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Abstract: The Tibetan Plateau (TP) is distributed with large areas of permafrost, which have received
increasing attention as the climate warms. Accurately modeling the extent of permafrost and per-
mafrost changes is now an important challenge for climate change research and climate modeling in
this region. Uncertainty in land use and land cover (LULC), which is important information character-
izing surface conditions, directly affects the accuracy of the simulation of permafrost changes in land
surface models. In order to investigate the effect of LULC uncertainty on permafrost simulation, we
conducted simulation experiments on the TP using the Community Land Model, version 5 (CLM5)
with five high-resolution LULC products in this study. Firstly, we evaluated the simulation results
using shallow soil temperature data and deep borehole data at several sites. The results show that
the model performs well in simulating shallow soil temperatures and deep soil temperature profiles.
The effect of different land use products on the shallow soil temperature and deep soil temperature
contours is not obvious due to the small differences in land use products at these sites. Although
there is little difference in the simulating results of different land use products when compared to
the permafrost distribution map, the differences are noticeable for the simulation of the active layer.
Land cover had a greater impact on soil temperature simulations in regions with greater land use
inconsistency, such as at the junction of bare soil and grassland in the northwestern part of the TP, as
well as in the southeast region with complex topography. The main way in which this effect occurs is
that land cover affects the net surface radiation, which in turn causes differences in soil temperature
simulations. In addition, we discuss other factors affecting permafrost simulation results and point
out that increasing the model plant function types as well as carefully selecting LULC products is
one of the most important ways to improve the simulation performance of land-surface models in
permafrost regions.

Keywords: land use/land cover products; permafrost simulation; Tibetan Plateau; land surface model

1. Introduction

The Tibetan Plateau (TP), with an average elevation of over 4000 m, has the largest area
of permafrost in the mid-latitudes. With global warming, the degradation of permafrost
is expected to intensify, which in turn will have significant impacts on regional ecology,
hydrology, and infrastructure engineering [1–6]. Permafrost distribution and its changes
have always been the focus of research on regional climate and environment at the TP.
Accurately obtaining the distribution of permafrost has been an important challenge for
climate research; nowadays, in addition to relying on field surveys and monitoring via
remote sensing [7,8], numerical simulation based on a land model is gradually becoming
a useful method, especially in studies analyzing the interaction between climate and
cryosphere [9,10]. However, the uncertainty in the simulation of permafrost extent can
reduce the reliability of climate prediction and affect the prediction of engineering safety in
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permafrost regions. Currently, improving the accuracy of permafrost extent simulations is
an important research direction for the development and application of climate models in
permafrost regions.

The simulation of permafrost extent in climate models and land surface models can be
affected by numerous factors, such as atmospheric forcing, land surface conditions, surface
radiation balance, soil conditions, and deficiencies in the model schemes. Land use and land
cover (LULC), as an important component of surface characteristics in land surface models,
is directly affecting the surface energy balance and the simulation results of the permafrost
process. Many observation-based studies have shown that there are significant differences
in energy fluxes, including net radiation, latent heat fluxes, sensible heat fluxes, and soil
temperature and moisture conditions, across different land covers [11–14]. Such differences
in surface fluxes are directly related to surface roughness, albedo, and other attributes
of land-use types, and they affect the exchange of water and energy between the surface
and atmosphere, leading to variations in local climate change across different underlying
surfaces under global change. These effects have also been continuously updated in the
model parameterization scheme over the years of model development [15]. Several studies
have used the climate model or land surface model to investigate the effects of surface
vegetation, snowpack, and other LULC types on soil temperatures as well as permafrost
changes [16–18]. They found that these LULC changes in surface cover directly altered the
surface energy fluxes, which in turn had a significant effect on the simulation results of soil
temperature and permafrost.

Many high-resolution LULC products based on remote sensing data from different
satellites have been released in the past decades. There are several commonly used global
high-resolution LULC products, including: the moderate-resolution imaging spectrora-
diometer (MODIS) LULC dataset produced by the National Aeronautics and Space Admin-
istration (NASA) [19], the Copernicus Climate Change Service Global Land Cover (C3S-LC)
product produced by the European Space Agency (ESA) [20], the 30 m global land cover
(GlobeLand30) produced by the National Geomatics Center of China [21], Global Land
Cover Fine Surface Covering 30 (GLC-FCS30) produced by the Academy of Aerospace
Technology [22], and the ESA World Cover 10 m 2020 product produced by EAS [23].
Compared to the default 1 km LULC data for most models, these high-resolution LULC
products can provide resolutions up to 30 m or even 10 m. Theoretically, high-resolution
data can improve the detailed characterization of land surface use and have the potential
to substantially reduce the simulation uncertainty of land surface models over complex
surfaces [24,25]. However, numerous studies have evaluated these high-resolution LULC
products in recent years and have found that there is low agreement between these products
in mixed classes and in heterogeneous landscape areas [26–29]. Pan et al. [30] discussed
the effects of differences in LULC products on land surface temperature simulations in
East China. They found that significant differences in model-simulated forested subsurface
surface temperatures occurred due to the low agreement of forest type identification using
different LULC products. However, there is still little work on how disagreement in LULC
data affects the applicability of land surface models in cold regions and the simulation of the
permafrost extent. Therefore, more attention needs to be paid to the impact of differences
in LULC products on the simulation of surface energy balance and permafrost distribution
in cold regions.

In this paper, six sets of simulation results from the Community Land Model, version
5 (CLM5), produced based on five different LULC products and CLM default land surface
data, are evaluated to investigate the effects of uncertainty in LULC products on permafrost
simulation in the TP. We evaluate the permafrost simulations for different LULC types
by comparing them with permafrost maps and borehole site measurements. At the same
time, we investigated the effect of land use disagreements on permafrost extent and active
layer simulations and tried to explore the processes of LULC influence on soil temperature
simulation results. This work helps to improve the performance of the land surface model
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in the permafrost region and provides a reference for the selection of LULC products in the
land surface model.

