Impacts of Land Use/Land Cover Distributions on Permafrost Simulations on Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LULC Products
- (1)
- The Copernicus Climate Change Service has generated global land cover (C3S_LC) maps for 2016–2020. This product provides global LULC data with a spatial resolution of 0.002778° (approximately 300 m at the equator). This set of global land cover products was generated based on the Project for On-Board Autonomy-Vegetation and S3-OLCI satellites. The typology of C3S_LC uses the land cover classification system (LCCS) developed by the Food and Agriculture Organization of the United Nations. In addition, UN-LCCS is compatible with the plant functional types used in climate models. It was also easier to introduce into the CLM5 in this study;
- (2)
- The ESA World Cover 2020 (ESA_WC10), produced by ESA in collaboration with a number of scientific institutions around the world, is based on Sentinel-1 and Sentinel-2 data and has a spatial resolution of 10 m. Higher resolution provides finer land cover information and also improves the accuracy of the model’s description of subgrid information. The data are currently freely available in 2020 and 2021 data products based on different algorithms. The product is also using UN-LCCS for definitions, and the classification provides 11 land cover classes;
- (3)
- GlobeLand30 is a global land cover mapping product with a spatial resolution of 30 m produced by the National Geomatics Center of China. The product is developed based on Landsat TM and ETM+ multispectral images and multispectral images from the Chinese Environmental Disaster Alleviation Satellite. The classification system of GlobeLand30 includes ten land cover types, with data available for three years: 2000, 2010, and 2020;
- (4)
- Global Land Cover Fine Surface Covering 30 (GLC-FCS30) is produced by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. The new 2020 product is produced based on the 2015 global land cover product with a fine classification system and combines 2019–2020 time series Landsat surface reflectance data, Sentinel-1 SAR data, DEM topographic elevation data, global thematic auxiliary datasets, and a priori knowledge datasets. The land cover of this dataset is classified into 30 land cover types with a spatial resolution of 30 m;
- (5)
- The MODIS Land Cover Type Product (MODIS_LC) was created from classifications of spectro-temporal features derived from data from the Moderate Resolution Imaging Spectroradiometer (MODIS). It provides a global land cover dataset from 2001 to the present at a spatial resolution of 500 m. Although the resolution of this dataset is only 500 m, it is widely used in climate models and land surface models. Therefore, it is also included in this study for comparison. This product includes six different land cover classification systems, and we use the Food and Agriculture Organization’s land cover classification system to make it easier to apply to the land surface model.
2.3. Forcing and Soil Datasets
2.4. Reference Datasets
2.5. Model and Experimental Setup
3. Results
3.1. Comparison of Spatial Pattern of the Land Cover Products
3.2. Simulation Evaluation
3.3. Permafrost Extent and Active Layer Thickness Simulation Results
3.4. Analysis of the Impact for LULC Products on Soil Temperature Simulation
4. Discussion
4.1. Uncertainty in Permafrost Simulation
4.2. Disparities between LULC Products and PFTs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing Climate and the Permafrost Environment on the Qinghai–Tibet (Xizang) Plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Miner, K.R.; D’Andrilli, J.; Mackelprang, R.; Edwards, A.; Malaska, M.J.; Waldrop, M.P.; Miller, C.E. Emergent Biogeochemical Risks from Arctic Permafrost Degradation. Nat. Clim. Chang. 2021, 11, 809–819. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Luo, D.; Sheng, Y.; Wu, Q.; Wu, J.; Wang, W.; Huang, S.; Li, X.; Liang, S.; et al. Impacts of Permafrost Degradation on Hydrology and Vegetation in the Source Area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China. Front. Earth Sci. 2022, 10, 845824. [Google Scholar] [CrossRef]
