 113 | ||||
LFTI | L | 417 | 67 | 120 | 236 | 58 | 445 | 706 | 4 | 29 | |||
M | 210 | 214 | 144 | 244 | 121 | 100 | 341 | 48 | 76 | ||||
H | 25 | 133 | 36 | 95 | 58 | 8 | 95 | 58 | 8 | ||||
VTI | L | 7 | 232 | 295 | 176 | 254 | 105 | 397 | 54 | 123 | |||
M | 106 | 175 | 4 | 48 | 159 | 79 | 190 | 38 | 10 | ||||
H | 538 | 7 | 0 | 381 | 154 | 10 | 550 | 3 | 0 | ||||
BTI | L | 640 | 267 | 175 | 585 | 408 | 89 | 345 | 202 | 535 | |||
M | 12 | 112 | 22 | 5 | 72 | 69 | 71 | 65 | 10 | ||||
H | 0 | 34 | 102 | 13 | 87 | 35 | 118 | 17 | 0 | ||||
HITI | L | 358 | 242 | 30 | 7 | 95 | 528 | 613 | 17 | 0 | |||
M | 57 | 229 | 170 | 224 | 223 | 10 | 267 | 141 | 49 | ||||
H | 104 | 141 | 33 | 272 | 6 | 0 | 163 | 22 | 93 | ||||
LFTI | L | 313 | 50 | 100 | 147 | 45 | 328 | 509 | 5 | 6 | |||
M | 270 | 248 | 133 | 240 | 178 | 193 | 435 | 86 | 90 | ||||
H | 31 | 185 | 35 | 116 | 101 | 16 | 99 | 89 | 46 | ||||
VTI | L | 5 | 211 | 262 | 134 | 228 | 116 | 310 | 75 | 118 | |||
M | 91 | 262 | 6 | 44 | 196 | 119 | 210 | 90 | 24 | ||||
H | 518 | 10 | 0 | 285 | 227 | 16 | 523 | 14 | 0 | ||||
BTI | L | 594 | 258 | 158 | 455 | 460 | 95 | 286 | 215 | 509 | |||
M | 20 | 169 | 23 | 3 | 103 | 106 | 78 | 116 | 18 | ||||
H | 0 | 55 | 86 | 4 | 89 | 49 | 114 | 27 | 1 | ||||
HITI | L | 275 | 288 | 40 | 5 | 90 | 508 | 576 | 26 | 0 | |||
M | 48 | 252 | 205 | 197 | 289 | 19 | 254 | 185 | 66 | ||||
H | 89 | 132 | 36 | 249 | 8 | 0 | 147 | 31 | 79 | ||||
LFTI | L | 26 | 15 | 17 | 118 | 43 | 251 | 405 | 4 | 3 | |||
M | 36 | 169 | 30 | 216 | 207 | 248 | 473 | 115 | 83 | ||||
H | 53 | 1019 | 0 | 118 | 136 | 27 | 98 | 123 | 60 | ||||
VTI | L | 0 | 0 | 33 | 12 | 21 | 0 | 256 | 85 | 110 | |||
M | 13 | 511 | 14 | 23 | 110 | 405 | 218 | 134 | 35 | ||||
H | 101 | 692 | 0 | 22 | 104 | 667 | 502 | 24 | 1 | ||||
BTI | L | 44 | 89 | 34 | 45 | 121 | 0 | 30 | 35 | 102 | |||
M | 70 | 362 | 9 | 10 | 83 | 349 | 3 | 260 | 179 | ||||
H | 0 | 752 | 4 | 2 | 31 | 723 | 1 | 243 | 512 |
Scales | Variables | HII | HITI | LFI | LFTI | VTI | BTI |
---|---|---|---|---|---|---|---|
100 m × 100 m | DEM | −0.571 | −0.571 | −0.353 | −0.349 | 0.748 | −0.245 |
Sl | −0.707 | −0.708 | −0.318 | −0.312 | 0.843 | −0.306 | |
As | −0.082 | −0.083 | 0.098 | 0.099 | 0.072 | 0.111 | |
EDTS | −0.186 | −0.186 | 0.028 | 0.029 | 0.233 | 0.040 | |
CDTS | −0.390 | −0.390 | −0.219 | −0.217 | 0.538 | −0.145 | |
EDTR | −0.110 | −0.110 | −0.190 | −0.189 | 0.124 | −0.197 | |
CDTR | −0.436 | −0.435 | −0.305 | −0.302 | 0.592 | −0.194 | |
200 m × 200 m | DEM | −0.582 | −0.581 | −0.343 | −0.339 | 0.770 | −0.254 |
Sl | −0.731 | −0.732 | −0.312 | −0.309 | 0.866 | −0.315 | |
As | −0.117 | −0.118 | 0.140 | 0.140 | 0.108 | 0.134 | |
EDTS | −0.196 | −0.196 | 0.090 | 0.091 | 0.252 | 0.064 | |
CDTS | −0.400 | −0.400 | −0.216 | −0.214 | 0.562 | −0.151 | |
EDTR | −0.107 | −0.106 | −0.242 | −0.241 | 0.109 | −0.224 | |
CDTR | −0.448 | −0.448 | −0.316 | −0.314 | 0.619 | −0.207 | |