2. Materials and Methods
2.1. Study Area

The TP, the highest plateau in the world with an average altitude of 4000 m and an
area of about 2.5 million square kilometers, is known as the third pole. The high elevation
topography of the TP leads to a mean annual temperature below −1.7 ◦C [31], and as a
result, the region distributes the largest area of permafrost in the mid-latitudes (Figure 1).
According to the latest map of permafrost distribution, the total area of permafrost on the TP
is estimated to be 1.09 million square kilometers [32]. The average thickness of permafrost
on the TP is about 43.20 m [33]. The existence of ground ice is an important characteristic of
permafrost. On the TP, in the permafrost layer at a depth of 3.0–10.0 m, the total volume of
ground ice is about 52 km3, and the volume of ground ice is 0.31 m3/m3 [34]. In the context
of global warming, observations show that the TP is also warming and that the warming
trend has accelerated in recent years [35]. Continued warming has caused degradation of
the permafrost in this region, seriously affecting the ecology and engineering safety of the
TP [36,37]. The TP is characterized by complex topography and high heterogeneity in the
LULC. These complex surface features may make climate models perform unsatisfactorily
in this region. Therefore, we chose this region as the study area for this study.

Figure 1. Study area and location of observation sites and boreholes. The permafrost map of the
Tibetan Plateau (TP) was derived from Cao et al. [32].

2.2. LULC Products

We selected five LULC products from different remote sensing instruments, all of
which provide global LULC information for 2020 and are available online (see Table 1 for
their detailed classifications):

(1) The Copernicus Climate Change Service has generated global land cover (C3S_LC)
maps for 2016–2020. This product provides global LULC data with a spatial resolution
of 0.002778◦ (approximately 300 m at the equator). This set of global land cover
products was generated based on the Project for On-Board Autonomy-Vegetation and
S3-OLCI satellites. The typology of C3S_LC uses the land cover classification system
(LCCS) developed by the Food and Agriculture Organization of the United Nations.
In addition, UN-LCCS is compatible with the plant functional types used in climate
models. It was also easier to introduce into the CLM5 in this study;

(2) The ESA World Cover 2020 (ESA_WC10), produced by ESA in collaboration with a
number of scientific institutions around the world, is based on Sentinel-1 and Sentinel-
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2 data and has a spatial resolution of 10 m. Higher resolution provides finer land cover
information and also improves the accuracy of the model’s description of subgrid
information. The data are currently freely available in 2020 and 2021 data products
based on different algorithms. The product is also using UN-LCCS for definitions,
and the classification provides 11 land cover classes;

(3) GlobeLand30 is a global land cover mapping product with a spatial resolution of
30 m produced by the National Geomatics Center of China. The product is developed
based on Landsat TM and ETM+ multispectral images and multispectral images from
the Chinese Environmental Disaster Alleviation Satellite. The classification system of
GlobeLand30 includes ten land cover types, with data available for three years: 2000,
2010, and 2020;

(4) Global Land Cover Fine Surface Covering 30 (GLC-FCS30) is produced by the Insti-
tute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. The new
2020 product is produced based on the 2015 global land cover product with a fine
classification system and combines 2019–2020 time series Landsat surface reflectance
data, Sentinel-1 SAR data, DEM topographic elevation data, global thematic auxiliary
datasets, and a priori knowledge datasets. The land cover of this dataset is classified
into 30 land cover types with a spatial resolution of 30 m;

(5) The MODIS Land Cover Type Product (MODIS_LC) was created from classifications
of spectro-temporal features derived from data from the Moderate Resolution Imaging
Spectroradiometer (MODIS). It provides a global land cover dataset from 2001 to the
present at a spatial resolution of 500 m. Although the resolution of this dataset is only
500 m, it is widely used in climate models and land surface models. Therefore, it is
also included in this study for comparison. This product includes six different land
cover classification systems, and we use the Food and Agriculture Organization’s
land cover classification system to make it easier to apply to the land surface model.

Table 1. The original classification and codes of five LULC products.

C3S-LC ESA2020 GlobeLand30 GLC_FCS30 MCD12Q1

10 Cropland, rainfed 10 Tree cover 10 Cropland 10 Rainfed cropland 1
Evergreen
Needleleaf

Forests

20 Cropland, irrigate
or post-flooding 20 Shrubland 20 Forest 11 Herbaceous cover 2 Evergreen

Broadleaf Forests

30 Mosaic cropland 30 Grassland 30 Grassland 12 Tree or shrub cover 3
Deciduous
Needleleaf

Forests

40 Mosaic natural
vegetation 40 Cropland 40 Shrubland 20 Irrigated cropland 4 Deciduous

Broadleaf Forests

50
Tree cover,

broadleaved,
evergreen

50 Built-up 50 Wetland 51 Open evergreen
broadleaved forest 5 Mixed Forests

60
Tree cover,

broadleaved,
deciduous

60 Barren/sparse
vegetation 60 Waterbodies 52 Open evergreen

broadleaved forest 6 Closed
Shrublands

70
Tree cover,

needle-leaved,
evergreen

70 Snow and
ice 70 Tundra 61 Closed deciduous

broadleaved forest 7 Open Shrublands

80
Tree cover,

needle-leaved,
deciduous

80 Open water 80 Artificial
surface 62 Closed deciduous

broadleaved forest 8 Woody Savannas

90

Tree cover,
mixed-leaf type

(broadleaved and
needle-leaved)