- Schneider Von Deimling, T.; Lee, H.; Ingeman-Nielsen, T.; Westermann, S.; Romanovsky, V.; Lamoureux, S.; Walker, D.A.; Chadburn, S.; Trochim, E.; Cai, L.; et al. Consequences of Permafrost Degradation for Arctic Infrastructure—Bridging the Model Gap between Regional and Engineering Scales. Cryosphere 2021, 15, 2451–2471. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Hu, N.; Yin, Z.; Zhao, L.; Cheng, G.; Mu, C. Qinghai-Tibet Plateau Permafrost at Risk in the Late 21st Century. Earth’s Future 2022, 10, e2022EF002652. [Google Scholar] [CrossRef]
- Li, W.; Weng, B.; Yan, D.; Lai, Y.; Li, M.; Wang, H. Underestimated Permafrost Degradation: Improving the TTOP Model Based on Soil Thermal Conductivity. Sci. Total Environ. 2023, 854, 158564. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shi, Y.; Guo, D. Frozen Ground Map of China Based on a Map of the Glaciers, Frozen Ground and Deserts in China (1981–2006); A Big Earth Data Platform Three Poles: Lanzhou, China, 2012. [Google Scholar]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of the Permafrost Distribution on the Tibetan Plateau. Cryosph. Discuss. 2016, 1–28. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulated Historical (1901–2010) Changes in the Permafrost Extent and Active Layer Thickness in the Northern Hemisphere. J. Geophys. Res. Atmos. 2017, 122, 12285–12295. [Google Scholar] [CrossRef]
- Slater, A.G.; Lawrence, D.M. Diagnosing Present and Future Permafrost from Climate Models. J. Clim. 2013, 26, 5608–5623. [Google Scholar] [CrossRef]
- Heijmans, M.M.P.D.; Magnússon, R.; Lara, M.J.; Frost, G.V.; Myers-Smith, I.H.; van Huissteden, J.; Jorgenson, M.T.; Fedorov, A.N.; Epstein, H.E.; Lawrence, D.M.; et al. Tundra Vegetation Change and Impacts on Permafrost. Nat. Rev. Earth Environ. 2022, 3, 68–84. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, Z.; Niu, F.; Luo, J. Soil Water Dynamics in the Active Layers under Different Land-Cover Types in the Permafrost Regions of the Qinghai–Tibet Plateau, China. Geoderma 2020, 364, 114176. [Google Scholar] [CrossRef]
- Oehri, J.; Schaepman-Strub, G.; Kim, J.S.; Grysko, R.; Kropp, H.; Grünberg, I.; Zemlianskii, V.; Sonnentag, O.; Euskirchen, E.S.; Reji Chacko, M.; et al. Vegetation Type Is an Important Predictor of the Arctic Summer Land Surface Energy Budget. Nat. Commun. 2022, 13, 6379. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, I.; Wilcox, E.J.; Zwieback, S.; Marsh, P.; Boike, J. Linking Tundra Vegetation, Snow, Soil Temperature, and Permafrost. Biogeosciences 2020, 17, 4261–4279. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Yi, S.; Woo, M.K.; Arain, M.A. Impacts of Peat and Vegetation on Permafrost Degradation under Climate Warming. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, S.; Wang, Q.; Chen, J.; Shi, W.; Wang, X.; Liu, Y.; Tu, Y.; Huang, M.; et al. The Impacts of Vegetation on the Soil Surface Freezing-Thawing Processes at Permafrost Southern Edge Simulated by an Improved Process-Based Ecosystem Model. Ecol. Modell. 2021, 456, 109663. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, Y.; Seo, H.; Um, M.J.; Mao, J. Permafrost Response to Vegetation Greenness Variation in the Arctic Tundra through Positive Feedback in Surface Air Temperature and Snow Cover. Environ. Res. Lett. 2019, 14, 044024. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Buontempo, C.; Hutjes, R.; Beavis, P.; Berckmans, J.; Cagnazzo, C.; Vamborg, F.; Thépaut, J.N.; Bergeron, C.; Almond, S.; Amici, A.; et al. Fostering the Development of Climate Services through Copernicus Climate Change Service (C3S) for Agriculture Applications. Weather Clim. Extrem. 2020, 27, 100226. [Google Scholar] [CrossRef]
- Chen, J.J.; Chen, J.J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30 m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200. Meteosat Second Generation Evapotranspiration. 2022; Zenodo, 28 October 2022. Available online: https://zenodo.org/records/7254221 (accessed on 22 October 2023).