300 m × 300 m | DEM | −0.585 | −0.585 | −0.297 | −0.294 | 0.783 | −0.256 |
Sl | −0.742 | −0.743 | −0.276 | −0.273 | 0.874 | −0.315 | |
As | −0.148 | −0.149 | 0.178 | 0.179 | 0.143 | 0.155 | |
EDTS | −0.198 | −0.199 | 0.152 | 0.154 | 0.261 | 0.083 | |
CDTS | −0.405 | −0.404 | −0.187 | −0.185 | 0.577 | −0.152 | |
EDTR | −0.104 | −0.103 | −0.280 | −0.279 | 0.100 | −0.242 | |
CDTR | −0.454 | −0.453 | −0.290 | −0.288 | 0.636 | −0.214 | |
400 m × 400 m | DEM | −0.585 | −0.584 | −0.245 | −0.243 | 0.789 | −0.249 |
Sl | −0.744 | −0.745 | −0.239 | −0.237 | 0.876 | −0.309 | |
As | −0.157 | −0.158 | 0.191 | 0.191 | 0.162 | 0.163 | |
EDTS | −0.197 | −0.199 | 0.206 | 0.207 | 0.268 | 0.100 | |
CDTS | −0.405 | −0.405 | −0.151 | −0.149 | 0.587 | −0.148 | |
EDTR | −0.106 | −0.105 | −0.312 | −0.311 | 0.092 | −0.257 | |
CDTR | −0.455 | −0.454 | −0.253 | −0.251 | 0.647 | −0.213 | |
500 m × 500 m | DEM | −0.584 | −0.584 | −0.188 | −0.186 | 0.793 | −0.247 |
Sl | −0.748 | −0.749 | −0.203 | −0.202 | 0.877 | −0.309 | |
As | −0.182 | −0.183 | 0.221 | 0.222 | 0.188 | 0.177 | |
EDTS | −0.192 | −0.194 | 0.258 | 0.259 | 0.269 | 0.112 | |
CDTS | −0.402 | −0.402 | −0.104 | −0.103 | 0.591 | −0.146 | |
EDTR | −0.114 | −0.112 | −0.333 | −0.332 | 0.089 | −0.268 | |
CDTR | −0.453 | −0.452 | −0.207 | −0.205 | 0.652 | −0.213 | |
island | DEM | −0.420 | −0.425 | 0.457 | 0.457 | 0.557 | 0.013 |
Sl | −0.528 | −0.530 | 0.104 | 0.102 | 0.626 | −0.223 | |
As | −0.056 | −0.058 | 0.136 | 0.136 | 0.220 | 0.198 | |
IA | 0.028 | 0.021 | 0.861 | 0.862 | 0.094 | 0.282 | |
ISA | 0.024 | 0.017 | 0.860 | 0.861 | 0.098 | 0.281 | |
ISI | −0.089 | −0.092 | 0.486 | 0.487 | 0.064 | 0.089 | |
DTM | −0.184 | −0.182 | 0.081 | 0.082 | −0.071 | 0.064 | |
DTZ | −0.196 | −0.194 | 0.034 | 0.035 | −0.043 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Chi, Y.; Gao, J.; Zhang, Z.; Liu, Z.; Wang, Y.-P. Measuring the Multi-Scale Landscape Pattern of China’s Largest Archipelago from a Dual-3D Perspective Based on Remote Sensing. Remote Sens. 2023, 15, 5627. https://doi.org/10.3390/rs15245627
Qu Y, Chi Y, Gao J, Zhang Z, Liu Z, Wang Y-P. Measuring the Multi-Scale Landscape Pattern of China’s Largest Archipelago from a Dual-3D Perspective Based on Remote Sensing. Remote Sensing. 2023; 15(24):5627. https://doi.org/10.3390/rs15245627
Chicago/Turabian StyleQu, Yubing, Yuan Chi, Jianhua Gao, Zhiwei Zhang, Zhenhang Liu, and Ya-Ping Wang. 2023. "Measuring the Multi-Scale Landscape Pattern of China’s Largest Archipelago from a Dual-3D Perspective Based on Remote Sensing" Remote Sensing 15, no. 24: 5627. https://doi.org/10.3390/rs15245627
APA StyleQu, Y., Chi, Y., Gao, J., Zhang, Z., Liu, Z., & Wang, Y. -P. (2023). Measuring the Multi-Scale Landscape Pattern of China’s Largest Archipelago from a Dual-3D Perspective Based on Remote Sensing. Remote Sensing, 15(24), 5627. https://doi.org/10.3390/rs15245627