90 Herbaceous
wetland 90 Bare areas 71

Open evergreen
needle-leaved

forest
9 Savannas

100 Mosaic herbaceous
cover 95 Mangroves 100

Glaciers and
permanent

snow
72

Closed evergreen
needle-leaved

forest
10 Grasslands

110 Mosaic herbaceous
cover 100 Moss and

lichen 81
Open deciduous

needle-leaved
forest

11 Permanent
Wetlands

120 Shrubland 82
Closed deciduous

needle-leaved
forest

12 Croplands
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Table 1. Cont.

C3S-LC ESA2020 GlobeLand30 GLC_FCS30 MCD12Q1

130 Grassland 91 Open mixed-leaf
forest 13 Urban and

Built-up Lands

140 Lichens and mosses 92 Closed mixed-leaf
forest 14

Cropland/
Natural

Vegetation
Mosaics

150 Sparse vegetation 120 Shrubland 15 Permanent Snow
and Ice

160 Tree cover, flooded 121 Evergreen
shrubland 16 Barren

170 Tree cover, flooded 122 Deciduous
shrubland 17 Water Bodies

180
Shrub or

herbaceous cover,
flooded

130 Grassland

190 Urban area 140 Lichen and mosses
200 Bare areas 150 Sparse vegetation
210 Water bodies 152 Sparse shrubland

220 Permanent snow
and ice 153 Sparse herbaceous

180 Wetlands

190 Impervious
surfaces

200 Bare areas

201 Consolidated bare
areas

202 Unconsolidated
bare areas

210 Water body

220 Permanent ice and
snow

2.3. Forcing and Soil Datasets

In this study, the China Meteorological Forcing Dataset (CMFD) was used to drive CLM5.
The dataset was produced by the Hydrometeorology Research Group of the Institute of Tibetan
Plateau Studies, Chinese Academy of Sciences [38]. Seven variables are included in this
dataset, i.e., temperature, precipitation, wind speed, specific humidity, atmospheric pressure,
downward shortwave radiation flux, and downward longwave radiation. The dataset has a
3 h temporal resolution, 0.1◦ spatial resolution, and spans the period 1979–2018. This forcing
dataset has been evaluated in several studies in recent years, and the results indicate that it is
very accurate and suitable for land surface process modeling [30,39–41]. Since our simulation
period in this study is 2000–2012, we only used data from the corresponding time period of
this dataset.

To better improve the accuracy of the soil characteristics of the model in this study,
we used the China Dataset of Soil Properties for Land Surface Modeling (CDSP-LSM) to
update the surface data. The soil dataset combines 8979 soil profiles and 1:1 million soil
physical and chemical properties from the Soil Map of China. More detailed information
on the production and evaluation of the CDSP-LSM dataset can be found in the work of
Shangguan et al. [42] and Dai et al. [43]. We used data from the CDSP-LSM to update
multilayered soil texture data in the CLM5 surface data, including the percentages of sand
and clay, soil organic matter content, and soil color.

2.4. Reference Datasets

A new 2010 map of permafrost distribution on the TP (available at https://essd.
copernicus.org/articles/15/3905/2023/#section5, accessed on 1 November 2023) was used
to validate the modeled permafrost extent. Cao et al. [32] produced this map using satellite-
derived surface thaw and freeze indices as inputs and survey-based subregional permafrost
maps as constraints. They compared this map with other permafrost distribution maps and
found it to be more realistic [32].

We downloaded an observational dataset of plateau soil temperature and moisture
from the National Tibetan Plateau Data Center to evaluate the simulation results. The
dataset is from four site reference networks, namely the Naqu Network, the Maqu Network,

https://essd.copernicus.org/articles/15/3905/2023/#section5
https://essd.copernicus.org/articles/15/3905/2023/#section5
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the Ngari Network, and the Pari Network [44]. Among these datasets, Naqu, Maqu, and
Ngari have the time periods from January 2011 to December 2012, which is consistent with
our simulation time period. So, we extracted observations from the three sites to evaluate
the shallow soil temperature simulation results. In addition, we also downloaded seven
borehole temperature measurements along the Qinghai-Tibet Railway from the National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn/portal/metadata/5be04672-0
d1b-11e6-b319-5cc5d45ad3ae, accessed on 1 November 2023) to evaluate the permafrost
simulation results. Table 2 shows the details of the three sites and seven boreholes.

Table 2. Information on the three observation sites and seven borehole sites.

No. Sites/Boreholes Latitude (◦) Longitude (◦) Altitude (m) Land Cover ALT
(m)

MAGT
(◦C)

1 Maqu 33.9013 102.1752 3450 grassland 5.0
2 Naqu 31.6712 91.8073 4650 grassland −0.40
3 Ngari 33.4105 79.6805 4270 sparse grass 1.20
4 Budongquan 35.6171 93.9633 4660 sparse grass 2.47 −0.60
5 Xieshuihe 35.5037 93.7844 4592 sparse grass 1.06 −1.20
6 Qingshuihe 35.4359 93.6074 4486 sparse grass 2.84 −1.20
7 K2985 35.2847 93.2441 4610 sparse grass 4.80 −0.41
8 Wudaoliang 35.1931 93.0750 4655 sparse grass 1.93 −1.53
9 K3040 34.9598 92.9550 4600 sparse grass 2.36 −1.11

10 Fenghuoshan 34.7037 92.9011 4886 sparse grass 4.01 −0.65

ALT is active layer thickness. MAGT is mean annual ground temperature.

