Spatial Heterogeneity of Summer Rainfall Trends over the Tibetan Plateau Contributed by Different Rainfall Intensities
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Trends in Summer Total Rainfall over the TP
3.2. Contributions of Various Rainfall Intensities to Regional STR Trends
3.2.1. Spatial Distributions
3.2.2. Temporal Evolution
3.2.3. Trend in Proportions of Different Levels of Rainfall Intensities to STR
3.3. Possible Physical Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flohn, H. 1957 Large-scale aspects of the summer monsoon in South and East Asia. J. Meteoroligical Soc. Jpn. 1957, 35, 180–186. [Google Scholar] [CrossRef]
- Flohn, H. Recent investigations on the mechanism of the “summer monsoon” of southern and eastern Asia. Monsoons World N Delhi Ed Hindu Union Press 1960, 75–88. [Google Scholar]
- Tao, S.Y.; Ding, Y.H. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Am. Meteorol. Soc. 1981, 62, 23–30. [Google Scholar] [CrossRef]
- Luo, H.B.; Yanai, M. The large-scale circulation and heat sources over Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Weather Rev. 1983, 111, 922–944. [Google Scholar] [CrossRef]
- Wu, G.X.; Zhang, Y.S. Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Mon. Weather Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Wu, G.X.; Zhou, X.J.; Xu, X.D.; Huang, J.P.; Duan, A.M.; Yang, S.; Hu, W.T.; Ma, Y.M.; Liu, Y.M.; Bian, J.C.; et al. An integrated research plan for the Tibetan Plateau land-air coupled system and its impacts on the global climate. Bull. Am. Meteorol. Soc. 2023, 104, 158–177. [Google Scholar] [CrossRef]
- Lu, C.; Yu, G.; Xie, G. Tibetan Plateau serves as a water tower. IEEE Int. Geosci. Remote Sens. Symp. 2005, 5, 3120–3123. [Google Scholar]
- Xu, Z.X.; Gong, T.L.; Li, J.Y. Decadal trend of climate in the Tibetan Plateau-Regional temperature and precipitation. Hydrol. Process 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Yao, T.; Wang, Y.Q.; Liu, S.Y.; Pu, J.C.; Shen, Y.P.; Lu, A.X. Recent glacial retreat in high Asia in China and its impact on water resource in northwest China. Sci. China Ser. A D 2004, 47, 1065–1075. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Li, Z.C. Climatic characteristics of heavy rainfall in the northeast Tibetan Plateau. J. Appl. Meteorol. Sci. 2006, 17, 98–103. [Google Scholar]
- Xu, X.D.; Zhao, T.L.; Lu, C.G.; Shi, X.H. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteorol. Sin. 2014, 72, 1079–1095. [Google Scholar]
- Wang, X.J.; Pang, G.J.; Yang, M.X. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. Int. J. Climatol. 2018, 38, 1116–1131. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.F.; Song, Z.S. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 319–351. [Google Scholar] [CrossRef]
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Deng, H.Q.; Guo, P.W.; Xue, R.K.; Min, Y.Q. Relationship between Summer Latent Heat in the Eastern Qinghai- Tibet Plateau and Intensity of Western North Pacific Typhoon. J. Meteorol. Res. Appl. 2010, 31, 16–19. (In Chinese) [Google Scholar]
- Duan, A.M.; Wu, G.X.; Liu, Y.M.; Ma, Y.M.; Zhao, P. Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 978–992. [Google Scholar] [CrossRef]
- Lu, M.; Yang, S.; Li, Z.; He, B.; He, S.; Wang, Z. Possible effect of the Tibetan Plateau on the “upstream” climate over West Asia, North Africa, South Europe and the North Atlantic. Clim. Dyn. 2018, 51, 1485–1498. [Google Scholar] [CrossRef]
- Wang, M.R.; Wang, J.; Duan, A.M.; Yang, J. Quasi-biweekly impact of the atmospheric heat source over the Tibetan Plateau on summer rainfall in Eastern China. Clim. Dyn. 2019, 53, 4489–4504. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2016, 5, 18018. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Zhou, S.W.; Zhang, R.H. Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibetan Ozone depletion. Geophys. Res. Lett. 2005, 32, L18705. [Google Scholar] [CrossRef]
- Sun, J.; Yang, K.; Guo, W.; Wang, Y.; He, J.; Lu, H. Why has the inner Tibetan Plateau become wetter since the mid-1990s? J. Clim. 2020, 33, 8507–8522. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef]
- Duan, A.; Li, F.; Wang, M.; Wu, G. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Clim. 2011, 24, 5671–5682. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.; Chen, Y.D.; Liu, C.L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Wen, M.; Lv, J. Regionally different precipitation trends over the Tibetan Plateau in the warming context: A perspective of the Tibetan Plateau vortices. Geophys. Res. Lett. 2021, 48, e2020GL091680. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yang, S.; Luo, H.L.; Li, J.D. Drying tendency over the southern slope of the Tibetan Plateau in recent decades: Role of a CGT-like atmospheric change. Clim. Dyn. 2021, 59, 2801–2813. [Google Scholar] [CrossRef]