- Jiménez-Esteve, B.; Udina, M.; Soler, M.R.; Pepin, N.; Miró, J.R. Land Use and Topography Influence in a Complex Terrain Area: A High Resolution Mesoscale Modelling Study over the Eastern Pyrenees Using the WRF Model. Atmos. Res. 2018, 202, 49–62. [Google Scholar] [CrossRef]
- Sertel, E.; Robock, A.; Ormeci, C. Impacts of Land Cover Data Quality on Regional Climate Simulations. Int. J. Climatol. 2010. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Zhu, Y.; Liu, Y. Assessing Consistency of Five Global Land Cover Data Sets in China. Remote Sens. 2014, 6, 8739–8759. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef]
- Wu, W.; Shibasaki, R.; Yang, P.; Ongaro, L.; Zhou, Q.; Tang, H. Validation and Comparison of 1 Km Global Land Cover Products in China. Int. J. Remote Sens. 2008, 29, 3769–3785. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy Assessment of Seven Global Land Cover Datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, Y.; Li, S. Impacts of Land Use/Land Cover Distributions and Vegetation Amount on Land Surface Temperature Simulation in East China. Earth Space Sci. 2021, 8, e2020EA001544. [Google Scholar] [CrossRef]
- Cui, T.; Li, C.; Tian, F. Evaluation of Temperature and Precipitation Simulations in CMIP6 Models Over the Tibetan Plateau. Earth Space Sci. 2021, 8, e2020EA001620. [Google Scholar] [CrossRef]
- Cao, Z.; Nan, Z.; Hu, J.; Chen, Y.; Zhang, Y. A New 2010 Permafrost Distribution Map over the Qinghai--Tibet Plateau Based on Subregion Survey Maps: A Benchmark for Regional Permafrost Modeling. Earth Syst. Sci. Data 2023, 15, 3905–3930. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, Y.; Jin, H.; Cao, B.; Hu, Y.; Ran, Y.; Zhang, Y. Characterizing the Changes in Permafrost Thickness across Tibetan Plateau. Remote Sens. 2023, 15, 206. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, Y.; Li, J.; Wu, J.; Cao, W.; Ma, S. An Estimation of Ground Ice Volumes in Permafrost Layers in Northeastern Qinghai-Tibet Plateau, China. Chin. Geogr. Sci. 2018, 28, 61–73. [Google Scholar] [CrossRef]
- Duan, A.; Xiao, Z. Does the Climate Warming Hiatus Exist over the Tibetan Plateau? Sci. Rep. 2015, 5, 13711. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost Degradation and Its Environmental Effects on the Tibetan Plateau: A Review of Recent Research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Liu, L.; Zhuang, Q.; Zhao, D.; Zheng, D.; Kou, D.; Yang, Y. Permafrost Degradation Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghai-Tibetan Plateau. Global Biogeochem. Cycles 2022, 36, e2021GB007068. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving Land Surface Temperature Modeling for Dry Land of China. J. Geophys. Res. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulated Change in the Near-Surface Soil Freeze/Thaw Cycle on the Tibetan Plateau from 1981 to 2010. Chin. Sci. Bull. 2014, 59, 2439–2448. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Li, S.; Li, Z. Different Responses of Soil Respiration to Climate Change in Permafrost and Non-Permafrost Regions of the Tibetan Plateau from 1979 to 2018. Int. J. Climatol. 2022, 42, 7198–7212. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China Data Set of Soil Properties for Land Surface Modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G.-Y.G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Bob, S.; Yang, K. Time-Lapse Observation Dataset of Soil Temperature and Humidity on the Tibetan Plateau (2008–2016); National Tibetan Plateau Data Center: Lanzhou, China, 2019. [Google Scholar]
- Swenson, S.C.; Lawrence, D.M. Assessing a Dry Surface Layer-Based Soil Resistance Parameterization for the Community Land Model Using GRACE and FLUXNET-MTE Data. J. Geophys. Res. Atmos. 2014, 119, 10299–10312. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Broxton, P.D.; Hazenberg, P.; Zeng, X.; Troch, P.A.; Niu, G.Y.; Williams, Z.; Brunke, M.A.; Gochis, D. A Gridded Global Data Set of Soil, Intact Regolith, and Sedimentary Deposit Thicknesses for Regional and Global Land Surface Modeling. J. Adv. Model. Earth Syst. 2016, 8, 41–65. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Representing a New MODIS Consistent Land Surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Ji, H.; Nan, Z.; Hu, J.; Zhao, Y.; Zhang, Y. On the Spin-Up Strategy for Spatial Modeling of Permafrost Dynamics: A Case Study on the Qinghai-Tibet Plateau. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002750. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Wu, T.; Wu, X.; Zhao, L.; Hu, G.; Zhu, X.; Du, Y.; Xiao, Y.; Zhang, Y.; et al. Evaluation of Soil Thermal Conductivity Schemes Incorporated into CLM5.0 in Permafrost Regions on the Tibetan Plateau. Geoderma 2021, 401, 115330. [Google Scholar] [CrossRef]
- Ekici, A.; Lee, H.; Lawrence, D.M.; Swenson, S.C.; Prigent, C. Ground Subsidence Effects on Simulating Dynamic High-Latitude Surface Inundation under Permafrost Thaw Using CLM5. Geosci. Model Dev. 2019, 12, 5291–5300. [Google Scholar] [CrossRef]
- Tan, X.; Luo, S.; Li, H.; Hao, X.; Wang, J.; Dong, Q.; Chen, Z. Investigating the Effects of Snow Cover and Vegetation on Soil Temperature Using Remote Sensing Indicators in the Three River Source Region, China. Remote Sens. 2022, 14, 4114. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulation of Permafrost and Seasonally Frozen Ground Conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 2013, 118, 5216–5230. [Google Scholar] [CrossRef]
- Peng, X.; Frauenfeld, O.W.; Jin, H.; Du, R.; Qiao, L.; Zhao, Y.; Mu, C.; Zhang, T. Assessment of Temperature Changes on the Tibetan Plateau during 1980–2018. Earth Space Sci. 2021, 8, e2020EA001609. [Google Scholar] [CrossRef]