2.5. Model and Experimental Setup

The CLM5 is the terrestrial component of the Community Earth System Model (CESM)
and can be used to carry out offline or coupled simulations of regional or global land–
atmosphere interaction processes. It succeeds most of the biophysical–chemical modules of
the CLM4.5 and also includes many updates in soil and plant hydrology, snow density, river
modeling, carbon and nitrogen cycling, and crops [15]. The hydrology of CLM5 has been
improved to include a dry surface layer for surface evaporation [45] and spatially variable
soil depths [46]. Default vertical soils were deepened, and resolution improvements were
made, particularly in the top 3 m range, to represent the thickness of the active layer
more clearly in the permafrost zone [15]. The default vertical stratification of the model
is 25 layers, and the maximum simulated depth is 42 m. Compared to the CLM4.5, these
modifications improve the consistency of soil temperature simulations with observations
and their applicability in permafrost regions [15]. CLM5 uses a variety of land units,
including glaciers, lakes, cities, vegetation, and crops, as well as 15 plant functional types
(PFTs) and bare ground to represent surface heterogeneity. Thus, the CLM5 can properly
describe spatial land surface heterogeneity and is suitable for modeling the effects of
different land cover types on the surface energy balance. The spatial heterogeneity of land
cover is characterized in the CLM5 using a nested sub-grid hierarchy, where grid cells
consist of multiple land units, columns, and patches. Land units include vegetation, lakes,
cities, glaciers, and crops. Within the vegetation land units, there are different numbers of
columns and patches, each with a specific PFT or crop function type [15]. Land units and
PFT patches can reflect differences in biogeophysical parameterization across land cover,
which in turn affects surface energy and water balance processes.

In this study, we conducted six simulation experiments using the five sets of LULC
products and model default surface data. Each of the five simulations based on LULC products
is named according to the product names, including C3S_LC, ESA_WC10, GlobeLand30,
GLC-FCS30, and MODIS_LC, while the CLM5 simulation using default land surface data is
named as a controlled experiment (CTL). The LULC classes in the five LULC products were
converted to CLM5 land units and PFTs based on the classification descriptions associated with
each product (Table 3). The five LULC products have different spatial resolutions, including
500, 300, 30, and 10 m. In the CLM5, the spatial heterogeneity of land cover is described by

http://www.ncdc.ac.cn/portal/metadata/5be04672-0d1b-11e6-b319-5cc5d45ad3ae
http://www.ncdc.ac.cn/portal/metadata/5be04672-0d1b-11e6-b319-5cc5d45ad3ae
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a nested subgrid hierarchy. Therefore, we extracted and calculated percentages of different
types of reclassified LULC information based on the coordinates of the simulated grid and
then replaced the land units and PFT classification information in the model surface data.
The reclassified surface data in the study area is presented in Figure 2. Since we focused on
modeling surface physical processes in this study, the CLM5 in the simulation experiments was
run in satellite phenology (CLMSP) and with inactive biogeochemistry. In the CLMSP model,
prescribed LAI were derived from MODIS satellite data using the de-clustering method [47],
which can effectively increase the speed of model runs. Also, the complex crop module was
not activated in the simulations because the study area is a high-elevation area with a small
percentage of cropland. For each simulation case, the CLM5 was driven by the CMFD 2002
data as atmospheric forcing data and was run cyclically for 50 years to reach equilibrium in
soil temperature and moisture. We note that the recommended spin-up time for simulating
permafrost using the Noah LSM is 500 years. [48]. However, considering that the model
we used is CLM5, and referring to other researchers who have simulated permafrost using
CLM with a spin-up time of 30–100 years [49,50], we examine the balance results and find
that a spin-up time of 50 is acceptable. Considering the amount of computation required
for high-resolution simulations, a spin-up time of 50 is considered acceptable. The output
of the spin-up simulation was used as the initial condition. All cases were run for 10 years
of simulations, from 2003 to 2012, at a spatial resolution of 0.1◦. This 10-year simulation can
include the satellite remote sensing data time period of 2005–2010 utilized for the permafrost
maps [32]. The permafrost map we obtained is from 2010, and the site observations and
borehole data obtained are from 2012 and 2010, respectively. Therefore, the simulation period
in this study was chosen as 2000–2012. Due to the different time intervals between the release
of these five LULC products, 2020 is the year in which all data were released. In addition, due
to the relatively low human activities on the TP, we assume that the land use and land cover on
the plateau have not changed significantly in the last two decades. Therefore, we consider that
the mismatch between the simulation period and the time of the LULC product is acceptable.

Table 3. Conversion and reclassification of land cover types in the five original LULC products
according to the CLM5 PFTs (plant functional types) classification system.

Major Types CLM5 C3S-LC ESA2020 GlobeLand30 GLC_FCS30 MODIS_LC

Forest

Needleleaf evergreen
tree (NET) boreal 70/71/72 10 20 71/72 1

Needleleaf deciduous
tree (NDT) boreal 80/81/82 81/82 3

Broadleaf evergreen tree
(BET) temperate 50 51/52 2

Broadleaf deciduous tree
(BDT) boreal 60/61/62/90 10 20 61/62/91/92 4/5

Shrub

Broadleaf evergreen
shrub (BES) temperate 121

Broadleaf deciduous
shrub (BDS) boreal 100/120/121/122 20 40 120/122 6/7/8

Grass
Arctic grass 30/40/110/130/140 30/100 30/70 130/140

Grass 30/40/110/130/140 30/100 30/70 130/140 8/9/10

Crop Crop 10/11/12/20 40 10 10/11/12/20 12/14

Water
Wetland 180 90 50 180 11

Water bodies 160/170/210 80 60 210 17

Urban Urban 190 50 80 190 13

Glacier Glacier 220 70 100 220 15

Bare soil Bare land 150/152/153/
200/201/202 60 90 150/152/153/

200/201/202 16
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Figure 2. Distributions of land cover types in the study region for (a) CLM5 model default and five
LULC products: (b) C3S_LC; (c) ESA_WC10; (d) GlobeLand30; (e) GLC_FCS30; and (f) MODIS_LC.