- Yue, S.; Wang, B.; Yang, K.; Xie, Z.; Lu, H.; He, J. Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau. Environ. Res. Lett. 2020, 16, 014011. [Google Scholar] [CrossRef]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall Variability, Carbon Cycling and Plant Species Diversity in a Mesic Grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, L.; Chen, X.; Shi, H. Effects of Precipitation Intensity and Temperature on NDVI-Based Grass Change over Northern China during the Period from 1982 to 2011. Remote Sens. 2015, 7, 10164–10183. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Cai, Q.; Zeng, N.; Lu, X.; Yang, R.; Jiang, F.; Wang, H.; Ju, W. Considerable uncertainties in simulating land carbon sinks induced by different precipitation products. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006524. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, C. Geographic patterns of extreme climate changes in China during 1951–1997. Clim. Environ. Res. 2000, 5, 267–272. [Google Scholar]
- Yun, Q.; Gong, D.; Fan, J.; Ruby, L.L.; Ralf, B.; Chen, D.; Wang, W. Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res. 2009, 114, 4427–4433. [Google Scholar]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Wang, M.R.; Wang, J.; Chen, D.L.; Duan, A.M.; Liu, Y.M.; Zhou, S.W.; Guo, D.; Wang, H.M.; Ju, W.M. Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. Environ. Res. Lett. 2019, 14, 124066. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Shi, X.D.; Li, D.L. Some New Changes of the Regional Climate on the Tibetan Plateau Since 2000. Adv. Earth Sci. 2021, 36, 785–796. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Adv. Glob. Chang. Res. 2020, 1, 343–353. [Google Scholar]
- Lin, Z.Q.; Yao, X.P.; Du, J.; Zhou, Z.B. Refined evaluation of satellite precipitation products against rain gauge observations along the Sichuan-Tibet Railway. J. Meteorol. Res. 2022, 36, 779–797. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Royal Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, G.; Ren, X.; Yang, X.Q. Role of intraseasonal oscillation in the persistent extreme precipitation over the Yangtze River Basin during June 1998. J. Geophys. Res. Atmos. 2016, 121, 10453–10469. [Google Scholar] [CrossRef]
- Shao, T.B.; Liu, Y.Z.; Wang, R.R.Y.; Zhu, Q.Z.; Tan, Z.Y.; Luo, R. Role of anthropogenic aerosols in affecting different-grade precipitation over eastern China: A case study. Sci. Total Environ. 2022, 807, 150886. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Ouyang, L.; Wang, Y.; Jiang, Y.; Li, X.; Chen, D.; Prein, A. Added value of kilometer-scale modeling over the third pole region: A CORDEX-CPTP pilot study. Clim. Dyn. 2021, 57, 1673–1687. [Google Scholar] [CrossRef]
Regions | Total Rainfall | Light Rainfall | Moderate Rainfall | Heavy Rainfall |
---|---|---|---|---|
A | 48.6 *** | 6.3 | 15.3 ** | 27.0 *** (55.6%) |
B | 46.7 **** | 20.9 ** (44.8%) | 17.4 *** (37.3%) | 8.4 *** |
C | 17.7 *** | 12.6 **** (71.2%) | 4.3 | 0.9 |
D | −41.7 * | −5.8 | −14.3 | −21.7 ** (52%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yao, X.; Wang, J.; Liu, B.; Zhu, Z.; Zhou, S.; Yuan, J. Spatial Heterogeneity of Summer Rainfall Trends over the Tibetan Plateau Contributed by Different Rainfall Intensities. Remote Sens. 2023, 15, 5587. https://doi.org/10.3390/rs15235587
Wang M, Yao X, Wang J, Liu B, Zhu Z, Zhou S, Yuan J. Spatial Heterogeneity of Summer Rainfall Trends over the Tibetan Plateau Contributed by Different Rainfall Intensities. Remote Sensing. 2023; 15(23):5587. https://doi.org/10.3390/rs15235587
Chicago/Turabian StyleWang, Meirong, Xiuping Yao, Jun Wang, Boqi Liu, Zhu Zhu, Shunwu Zhou, and Jiashuang Yuan. 2023. "Spatial Heterogeneity of Summer Rainfall Trends over the Tibetan Plateau Contributed by Different Rainfall Intensities" Remote Sensing 15, no. 23: 5587. https://doi.org/10.3390/rs15235587
APA StyleWang, M., Yao, X., Wang, J., Liu, B., Zhu, Z., Zhou, S., & Yuan, J. (2023). Spatial Heterogeneity of Summer Rainfall Trends over the Tibetan Plateau Contributed by Different Rainfall Intensities. Remote Sensing, 15(23), 5587. https://doi.org/10.3390/rs15235587