- Pan, Y.; Lyu, S.; Li, S.; Gao, Y.; Meng, X.; Ao, Y.; Wang, S. Simulating the Role of Gravel in Freeze–Thaw Process on the Qinghai–Tibet Plateau. Theor. Appl. Climatol. 2017, 127, 1011–1022. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Liu, H.; Huang, Z.; Wu, T.; Wu, X.; Zhao, L.; Hu, G.; Xiao, Y.; Jiao, Y.; et al. Evaluation of CLM5.0 for Simulating Surface Energy Budget and Soil Hydrothermal Regime in Permafrost Regions of the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2023, 332, 109380. [Google Scholar] [CrossRef]
- Dai, Y.; Wei, N.; Yuan, H.; Zhang, S.; Shangguan, W.; Liu, S.; Lu, X.; Xin, Y. Evaluation of Soil Thermal Conductivity Schemes for Use in Land Surface Modeling. J. Adv. Model. Earth Syst. 2019, 11, 3454–3473. [Google Scholar] [CrossRef]
- Wang, X.; Yang, M.; Pang, G.; Wan, G.; Chen, X. Simulation and Improvement of Land Surface Processes in Nameqie, Central Tibetan Plateau, Using the Community Land Model (CLM3.5). Environ. Earth Sci. 2015, 73, 7343–7357. [Google Scholar] [CrossRef]
- Cai, L.; Wang, S.; Jia, L.; Wang, Y.; Wang, H.; Fan, D.; Zhao, L. Consistency Assessments of the Land Cover Products on the Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5652–5661. [Google Scholar] [CrossRef]
- Pedruzzi, R.; Andreão, W.L.; Baek, B.H.; Hudke, A.P.; Glotfelty, T.W.; Dias de Freitas, E.; Martins, J.A.; Bowden, J.H.; Pinto, J.A.; Alonso, M.F.; et al. Update of Land Use/Land Cover and Soil Texture for Brazil: Impact on WRF Modeling Results over São Paulo. Atmos. Environ. 2022, 268, 118760. [Google Scholar] [CrossRef]
- Yang, Z.; Ouyang, H.; Zhang, X.; Xu, X.; Zhou, C.; Yang, W. Spatial Variability of Soil Moisture at Typical Alpine Meadow and Steppe Sites in the Qinghai-Tibetan Plateau Permafrost Region. Environ. Earth Sci. 2011, 63, 477–488. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Liu, G.; Du, E.; Hu, G.; Li, Z.; Wu, T.; Wu, X.; Chen, J. Vegetation Mapping in the Permafrost Region: A Case Study on the Central Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 232. [Google Scholar] [CrossRef]
C3S-LC | ESA2020 | GlobeLand30 | GLC_FCS30 | MCD12Q1 | |||||
---|---|---|---|---|---|---|---|---|---|
10 | Cropland, rainfed | 10 | Tree cover | 10 | Cropland | 10 | Rainfed cropland | 1 | Evergreen Needleleaf Forests |
20 | Cropland, irrigate or post-flooding | 20 | Shrubland | 20 | Forest | 11 | Herbaceous cover | 2 | Evergreen Broadleaf Forests |
30 | Mosaic cropland | 30 | Grassland | 30 | Grassland | 12 | Tree or shrub cover | 3 | Deciduous Needleleaf Forests |
40 | Mosaic natural vegetation | 40 | Cropland | 40 | Shrubland | 20 | Irrigated cropland | 4 | Deciduous Broadleaf Forests |
50 | Tree cover, broadleaved, evergreen | 50 | Built-up | 50 | Wetland | 51 | Open evergreen broadleaved forest | 5 | Mixed Forests |
60 | Tree cover, broadleaved, deciduous | 60 | Barren/sparse vegetation | 60 | Waterbodies | 52 | Open evergreen broadleaved forest | 6 | Closed Shrublands |
70 | Tree cover, needle-leaved, evergreen | 70 | Snow and ice | 70 | Tundra | 61 | Closed deciduous broadleaved forest | 7 | Open Shrublands |