3. Results
3.1. Comparison of Spatial Pattern of the Land Cover Products

The spatial distribution of CLM5 default LULC and the five LULC products after
reclassification over the TP are shown in Figure 2. It should be noted that the land cover
type shown for each pixel point in Figure 2 is the land cover type that has the largest
percentage of area fraction at that grid point. All land cover products show a similar
distribution pattern, with the northwestern region of the TP being dominated by bare soil,
the central part of the TP being covered with grassland for most parts, and the southeastern
and lower-elevation regions being covered with forests and shrubs. At the same time,
some apparent differences can be seen among these products. CLM5, ESA_WC10, and
MODIS_LC identify the land cover in the northwestern TP as bare soil, while C3S_LC,
GlobeLand30, and GLC-FCS30 identify more grassy land areas. In addition, GlobeLand30
identified more snow and glaciers in the Nyenchen Tanglha mountain.

In order to more accurately compare and quantify the differences between the LULC
products, we calculated the total percent area of each land cover type for CLM5, C3S_LC,
EAS10, GlobeLand30, GLC-FCS30, and MODIS_LC in Figure 3. It can be seen that all of
the LULC products generally show the same TP land cover types, i.e., the TP is dominated
by grassland and bare soil. The average proportion of grassland in the six LULC products
is 51.95%, and the average bare soil is 33.92%. The C3S_LC products have the largest
area of grassland coverage, with area proportions of 64.28%, and the lowest proportion of
bare soil, with 31.63%. The ESA_WC10 shows the lowest grassland coverage area, with
a proportion of 41.44%, and the highest proportion of bare soil at 45.86%. Forest, water,
wetland, glacier, crop, and urban have smaller distributions. The average proportion of
forest, shrubland, water, and glacier in the six products is 7.58%, 1.24%, 2.05%, and 2.38%,



Remote Sens. 2023, 15, 5586 9 of 20

respectively. Consistent with Figure 2d, the GlobeLand30 product produces the highest
proportion of glacier area at 3.73%, appreciably higher than the other products.

Figure 3. Coverage fraction of different land cover types for the CLM5 model default and five
LULC products.

The spatial consistency among the six land cover products over the TP is shown in
Figure 4. Full agreement is where the six datasets show exactly the same land cover type
in the corresponding simulation grids. High agreements are where the six datasets show
only two land cover types in the corresponding simulation grids. Medium agreements are
where the six datasets show only three land cover types in the corresponding simulation
grids. Low agreements are where the six datasets show four or more land cover types
in the corresponding simulation grids. The highly consistent regions of the six products
were mainly distributed in the grassland areas of the central and eastern parts of the TP.
The statistics show that in 47% of the area, the six products have the same land cover type
per pixel. There is about half of the plateau area, primarily in the northwestern part of
the plateau at the interface of bare soil and grassland, where these six LULC products
identify two land cover types. The medium agreement and low agreement pixels occupy a
relatively small area, with about 2.52% and 0.19%, respectively. These pixels are mainly
found in the Nyenchen Tanglha mountain in the southern part of the TP. The main cover
types in these low-consistency areas were glacier, bare soil, grassland, and forest.

Figure 4. Spatial consistency pattern of all LULC products on TP.
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3.2. Simulation Evaluation

Figure 5 shows that the soil temperature simulations of all six cases are significantly in
agreement with the observations, with an average R of 0.98. The model can well represent
the magnitude and seasonal variation of the shallow soil temperature at the three sites.
In addition, there is little difference in the simulation of soil temperatures between the
different cases. We have checked the land cover dataset at the three sites and found that
the land cover showed high agreement with the six products. This high agreement on
land cover could explain the consistent simulation results among the six cases. In addition,
there are some errors between the simulation and observation, with the bias ranging from
a minimum of 0.03 in Nagqu station to a maximum of 2.01 in Ngari station.

Furthermore, we also compared simulated and observed borehole soil temperatures
in the permafrost region (Figure 6). Since the time of the borehole dataset was created in
November 2001, the simulation results for this time were extracted for analysis. We extracted
the simulation results nearest to the location of these boreholes. Figure 6 exhibits that the
simulated soil temperatures can well reproduce the vertical profile of the soil temperatures
compared to the borehole observations at most of the borehole sites, and the simulated values
are generally within the variation range of the observed values. However, Figure 6e shows
that the simulation results of the shallow temperature profile at the Wudaoliang site differ
substantially from the observations. This may be due to differences between the spatial scales
of the gridded data and the site borehole data. Differences in simulated temperatures for
different land use products were found at the Budongquan (Figure 6a) and K3040 (Figure 6f)
borehole sites. From Table 4, it can be seen that the GlobeLand30 product identified more
grassland at the Budongquan borehole sites, while the other products identified more bare soil.
Similarly, at borehole K3040, ESA identified more bare soil, while the other products identified
grassland as predominant. This result suggests that surface vegetation cover has a strong
influence on the simulation of soil temperature vertical profiles. From the RMSE (Root Mean
Square Error) statistics in Table 5, it can be seen that the simulation results from MODIS_LC
have the lowest multi-site mean of RMSE relative to the other products.

Figure 5. Comparison of simulated and observed daily values of soil temperature at 5 cm depth at
three sites: (a1,a2) Maqu, (b1,b2) Naqu, and (c1,c2) Ngari. ** indicates significant level at p < 0.001.
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Figure 6. Comparison of simulated and observed borehole temperature profiles for (a) Budongquan,
(b) Xieshuihe, (c) Qingshuihe, (d) K2985, (e) Wudaoliang, (f) K3040, and (g) Fenghuoshan during
November 2001. The solid line indicates the observation mean, the gray shading indicates the
observation range, and the different colored dots indicate the simulation results from different
LULC products.

Table 4. Percentage of major land cover types identified with different LULC products at simulated
grid points for seven boreholes (unit: %).