80 | Tree cover, needle-leaved, deciduous | 80 | Open water | 80 | Artificial surface | 62 | Closed deciduous broadleaved forest | 8 | Woody Savannas |
90 | Tree cover, mixed-leaf type (broadleaved and needle-leaved) | 90 | Herbaceous wetland | 90 | Bare areas | 71 | Open evergreen needle-leaved forest | 9 | Savannas |
100 | Mosaic herbaceous cover | 95 | Mangroves | 100 | Glaciers and permanent snow | 72 | Closed evergreen needle-leaved forest | 10 | Grasslands |
110 | Mosaic herbaceous cover | 100 | Moss and lichen | 81 | Open deciduous needle-leaved forest | 11 | Permanent Wetlands | ||
120 | Shrubland | 82 | Closed deciduous needle-leaved forest | 12 | Croplands | ||||
130 | Grassland | 91 | Open mixed-leaf forest | 13 | Urban and Built-up Lands | ||||
140 | Lichens and mosses | 92 | Closed mixed-leaf forest | 14 | Cropland/Natural Vegetation Mosaics | ||||
150 | Sparse vegetation | 120 | Shrubland | 15 | Permanent Snow and Ice | ||||
160 | Tree cover, flooded | 121 | Evergreen shrubland | 16 | Barren | ||||
170 | Tree cover, flooded | 122 | Deciduous shrubland | 17 | Water Bodies | ||||
180 | Shrub or herbaceous cover, flooded | 130 | Grassland | ||||||
190 | Urban area | 140 | Lichen and mosses | ||||||
200 | Bare areas | 150 | Sparse vegetation | ||||||
210 | Water bodies | 152 | Sparse shrubland | ||||||
220 | Permanent snow and ice | 153 | Sparse herbaceous | ||||||
180 | Wetlands | ||||||||
190 | Impervious surfaces | ||||||||
200 | Bare areas | ||||||||
201 | Consolidated bare areas | ||||||||
202 | Unconsolidated bare areas | ||||||||
210 | Water body | ||||||||
220 | Permanent ice and snow |
No. | Sites/Boreholes | Latitude (°) | Longitude (°) | Altitude (m) | Land Cover | ALT (m) | MAGT (°C) |
---|---|---|---|---|---|---|---|
1 | Maqu | 33.9013 | 102.1752 | 3450 | grassland | 5.0 | |
2 | Naqu | 31.6712 | 91.8073 | 4650 | grassland | −0.40 | |
3 | Ngari | 33.4105 | 79.6805 | 4270 | sparse grass | 1.20 | |
4 | Budongquan | 35.6171 | 93.9633 | 4660 | sparse grass | 2.47 | −0.60 |
5 | Xieshuihe | 35.5037 | 93.7844 | 4592 | sparse grass | 1.06 | −1.20 |
6 | Qingshuihe | 35.4359 | 93.6074 | 4486 | sparse grass | 2.84 | −1.20 |
7 | K2985 | 35.2847 | 93.2441 | 4610 | sparse grass | 4.80 | −0.41 |
8 | Wudaoliang | 35.1931 | 93.0750 | 4655 | sparse grass | 1.93 | −1.53 |
9 | K3040 | 34.9598 | 92.9550 | 4600 | sparse grass | 2.36 | −1.11 |
10 | Fenghuoshan | 34.7037 | 92.9011 | 4886 | sparse grass | 4.01 | −0.65 |
Major Types | CLM5 | C3S-LC | ESA2020 | GlobeLand30 | GLC_FCS30 | MODIS_LC |
---|---|---|---|---|---|---|
Forest | Needleleaf evergreen tree (NET) boreal | 70/71/72 | 10 | 20 | 71/72 | 1 |
Needleleaf deciduous tree (NDT) boreal | 80/81/82 | 81/82 | 3 | |||
Broadleaf evergreen tree (BET) temperate | 50 | 51/52 | 2 | |||
Broadleaf deciduous tree (BDT) boreal | 60/61/62/90 | 10 | 20 | 61/62/91/92 | 4/5 | |
Shrub | Broadleaf evergreen shrub (BES) temperate | 121 | ||||