Boreholes LULC Types CTL C3S_LC ESA_WC10 GlobeLand30 GLC_FCS30 MODIS_LC

Budongquan Bare soil 61.91 72.50 72.74 0.81 71.39 85.44
Grassland 37.91 27.03 26.06 98.36 28.16 14.56

Xieshuihe
Bare soil 64.57 57.87 83.06 1.92 89.83 89.83

Grassland 35.34 42.13 16.61 96.12 9.99 10.17

Qingshuihe Bare soil 59.84 67.87 82.59 3.58 57.11 77.00
Grassland 38.15 29.43 11.81 92.71 19.22 23.00

K2985
Bare soil 43.53 5.60 59.77 3.43 5.93 2.95

Grassland 54.04 93.79 37.46 93.01 79.64 97.05

Wudaoliang Bare soil 59.98 12.08 43.33 9.29 13.54 13.67
Grassland 40.00 85.76 51.13 80.37 83.09 86.33

K3040
Bare soil 41.2 6.64 66.77 3.12 22.13 0.17

Grassland 58.28 93.36 27.28 93.65 71.7 99.83

Fenghuoshan Bare soil 38.16 5.66 7.21 0.29 0.14 0.67
Grassland 60.94 88.33 92.75 99.42 99.85 99.33

Table 5. RMSE between simulated and observed soil temperature for 7 boreholes (unit: ◦C).

Boreholes CTL C3S_LC ESA_WC10 GlobeLand30 GLC_FCS30 MODIS_LC

Budongquan 0.54 0.41 0.40 1.50 0.46 0.38
Xieshuihe 0.49 0.45 0.47 0.63 0.48 0.48

Qingshuihe 0.59 0.70 0.70 0.62 0.53 0.70
K2985 1.01 1.06 1.05 1.06 0.92 1.05

Wudaoliang 0.61 0.60 0.57 0.60 0.65 0.59
K3040 0.80 0.50 1.43 0.49 0.73 0.48

Fenghuoshan 0.48 0.47 0.49 0.49 0.47 0.47

Bold indicates the smallest RMSE of all simulation cases.
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3.3. Permafrost Extent and Active Layer Thickness Simulation Results

In this section, we have calculated the permafrost extent based on the daily soil
temperature simulated with the CLM5, which introduces six LULC products. According
to the definition of permafrost, a grid cell is identified as permafrost if the maximum
monthly mean temperature in at least one soil layer remains below 0 ◦C for two consecutive
years. We compared those simulated permafrost extents with permafrost maps to assess
the influence of different LULC products on permafrost simulations, as shown in Figure 7.
The CLM5 introduced with different LULC products can reproduce the spatial distribution
of the permafrost extent, i.e., permafrost is mainly continuously distributed in the central
part of the TP. The overestimated area fraction (OE) and underestimated area fraction (UE)
of the simulation results introducing different LULC products compared to the permafrost
map are also calculated. The calculated OE and UE values were essentially the same for
the different cases, with an average of 0.15 for OE and 0.23 for UE. The MODIS_LC case
simulates the highest level of agreement with the permafrost map, with the smallest sum
of OE and UE. The GlobeLand30 case simulates the lowest level of agreement with the
permafrost map, with the largest sum of OE and UE. The distribution characteristics of
the OE and UE permafrost areas simulated with different LULC products are somewhat
similar. Most of the UE areas are distributed in the southern part of the TP and at the edge
of continuous permafrost. These common features of simulated permafrost extent are not
caused by differences in different LULC products but may be due to uncertainties in the
atmospheric forcing and permafrost map.

Figure 7. Comparison of the simulated permafrost extent and permafrost map on the TP in 2010. The
permafrost extents were simulated with the CLM5 model with the introduction of different LULC
products: (a) CTL, (b) C3S_LC, (c) ESA_WC10, (d) GlobeLand30, (e) GLC_FCS30, and (f) MODIS_LC.
Gray areas represent agreement with observation, red areas represent overestimated areas, and blue
areas represent underestimated areas.

Changes in active layer thickness (ALT) have important implications for ecosystems,
the hydrological cycle, and engineering works in permafrost regions. Therefore, we com-
pared the differences in ALT for the simulated cases with different LULC products intro-
duced in Figure 8. ALT is defined as the annual thaw depth of the permafrost. By linearly
interpolating the simulated soil temperatures, the depth between two adjacent depths
above and below 0 ◦C was determined to be the ALT. Figure 8a shows that the ALT is below
4 m in most of the permafrost area. The average ALT in the permafrost region of the TP is
2.86 m. The ALT increases from the continuous permafrost zone in the hinterland of the
Northern TP to its surroundings, reaching a maximum at the edge of the permafrost zone.
The simulated ALT from different LULC products shows obvious variations compared
to the CTL results. The largest ALT error reaches 2 m, which may significantly affect the
engineering construction in permafrost regions. The average ALT of the ESA_WC10 and
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MODIS_LC case simulations is 0.31 m and 0.34 m shallower than CTL. The areas where
ESA_WC10 and MODIS_LC cases simulated ALT are lower than simulations from the CTL
are mainly located in the northwestern part of the TP. The difference between the simulated
ALT and CTL cases for the C3S_LC, GlobeLand30, and GLC-FCS30 cases is approximately
0.04 m, −0.06 m, and 0.0 m, respectively.

Figure 8. (a) The simulated ALT for the CTL and (b–f) the differences for ALT between the simulation
using five LULC products and the CTL (unit: m).