Broadleaf deciduous shrub (BDS) boreal | 100/120/121/122 | 20 | 40 | 120/122 | 6/7/8 | |
Grass | Arctic grass | 30/40/110/130/140 | 30/100 | 30/70 | 130/140 | |
Grass | 30/40/110/130/140 | 30/100 | 30/70 | 130/140 | 8/9/10 | |
Crop | Crop | 10/11/12/20 | 40 | 10 | 10/11/12/20 | 12/14 |
Water | Wetland | 180 | 90 | 50 | 180 | 11 |
Water bodies | 160/170/210 | 80 | 60 | 210 | 17 | |
Urban | Urban | 190 | 50 | 80 | 190 | 13 |
Glacier | Glacier | 220 | 70 | 100 | 220 | 15 |
Bare soil | Bare land | 150/152/153/ 200/201/202 | 60 | 90 | 150/152/153/ 200/201/202 | 16 |
Boreholes | LULC Types | CTL | C3S_LC | ESA_WC10 | GlobeLand30 | GLC_FCS30 | MODIS_LC |
---|---|---|---|---|---|---|---|
Budongquan | Bare soil | 61.91 | 72.50 | 72.74 | 0.81 | 71.39 | 85.44 |
Grassland | 37.91 | 27.03 | 26.06 | 98.36 | 28.16 | 14.56 | |
Xieshuihe | Bare soil | 64.57 | 57.87 | 83.06 | 1.92 | 89.83 | 89.83 |
Grassland | 35.34 | 42.13 | 16.61 | 96.12 | 9.99 | 10.17 | |
Qingshuihe | Bare soil | 59.84 | 67.87 | 82.59 | 3.58 | 57.11 | 77.00 |
Grassland | 38.15 | 29.43 | 11.81 | 92.71 | 19.22 | 23.00 | |
K2985 | Bare soil | 43.53 | 5.60 | 59.77 | 3.43 | 5.93 | 2.95 |
Grassland | 54.04 | 93.79 | 37.46 | 93.01 | 79.64 | 97.05 | |
Wudaoliang | Bare soil | 59.98 | 12.08 | 43.33 | 9.29 | 13.54 | 13.67 |
Grassland | 40.00 | 85.76 | 51.13 | 80.37 | 83.09 | 86.33 | |
K3040 | Bare soil | 41.2 | 6.64 | 66.77 | 3.12 | 22.13 | 0.17 |
Grassland | 58.28 | 93.36 | 27.28 | 93.65 | 71.7 | 99.83 | |
Fenghuoshan | Bare soil | 38.16 | 5.66 | 7.21 | 0.29 | 0.14 | 0.67 |
Grassland | 60.94 | 88.33 | 92.75 | 99.42 | 99.85 | 99.33 |
Boreholes | CTL | C3S_LC | ESA_WC10 | GlobeLand30 | GLC_FCS30 | MODIS_LC |
---|---|---|---|---|---|---|
Budongquan | 0.54 | 0.41 | 0.40 | 1.50 | 0.46 | 0.38 |
Xieshuihe | 0.49 | 0.45 | 0.47 | 0.63 | 0.48 | 0.48 |
Qingshuihe | 0.59 | 0.70 | 0.70 | 0.62 | 0.53 | 0.70 |
K2985 | 1.01 | 1.06 | 1.05 | 1.06 | 0.92 | 1.05 |
Wudaoliang | 0.61 | 0.60 | 0.57 | 0.60 | 0.65 | 0.59 |
K3040 | 0.80 | 0.50 | 1.43 | 0.49 | 0.73 | 0.48 |
Fenghuoshan | 0.48 | 0.47 | 0.49 | 0.49 | 0.47 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Li, X.; Wang, D.; Li, S.; Wen, L. Impacts of Land Use/Land Cover Distributions on Permafrost Simulations on Tibetan Plateau. Remote Sens. 2023, 15, 5586. https://doi.org/10.3390/rs15235586
Pan Y, Li X, Wang D, Li S, Wen L. Impacts of Land Use/Land Cover Distributions on Permafrost Simulations on Tibetan Plateau. Remote Sensing. 2023; 15(23):5586. https://doi.org/10.3390/rs15235586
Chicago/Turabian StylePan, Yongjie, Xia Li, Danyun Wang, Suosuo Li, and Lijuan Wen. 2023. "Impacts of Land Use/Land Cover Distributions on Permafrost Simulations on Tibetan Plateau" Remote Sensing 15, no. 23: 5586. https://doi.org/10.3390/rs15235586
APA StylePan, Y., Li, X., Wang, D., Li, S., & Wen, L. (2023). Impacts of Land Use/Land Cover Distributions on Permafrost Simulations on Tibetan Plateau. Remote Sensing, 15(23), 5586. https://doi.org/10.3390/rs15235586