3.4. Analysis of the Impact for LULC Products on Soil Temperature Simulation

Differences in the simulated ALTs of the different LULC products are directly at-
tributable to differences in ground and soil temperature simulations. Figure 9 shows the
distribution of annual mean ground temperatures from the CTL and the differences in
ground temperature between five LULC cases and the CTL. From Figure 9a, it can be seen
that the ground temperature in the central and northwestern parts of the TP is below 0 ◦C,
and in the southern part of the TP, it is above 0 ◦C. The difference in ground temperature
between the CTL and the five LULC cases simulated results varies. This suggests that the
different LULC products have a strong influence on the simulation of ground temperatures
over the TP. Consistent with Figure 8c,f, Figure 9c,f shows that ESA_WC10 and MODIS_LC
cases underestimate the soil temperature in the northwestern part of the TP compared
to the CTL. EAS10 and MODIS_LC cases overestimate the ground temperature in the
southeastern part of the TP, especially for MODIS_LC in Figure 9f. The ground temper-
ature simulated by C3S_LC, GlobeLand30, and GLC-FCS30 cases is generally consistent
or slightly higher in the central part of the TP compared to CTL. In addition, we notice
that the ground temperatures modeled with the GlobeLand30 case are underestimated
in the southern region. Figure 2d shows that GlobeLand30 identifies more snow cover in
this region, and we believe that the underestimation here is due to the land cover being
recognized as snow.

Figure 9. (a) The simulated ground surface temperature for the CTL and (b–f) the differences for
ground surface temperature between the simulation using five LULC products and the CTL (unit: ◦C).
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Figure 10 shows the distribution of annual mean soil temperatures at 3 m depth
simulated with the CTL and the differences in soil temperature between five LULC cases
and the CTL. It can be seen that the spatial distribution of 3 m soil temperatures in Figure 10
and ground temperatures in Figure 9 are basically consistent, except for GlobeLand30, for
which there is a difference between Figures 9d and 10d. The reason for this difference is the
effect of the snow cover on the ground temperature and the deep soil temperature in the
form of cooling and insulating effects, respectively. The cooling effect on shallow soils can
be explained by the fact that the higher albedo of the snow cover reduces the net shortwave
radiation and thus reduces the soil heat flux. The insulating effect on deep soils is mainly
because soils radiate longwave radiation to the atmosphere in winter, and the presence of
snow prevents soil from radiating longwave energy to the atmosphere, making deep soil
warmer in snow-covered areas [51].

Figure 10. (a) The simulated soil temperature at 3 m for the CTL and (b–f) the differences for soil
temperature at 3 m between the simulation using five LULC products and the CTL (unit: ◦C).

The spatial distributions of net radiation (Rnet) are shown in Figure 11. The regional
average Rnet simulated by the CTL is 68 W/m2. Rnet is higher in the southwestern and
southeastern parts of the TP and lower in most of the northern part of the TP. The differences
in Rnet between the simulation from the CTL and the five LULC cases show substantial
variations. The ESA_WC10 and MODIS_LC cases obviously underestimate the Rnet in
the northwest of the TP compared to the CTL in Figure 11c,d. These underestimations
are in good agreement with the ground and soil temperatures shown in Figures 9 and 10.
The GlobeLand30 LULC product identifies more snow cover in the Nyenchen Tanglha
mountain, leading to a low Rnet in this region as well (Figure 11d), which is consistent
with the underestimation of ground temperature in Figure 9d. The Rnet simulated with the
C3S_LC and GLC-FCS30 cases is higher in most areas compared to the CTL simulations,
especially in the southeastern part of the TP. It is also clearly demonstrated in Figure 11
that net radiation and soil temperature in the southeastern part of the TP show an opposite
relationship. This is due to the fact that soil temperatures in vegetated areas, especially in
forested areas, are not only affected by Rnet but also via evapotranspiration and shading.
However, permafrost in this region is sporadic and was not the focus of our analysis, so we
did not conduct any further analysis.

By comparing the differences in land cover type among the six LULC products in Figure 2,
it is easy to see that the differences among the six datasets on the TP are mainly in the
distribution of bare soil and grassland. Therefore, in the following, we mainly focus on the
analysis of LULC difference areas to explore the impact of LULC differences on the simulation
of surface energy and soil temperature. Bare soil and grassland are also the main LULC types
in the permafrost region. Figure 12 shows the coverage of bare soil and grass on the TP for
different LULC products. Although the different products consistently show that bare soil is
predominantly located in the northwest of the TP, there are large differences in coverage and



Remote Sens. 2023, 15, 5586 15 of 20

area between the six LULC products. ESA_WC10 and MODIS_LC show a high percentage of
bare soil in the northwest of the TP. The CLM5 default LULC identified a large area but a lower
percentage of bare soil in this region. C3S_LC, GlobeLand30, and GLC-FCS30 were generally
consistent in identifying bare soil in this area, with the smallest area of bare soil identified. The
six datasets showed the opposite situation for the distribution of grassland and bare soil in the
northwestern part of the TP. ESA_WC10 and MODIS_LC have a low percentage of grassland,
CLM5 default LULC has a medium percentage of grassland, and C3S_LC, GlobeLand30,
and GLC-FCS30 have a high percentage of grassland. Therefore, we focused on the effect of
differences in bare soil and grassland cover on soil temperature and permafrost simulations in
the northwestern part of the TP. By extracting grid points in the region where the difference
in land cover was distinct, we compared the difference in annual Rnet and soil temperature
in Figure 13. The averaged Rnet values simulated with six cases ranging from 66.66 to 68.30
Wm−2. The averaged Rnet simulated from ESA_WC10 and MODIS_LC cases are 66.66 and
66.69, which are significantly lower than the simulations for the other products. There is a good
agreement between the modeled soil temperatures and the net radiation. The simulated soil
temperature averages from the ESA_WC10 and MODIS_LC cases are −1.12 ◦C and −1.20 ◦C,
respectively, which are lower than those of the other cases.

Figure 11. (a) The simulated net radiation for the CTL and (b–f) the differences for net radiation
between the simulation using five LULC products and the CTL (unit: Wm−2).

Figure 12. Distribution of the percentage of (a–f) bare soil and (g–l) grassland based on the TP
according to the PFTs generated through the conversion of different land use products.
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Figure 13. Box plots of (a) net radiation and (b) soil temperature at a 3 m depth in the northwestern
part of the plateau modeled with different land use products.

4. Discussion
4.1. Uncertainty in Permafrost Simulation

In this study, we compared and analyzed the effects of different LULC products
on permafrost simulation by introducing them into the CLM5, hoping to improve the
accuracy of the land surface model on permafrost simulation. However, the accuracy of
permafrost simulation results is affected by not only land use but also atmospheric forcing
data, soil texture, and the model parameterization scheme. In this study, we used the
CMFD, which was developed by fusing ground-based observations with datasets from
multiple sources, such as remote sensing and reanalysis [38], to drive CLM5 to simulate
the extent of permafrost over the TP. Some studies have shown that the CMFD still has
uncertainties in certain regions where observations are sparse, such as on the TP. Guo and
Wang compared CMFD air temperatures with observations from TP and found that CMFD
air temperatures are 1.3 ◦C lower than observations [52]. Peng et al. [53] also reported an
average air temperature bias of −1.72 ◦C for the CMFD data compared to the observation.
The warming rate of CMFD air temperatures from 1981 to 2007 is slower than that of
meteorological station observations [52].

The simulation results of soil temperature and moisture are largely affected by soil tex-
ture and soil organic matter. CDSP-LSM is widely used and recognized as high-resolution
soil property data for the simulation of land surface processes in the TP. In this study, we
used this data to update the CLM5 default soil texture and soil organic matter. However,
soil texture uncertainty is still an important source of simulation error in our model because
of the limited soil sample data on which this dataset is based, especially the deep soil
texture data, which still has large uncertainties. In addition, the soils on the TP contain a
large amount of gravel. However, the model used in this study does not include gravel,
an important soil texture, and its associated parameters. Pan et al. [54] found that gravel
increases porosity, which could reduce thermal conductivity values in the soil.

Although the CLM5 has been updated and developed several times and is widely
used, there are still some uncertainties in some parameterization schemes related to soil
hydrological and thermal processes in the simulation. For example, Ma et al. [55] evaluated
the simulation performance of the CLM5 on the TP using soil temperature and moisture
as well as energy flux observations, and they found that the default roughness scheme
and dry surface layer scheme in the CLM5 produce a large error in the simulation of
surface energy flux and soil temperature. Several other studies of thermal conductivity
evaluations have shown that the CLM5 default thermal conductivity scheme provides
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inaccurate predictions and significantly overestimates thermal conductivity for some local
soil samples [56,57]. Yang et al. [49] evaluated the model default thermal conductivity
scheme using site measurements and found that the performance of the CLM5 default
scheme varied widely in modeling soil temperature simulations at different observation
sites. Therefore, uncertainties in the data and model schemes used in this study will
inevitably affect the simulation results to varying degrees.

4.2. Disparities between LULC Products and PFTs

This study found that although the TP is considered to have a low heterogeneity of
land use types and is dominated by grasslands, there is some disagreement between the
different land use products. The disagreement in LULC products is mainly in the grassland-
bare soil transition zone in the west-central part of the TP and in the complex terrain
region in the southeastern region. This result is consistent with the results of [58], who
assessed the spatial consistency of four LULC products on the TP. Our study found that this
disagreement in data products can have a non-negligible impact on the results of permafrost
simulation, especially the ALT. A number of other studies have also demonstrated the
impact of LULC on the simulation accuracy of land surface models and regional climate
models, as they directly affect the radiative properties of the land surface, roughness length,
albedo, emissivity, and regulate the exchange of energy, moisture, and momentum between
the atmosphere and land surface [24,30,59]. Therefore, to obtain accurate simulation results,
it is necessary to carefully select reasonable land use data and update the land use data in
the model in a timely manner.

In addition, the difference between the LULC data classification and the model PFT
classification makes it possible to cause some errors in the process of converting the
different classification systems. Mixed forests, for example, which occur in MODIS_LC
products, are difficult to correspond directly to specific PFT classifications due to the limited
PFTs used in CLM5. Although the model allows us to use mosaics to describe the sub-
grid information of land use, the simple way of calculating the weights according to the
proportion is also difficult to describe the mixed growth of vegetation in the real world. In
addition, grasslands on the TP can be subdivided into two vegetation types, alpine steppe
and alpine meadow, which differ in their influence on surface thermal and hydrological
processes [60,61]. However, there is only one alpine grass type, arctic grass, in the model,
which may cause errors in the permafrost simulation results. Therefore, increasing the
number of PFTs in CLM5 and optimizing the model’s description of multiple vegetation
types, especially alpine vegetation types, is the key to improving the model’s simulation of
permafrost on the TP.

5. Conclusions

In this study, we evaluated the consistency of five LULC products on the TP and
introduced these five products into the CLM5 model to assess their impact on permafrost
simulation. The consistency analyses show that these LULC products are able to properly
characterize the distribution of land-cover types on the TP, i.e., the main surface types are
bare soil and grassland, with a few glaciers, lakes, shrubs, and forests. However, the consis-
tency of the LULC products was lower at the interface of bare soil and grassland and in the
southeastern region with complex topography. Evaluation of the model simulation shows
that CLM5 can accurately simulate the shallow soil temperature variation. In addition, the
simulation can also well represent the characteristics of the observed permafrost extent
distribution and the borehole soil temperature profiles.

A comparison of the simulation cases with different land use products shows that the
effect of the different land use products on the permafrost extent is slight, while the effect
on the borehole temperature profile and the depth of the active layer is more pronounced.
The most pronounced effect is in the northwestern part of the TP, at the junction of bare soil
and grassland, where the difference in surface cover type significantly affects the net surface
radiation, which in turn affects the results of the soil temperature simulation. In addition, we
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also discuss other factors affecting the results of permafrost simulation and suggest that the
careful use of land use products and increasing the classification of vegetation types in the
model will help to improve the model’s simulation performance for permafrost. The results of
this study will motivate the level of application of land surface modeling on the TP.
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